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Abstract

Let X be a perfect compact plane set, n ∈ N and Dn(X) be the alge-
bra of complex-valued functions on X with continuous n-th derivative. In
this paper we study weighted composition operators on algebras Dn(X). We
give a necessary and sufficient condition for these operators to be compact.
As a consequence, we characterize power compact composition operators on
these algebras. Then we determine the spectra of Riesz weighted composi-
tion operators on these algebras.

1 Introduction

A complex-valued function f defined on a perfect plane set X is called differen-
tiable on X if at each point z0 ∈ X the limit

f ′(z0) = lim
z→z0
z∈X

f (z) − f (z0)

z − z0
,

exists. We denote the n-th derivative of f by f (n) when it exists. The algebra of
complex-valued functions f on a perfect compact plane set X with continuous
n-th derivative is denoted by Dn(X). This algebra with the norm

‖ f‖n =
n

∑
r=0

‖ f (r)‖X

r!
( f ∈ Dn(X)),

Received by the editors in January 2016 - In revised form in June 2016.
Communicated by F. Bastin.
2010 Mathematics Subject Classification : 46J15, 47B38, 47B06.
Key words and phrases : Continuously differentiable function algebras, weighted composition

operators, compact and Riesz operators, spectra.

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 595–608



596 S. Amiri – A. Golbaharan – H. Mahyar

is a normed function algebra on X which is not necessarily complete, where

‖ f‖X = sup
x∈X

| f (x)|.

For example, Bland and Feinstein showed that D1(X) is incomplete whenever
X has infinitely many components [4, Theorem 2.3]. By standard methods one
can show that if D1(X) is complete, then Dn(X) is complete for each n ∈ N, see
[4, 15]. To provide a sufficient condition for the completeness of D1(X), let us
recall the definition of pointwise regularity and uniform regularity for compact
plane sets.

Definition 1.1. Let X be a rectifiably connected compact plane set and let δ(z, w)
be the geodesic metric on X, the infimum of the lengths of the rectifiable path
from z to w in X.

(i) X is called pointwise regular if for each z0 ∈ X there exists a constant cz0

such that for all z ∈ X, δ(z, z0) ≤ cz0 |z − z0|.

(ii) X is called uniformly regular if there exists a constant c such that for all
z, w ∈ X, δ(z, w) ≤ c|z − w|.

Dales and Davie [8, Theorem 1.6] showed that D1(X) is complete whenever X
is a finite union of uniformly regular sets. Indeed, they proved that for each z0 in
such set X, there exists a constant cz0 such that for all f ∈ D1(X) and each z ∈ X,

| f (z)− f (z0)| ≤ cz0 |z − z0|(‖ f‖X + ‖ f ′‖X), (1.1)

and using this inequality, they showed that D1(X) is complete. Later in [12],
it was shown that the condition (1.1) is still valid when X is a finite union of
pointwise regular sets, in fact, it is a necessary and sufficient condition for the
completeness of D1(X) (see also [15]).

Let C(X) be the algebra of all continuous complex-valued functions on a com-
pact Hausdorff space X. A unital subalgebra A of C(X) that separates the points
of X is a function algebra on X. A function algebra A on X is said to be natu-
ral if every nonzero complex homomorphism (character) on A is an evaluation
homomorphism at some point of X [7, Definition 4.1.3]. As it was proved in
[8], the algebra Dn(X) is natural when X is uniformly regular. However, as men-
tioned in [13], applying the same method used in it, one can show that the algebra
Dn(X) is natural for every perfect compact plane set X (see also [9, Theorem 4.1]).

Let A be a linear space of functions on a set X. Let u be a complex-valued
function on X and ϕ be a self-map of X. A linear operator T := uCϕ defined by
uCϕ( f ) = u · ( f ◦ ϕ) is a weighted composition operator on A if u · ( f ◦ ϕ) ∈ A
whenever f ∈ A. In the case where u = 1, the operator uCϕ reduces to the
composition operator Cϕ. In [2], Behrouzi obtained some results on compact-
ness of composition operators between algebras Dn(X). In this paper, we study
weighted composition operators acting on algebras Dn(X) when perfect compact
plane sets X satisfy the condition (1.1). Let coz(u) = {z ∈ X : u(z) 6= 0}. In Sec-
tion 2, for u, ϕ ∈ Dn(X) we show that if either ϕ is constant or ϕ(coz(u)) ⊆ intX,
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then uCϕ is compact on Dn(X). We also show that these conditions are necessary
for certain compact plane sets X. Using these results, we give a necessary and
sufficient condition for a composition operator (endomorphism) on Dn(X) to be
power compact.

Let X be a compact plane set and A(X) be the uniform algebra of all contin-
uous functions on X which are analytic on intX. Suppose A is a unital Banach
subalgebra of A(X), containing the coordinate function z. In Section 3, we study
the spectrum of a weighted composition operator on such algebras A. In [3], the
spectrum of a compact composition operator Cϕ on A was determined as

σA(Cϕ) = {ϕ′(z0)
k : k is a positive integer} ∪ {0, 1},

when ϕ(X) ⊆ intX and z0 is a fixed point of ϕ. We show that the spectrum of a
Riesz weighted composition operator uCϕ on A is

σA(uCϕ) = {u(z0)ϕ′(z0)
k : k is a positive integer} ∪ {0, u(z0)},

when ϕ has a fixed point z0 ∈ intX. Then we conclude this result for the Banach
algebra Dn(X). In the case that ϕ has all its fixed points on boundary, we show
that σ(uCϕ) = {0} for a compact operator uCϕ on Dn(D) where D is the open
unit disc in the complex plane.

2 Compactness

It is known that if u, ϕ ∈ Dn(X), then uCϕ is a weighted composition operator on
Dn(X). Conversely, if uCϕ is a weighted composition operator on Dn(X), then
u ∈ Dn(X) although ϕ does not necessarily belong to Dn(X), even it may not be
continuous on X. Here we give a necessary and sufficient condition on u and ϕ
for uCϕ to be a weighted composition operator on D1(X).

Theorem 2.1. Let X be a perfect compact plane set. Let u be a complex-valued function
on X and ϕ be a self-map of X not necessarily continuous. Then uCϕ is a weighted

composition operator on D1(X) if and only if u and uϕ belong to D1(X).

Proof. Let uCϕ be a weighted composition operator on D1(X). Then

u, uϕ ∈ D1(X), since this algebra contains constant functions and the coordinate
function z.

Conversely, let u and uϕ belong to D1(X). Then ϕ = uϕ
u is differentiable on

coz(u) and ϕ′ =
(uϕ)′−u′ϕ

u . If z ∈ X with u(z) = 0 and u′(z) 6= 0, then u is nonzero
on a punctured neighborhood of z and

lim
w→z

ϕ(w) = lim
w→z

u(w)ϕ(w)−u(z)ϕ(z)
w−z

u(w)−u(z)
w−z

=
(uϕ)′(z)

u′(z)
.

Hence, in this case, ϕ1(z) := limw→z ϕ(w) exists and belongs to X, so we can
write (uϕ)′(z) = u′(z)ϕ1(z). When u(z) = u′(z) = 0, we have (uϕ)′(z) = 0,
since ϕ is bounded. These relations along with the continuity of (uϕ)′ imply that

lim
w→z

w∈coz(u)

(uϕ′)(w) = 0, (2.1)
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whenever u(z) = 0 and z is in the closure of coz(u). Let f ∈ D1(X). Then

(u · ( f ◦ ϕ))′(z) = lim
w→z

u(w) f (ϕ(w))

w − z
= lim

w→z

u(w) − u(z)

w − z
f (ϕ(w))

=

{

u′(z) f (ϕ1(z)) u′(z) 6= 0
0 u′(z) = 0,

whenever u(z) = 0. Therefore, for each z ∈ X we have

(u · ( f ◦ ϕ))′(z) =







u′(z) f (ϕ(z)) + u(z)ϕ′(z) f ′(ϕ(z)) u(z) 6= 0
u′(z) f (ϕ1(z)) u(z) = 0, u′(z) 6= 0
0 u(z) = 0, u′(z) = 0.

We show that (u · ( f ◦ ϕ))′ is continuous on X. Obviously, it is continuous on
coz(u). Now let z ∈ X with u(z) = 0 and (zn) be a sequence in X such that
zn 6= z and lim zn = z. Without loss of generality we can assume that either
(zn) ⊆ coz(u) or u(zn) = 0 for all n ∈ N. In the case that (zn) ⊆ coz(u), by using
(2.1), limn u(zn)ϕ′(zn) = 0, hence

lim
n
(u · ( f ◦ ϕ))′(zn) = lim

n
[u′(zn) f (ϕ(zn)) + u(zn)ϕ′(zn) f ′(ϕ(zn))]

=

{

u′(z) f (ϕ1(z)) u′(z) 6= 0
0 u′(z) = 0.

In the second case, u(zn) = 0 for all n ∈ N, by the definition of derivative,
u′(z) = 0 and hence limn(u · ( f ◦ ϕ))′(zn) = 0. This argument shows that
(u · ( f ◦ ϕ))′ is continuous and the proof is complete.

To give a necessary and sufficient condition for compactness of uCϕ on Dn(X)
we need the following notations.

Let ϕ and f belong to Dn(X) with ϕ : X → X. The following equality for
higher derivatives of composite functions is known as Faà di Bruno’s formula
[1, page 823],

( f ◦ ϕ)(n) =
n

∑
j=1

( f (j) ◦ ϕ) · ψj,n,

where

ψj,n = ∑
a

(

n!

a1!a2! · · · an!

n

∏
i=1

(

ϕ(i)

i!

)ai
)

,

the sum ∑a is taken over all non-negative integers a1, a2, . . . , an satisfying a1 +

a2 + · · · + an = j and a1 + 2a2 + · · · + nan = n. For example, ψ1,n = ϕ(n) and
ψn,n = (ϕ′)n. We also need the Leibniz’s formula of products of functions. For
f , g ∈ Dn(X) we have

( f g)(n) =
n

∑
j=0

(n
j) f (j) · g(n−j).
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In the case that X satisfies the condition (1.1), for each z0 ∈ X we define

pz0( f ) := sup
z∈X
z 6=z0

| f (z) − f (z0)|

|z − z0|
( f ∈ D1(X)).

Then for each z0 ∈ X there exists a constant cz0 such that

pz0( f ) ≤ cz0(‖ f‖X + ‖ f ′‖X) ( f ∈ D1(X)). (2.2)

In general, for a constant self-map ϕ of X, the weighted composition operator
uCϕ on a normed function algebra A on X is a rank one operator, so it is compact.
We next give a sufficient condition for compactness of uCϕ on Dn(X) for those ϕ
which are not constant self-maps of X.

Theorem 2.2. Let X be a perfect compact plane set satisfying the condition (1.1). Let
u, ϕ ∈ Dn(X). If ϕ(coz(u)) ⊆ intX, then the weighted composition operator uCϕ is
compact on Dn(X).

Proof. Let { fk} be a bounded sequence in Dn(X) with ‖ fk‖n = ∑
n
r=0

‖ f
(r)
k ‖X

r! ≤ 1.

Using the condition (1.1), the uniformly bounded sequences { f
(r)
k }, r = 0, . . . ,

n− 1 are equicontinuous at each point of X. Then by Arzela-Ascoli Theorem, { fk}

has a subsequence { fkj
}, say it { fk} again, such that each { f

(r)
k }, 0 ≤ r ≤ n − 1

is uniformly convergent and hence is uniformly Cauchy on X. Moreover, using
Leibniz’s and Faà di Bruno’s formulas we have

(uCϕ( f ))(r) =
r

∑
j=0

(r
j)u

(r−j)( f ◦ ϕ)(j)

=u(r)( f ◦ ϕ) +
r

∑
j=1

(r
j)u

(r−j)
j

∑
i=1

( f (i) ◦ ϕ)ψi,j,

for any f ∈ Dn(X) and for each 0 ≤ r ≤ n. Using this relation for the differences
fk − fℓ we get

‖(uCϕ( fk − fℓ))
(r)‖X ≤ ‖u(r)‖X‖ fk − fℓ‖X

+
r

∑
j=1

(r
j)‖u(r−j)‖X

j

∑
i=1

‖ f
(i)
k − f

(i)
ℓ
‖X‖ψi,j‖X,

for each 0 ≤ r ≤ n − 1 and

‖(uCϕ( fk − fℓ))
(n)‖X ≤ ‖u(n)‖X‖ fk − fℓ‖X

+
n−1

∑
j=1

(n
j)‖u(n−j)‖X

j

∑
i=1

‖ f
(i)
k − f

(i)
ℓ
‖X‖ψi,j‖X

+ ‖u‖X

n−1

∑
i=1

‖ f
(i)
k − f

(i)
ℓ
‖X‖ψi,n‖X

+ ‖u(ϕ′)n(( f
(n)
k − f

(n)
ℓ

) ◦ ϕ)‖X .
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Therefore, to show that {uCϕ( fk)} is a Cauchy and hence a convergent sequence

in Dn(X), it is enough to show that {u(ϕ′)n( f
(n)
k ◦ ϕ)} is uniformly Cauchy on X.

As we know, each fk ∈ Dn(X) is analytic in intX, thus the sequence { f
(n)
k } is

uniformly convergent on every compact subset of intX, [6, VII, Theorem 2.1]. Let
ε > 0 and K = {z ∈ X : |u(z)| ≥ ε}. Then K is a compact subset of coz(u) and

ϕ(K) is a compact subset of ϕ(coz(u)) ⊆ intX. Hence { f
(n)
k } is uniformly Cauchy

on ϕ(K), so ‖ f
(n)
k − f

(n)
ℓ

‖ϕ(K) < ε, for large enough k, ℓ.

Let z ∈ X, we consider two cases. First, let z ∈ K. In this case ϕ(z) ∈ ϕ(K)
and

|u(z)(ϕ′)n(z)( f
(n)
k (ϕ(z)) − f

(n)
ℓ

(ϕ(z)))| ≤ ‖u‖X‖ϕ′‖n
X‖ f

(n)
k − f

(n)
ℓ

‖ϕ(K)

< ε‖u‖X‖ϕ′‖n
X,

for large enough k, ℓ. Next, let z /∈ K. In this case,

|u(z)(ϕ′)n(z)( f
(n)
k (ϕ(z)) − f

(n)
ℓ

(ϕ(z)))| ≤ |u(z)|‖ϕ′‖n
X(‖ f

(n)
k ‖X + ‖ f

(n)
ℓ

‖X)

< 2n!ε‖ϕ′‖n
X.

Therefore,

‖u(ϕ′)n( f
(n)
k ◦ ϕ − f

(n)
ℓ

◦ ϕ)‖X < ε‖ϕ′‖n
X(2n! + ‖u‖X),

for large enough k, ℓ.

We now show that the above conditions are also necessary for compactness
of weighted composition operators uCϕ on algebras Dn(X) for certain compact
plane sets X. For this we introduce the type of plane sets which we shall consider.

Definition 2.3. A plane set X has an internal circular tangent at ζ ∈ ∂X if there
exists an open disc U such that ζ ∈ ∂U and U \ {ζ} ⊆ intX. A plane set X
is strongly accessible from the interior if it has an internal circular tangent at each
point of its boundary.

A compact plane set X is said to have a peak boundary with respect to B ⊆ C(X)
if for each ζ ∈ ∂X there exists a non-constant function h ∈ B such that ‖h‖X =
h(ζ) = 1.

Such sets include the closed unit disc D and ∆(z0, r) \ ∪n
k=1∆(zk , rk) where

closed discs ∆(zk, rk) are mutually disjoint in ∆(z0, r) = {z ∈ C : |z − z0| <

r}. Moreover, if X is a compact plane set such that C \ X is strongly accessible
from the interior, then X has peak boundary with respect to R0(X), the algebra
of rational functions with poles off X, and hence with respect to Dn(X), since
R0(X) ⊆ Dn(X). For this, suppose ζ ∈ ∂X, then there exists a disc U = ∆(z0, r)

such that ζ ∈ ∂U and U \ {ζ} ⊆ C \ X. The function h(z) =
r

z − z0
satisfies the

definition of peak boundary, (see [3, 16]).
We shall also require the following lemma due to Julia [5, Chapter I of Part

Six].
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Lemma 2.4. Let D be the closed unit disc in C and let h be a continuously differentiable
function on D. If h(ζ) = ‖h‖

D
for some ζ ∈ D, then either h is constant or h′(ζ) 6= 0.

Theorem 2.5. Let X be a perfect compact plane set with connected interior satisfy the
condition (1.1), be strongly accessible from the interior and have a peak boundary with
respect to Dn(X). Let a complex function u and a self-map ϕ of X be in Dn(X). If the
weighted composition operator uCϕ on Dn(X) is compact, then either ϕ is constant or
ϕ(coz(u)) ⊆ intX.

Proof. Let uCϕ be compact on Dn(X) and suppose u(ζ) 6= 0 and ϕ(ζ) ∈ ∂X for
some ζ ∈ X. Then by open mapping theorem for analytic functions, ζ ∈ ∂X.
Since X has a peak boundary with respect to Dn(X), there exists a non-constant
function h ∈ Dn(X) such that h(ϕ(ζ)) = ‖h‖X = 1. Also, the plane set X is
strongly accessible from the interior, hence there exists an open disc U such that
ζ ∈ ∂U and U \ {ζ} ⊆ intX. Thus, (h ◦ ϕ)(ζ) = ‖h ◦ ϕ‖U = ‖h‖X = 1. Define

fk(z) =
hk(z)

k(k − 1) · · · (k − n + 1)
(z ∈ X, k ≥ n).

It is not hard to show that { fk} is a bounded sequence in Dn(X) and f
(r)
k → 0

uniformly on X for each r = 0, 1, 2, . . . , n − 1. Also by (2.2), pζ( f
(r)
k ) → 0 and

pϕ(ζ)( f
(r)
k ) → 0 for each r = 0, 1, 2, . . . , n − 2. Using Faà di Bruno’s formulas, one

can conclude that

‖( fk ◦ ϕ)(r)‖X → 0 as k → ∞ (r = 0, 1, 2, . . . , n − 1), (2.3)

hence by (2.2),

pζ(( fk ◦ ϕ)(r)) → 0 as k → ∞ (r = 0, 1, 2, . . . , n − 2). (2.4)

By compactness of uCϕ, there exists a subsequence of { fk} which is denoted by
{ fk} again, such that {uCϕ( fk)} converges in Dn(X). Since ‖ fk‖X → 0, uCϕ( fk) →

0 in Dn(X). Hence, ‖(uCϕ( fk))
(r)‖X → 0, as k → ∞ for each r, 0 ≤ r ≤ n. These

limits along with the relation (2.2) imply that

pζ((uCϕ( fk))
(n−1)) = pζ((u · ( fk ◦ ϕ))(n−1)) → 0, as k → ∞. (2.5)

Using Leibniz’s formula, we have

pζ(u · ( fk ◦ ϕ)(n−1)) ≤pζ((u · ( fk ◦ ϕ))(n−1)) +
n−1

∑
j=1

(n−1
j )pζ(u

(j))‖( fk ◦ ϕ)(n−1−j)‖X

+
n−1

∑
j=1

(n−1
j )‖u(j)‖X pζ(( fk ◦ ϕ)(n−1−j)).

This inequality, along with limits (2.3), (2.4) and (2.5) gives

pζ(u · ( fk ◦ ϕ)(n−1)) → 0 as k → ∞. (2.6)



602 S. Amiri – A. Golbaharan – H. Mahyar

Using Faà di Bruno’s formula,

pζ(u(ϕ′)n−1 · ( f
(n−1)
k ◦ ϕ)) ≤pζ(u · ( fk ◦ ϕ)(n−1)) +

n−2

∑
j=1

pζ(( f
(j)
k ◦ ϕ) · uψj,n−1)

≤pζ(u · ( fk ◦ ϕ)(n−1)) +
n−2

∑
j=1

‖ f
(j)
k ◦ ϕ‖X pζ(uψj,n−1)

+
n−2

∑
j=1

pζ( f
(j)
k ◦ ϕ)‖uψj,n−1‖X

≤pζ(u · ( fk ◦ ϕ)(n−1)) +
n−2

∑
j=1

‖ f
(j)
k ‖X pζ(uψj,n−1)

+
n−2

∑
j=1

pϕ(ζ)( f
(j)
k )pζ(ϕ)‖uψj,n−1‖X.

This inequality, along with the limit (2.6) and the properties of { fk} which men-
tioned after its definition implies that

pζ(u(ϕ′)n−1 · ( f
(n−1)
k ◦ ϕ)) → 0 as k → ∞. (2.7)

By the definition of f
(n−1)
k ,

1

k − n + 1
pζ(u · ((h ◦ ϕ)′)n−1 · (hk−n+1 ◦ ϕ)) ≤pζ(u · (ϕ′)n−1 · ( f

(n−1)
k ◦ ϕ))

+
P(k)

k(k − 1) · · · (k − n + 1)
pζ(ψ),

(2.8)

where the function ψ is a combination of u, ϕ, h and the derivatives of h, and P(k)

is a polynomial in terms of k with degree less than n. Hence P(k)
k(k−1)···(k−n+1)

→ 0

as k → ∞. Using this limit together with the limit (2.7) and the inequality (2.8),
we obtain

1

k − n + 1
pζ(u · ((h ◦ ϕ)′)n−1 · (hk−n+1 ◦ ϕ)) → 0 as k → ∞. (2.9)

On the other hand, we have

sup
z∈U
z 6=ζ

|u(z)||(h ◦ ϕ)′(z)|n−1 |h
k−n+1(ϕ(z)) − hk−n+1(ϕ(ζ))|

(k − n + 1)|z − ζ|

≤
1

k − n + 1
{pζ(u · ((h ◦ ϕ)′)n−1 · (hk−n+1 ◦ ϕ))+ pζ(u · ((h ◦ ϕ)′)n−1)‖h‖k−n+1

X }.

Using (2.9) and the fact that ‖h‖X = 1, one can conclude from the above inequal-
ity that

sup
z∈U
z 6=ζ

|u(z)||(h ◦ ϕ)′(z)|n−1 |h
k−n+1(ϕ(z)) − hk−n+1(ϕ(ζ))|

(k − n + 1)|z − ζ|
→ 0, as k → ∞.
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Let ε > 0. Then

|u(z)||(h ◦ ϕ)′(z)|n−1 |h
k−n+1(ϕ(z)) − hk−n+1(ϕ(ζ))|

(k − n + 1)|z − ζ|
< ε,

for some positive integer k > n and for all z ∈ U with z 6= ζ. Taking limit as
z → ζ, we get |u(ζ)||(h ◦ ϕ)′(ζ)|n ≤ ε, for each ε > 0, since h(ϕ(ζ)) = 1. Conse-
quently, |u(ζ)||(h ◦ ϕ)′(ζ)|n = 0, and since u(ζ) 6= 0, (h ◦ ϕ)′(ζ) = 0. By Julia’s
Lemma 2.4, h ◦ ϕ is constant on U. Using the identity Theorem [6, IV, Theorem
3.7], the analytic function h ◦ ϕ is constant on connected set intX. The hypothe-
sis, X is strongly accessible from the interior, implies that X has dense interior, so
h ◦ ϕ is constant on X. But h is not constant, thus ϕ must be constant.

In the case u = 1, we have the following corollary for composition operators
on Dn(X).

Corollary 2.6. Let X be a perfect compact plane set satisfying the condition (1.1). Let a
self-map ϕ of X be in Dn(X).

(i) If either ϕ is constant or ϕ(X) ⊆ intX, Then Cϕ is compact on Dn(X).

(ii) Let X be strongly accessible from the interior, have a peak boundary with respect
to Dn(X) and let intX be connected. If Cϕ is compact on Dn(X), then either ϕ is
constant or ϕ(X) ⊆ intX.

Using this corollary we can get some results about quasicompactness and
power compactness of Cϕ on Dn(X). First we state their definitions. If E is an infi-
nite dimensional Banach space, we denote by B(E) and K(E) the Banach algebra
of all bounded linear operators and compact linear operators on E, respectively.
The essential spectral radius re(T) of T ∈ B(E) is the spectral radius of T +K(E)
in the Calkin algebra B(E)/K(E), that is

re(T) = lim
n→∞

‖Tn +K(E)‖
1
n .

The operator T ∈ B(E) is called quasicompact if re(T) < 1 and it is called Riesz
if re(T) = 0. Also, we say T is power compact if TN is compact for some positive
integer N. Clearly every power compact operator is Riesz.

It was shown in [11, Theorem 1.2 (iii)] that if ϕ induces a quasicompact endo-
morphism of a unital commutative semi-simple Banach algebra B with connected
maximal ideal (character) space X, then

⋂

ϕn(X) = {x0} for some x0 ∈ X, where
ϕn denotes the n-th iterate of ϕ. By using this relation and the obtained condition
for compactness of composition operators on algebras Dn(X), we get the follow-
ing results.

Theorem 2.7. Let X be a perfect compact plane set satisfying the condition (1.1). Let a
self-map ϕ of X be in Dn(X).

(i) If
⋂

ϕn(X) = {z0} for some z0 ∈ intX, then Cϕ is power compact on Dn(X).

(ii) Let X be strongly accessible from the interior, have a peak boundary with respect to
Dn(X) and let intX be connected. If ϕ is non-constant and Cϕ is power compact
on Dn(X), then

⋂

ϕn(X) = {z0} for some z0 ∈ intX.
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Proof. (i) Since z0 ∈ intX and
⋂

ϕn(X) = {z0}, there is a positive integer N such
that ϕN(X) ⊆ intX. Hence, by Corollary 2.6, (Cϕ)N = Cϕ

N
is compact and hence

Cϕ is power compact.
(ii) suppose Cϕ is power compact, then Cϕ is quasicompact and using [11,

Theorem 1.2 (iii)],
⋂

ϕn(X) = {z0} for some z0 ∈ X. Also, by power compactness
of Cϕ, there is a positive integer N such that (Cϕ)N = Cϕ

N
is compact. Next by

connectedness of X, ϕN is non-constant. Thus by Corollary 2.6, ϕN(X) ⊆ intX.
Consequently, z0 ∈ intX.

Using the same argument as in the proof of [11, Lemma 2.1], one can show that
for a connected perfect compact plane set X and a self-map ϕ with fixed point x0,
if Cϕ is a quasicompact composition operator on Dn(X), then |ϕ′(x0)| < 1.

It was also shown in [11, Theorem 3.2] that if T = Cϕ acts on C1[0, 1], the Ba-
nach algebra of continuously differentiable functions on [0, 1], and

⋂

ϕn([0, 1]) =
{x0} for some x0 ∈ [0, 1], then re(T) = |ϕ′(x0)|. Giving the following example we
show that this is not true for D1(X), in general.

Example 2.8. Let ϕ(z) = 1−z
2 for every z ∈ D. Then z0 = 1

3 is the fixed point of

ϕ in D and |ϕ′(z0)| =
1
2 . On the other hand, ϕ(−1) = 1, so ϕ(D) * D and the

composition operator Cϕ on D1(X) is not compact. However, |ϕ2(z)| ≤
1
2 < 1 for

all z ∈ D. Hence, Cϕ is power compact on D1(X) and then re(Cϕ) = 0.

Also if Cϕ is a quasicompact composition operator on Dn(X), then by [11,
Theorem 1.2] the induced function ϕ has a fixed point in X. As the following
example which is similar to [17, Example 3.1], shows the fixed point of ϕ does not
necessarily belong to intX and consequently there is a quasicompact operator on
Dn(X) which is not necessarily power compact.

Example 2.9. Let c > 1 and ϕ(z) = z+(c−1)
c for every z ∈ D. Then T := Cϕ is a

composition operator on Dn(D) and ϕm(z) = z+(cm−1)
cm for each positive integer

m and every z ∈ D. To show that T is a quasicompact operator on Dn(D), let
S( f ) = f (1) · 1 for every f ∈ Dn(D), then S is a (rank one) compact operator on
Dn(D) and for each f ∈ Dn(D) we have

| f (ϕm(z)) − f (1)| ≤ ‖ f ′‖
D
|ϕm(z)− 1| ≤

2

cm
‖ f ′‖

D
,

for every z ∈ D. Thus

‖Tm f − S f‖
D
≤

2

cm
‖ f ′‖

D
. (2.10)

Also,

(Tm f − S f )(k) =
1

cmk
f (k) ◦ ϕm k = 1, . . . , n.

Hence

‖(Tm f − S f )(k)‖
D
≤

1

cmk
‖ f (k)‖

D
≤

1

cm
‖ f (k)‖

D
k = 1, . . . , n.
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This and (2.10) imply that

‖Tm f − S f‖n =
n

∑
k=0

‖(Tm f − S f )(k)‖
D

k!

≤
2

cm
‖ f ′‖

D
+

n

∑
k=1

‖ f (k)‖
D

cmk!

≤
3

cm
‖ f‖n.

Therefore, ‖Tm − S‖ ≤ 3
cm and hence ‖Tm + K‖ ≤ 3

cm where K = K(Dn(D)).
This implies that

re(T) = lim
m→∞

‖Tm +K‖
1
m ≤

1

c
< 1.

Consequently, T is a quasicompact operator on Dn(X). On the other hand
⋂

ϕm(D) = {1}, hence by Theorem 2.7 (ii), T is not power compact.

A question which may be asked here is whether every Riesz operator on
Dn(X) is necessarily power compact. Feinstein and Kamowitz showed that this is
no longer true by giving a Riesz operator on C1[0, 1] which is not power compact
[11, Corollary 3.3].

3 Spectrum

Suppose A is a Banach space of functions on a plane set X which contains con-
stant functions and coordinate function z. If ϕ : X → X is a constant function,
ϕ(z) = z0 for all z ∈ X, and uCϕ is a weighted composition operator on A, then
uCϕ is a rank one operator on A and σ(uCϕ) = {0, u(z0)}. Thus in what follows
we assume that ϕ is a non-constant self-map of X and u is a non-zero complex-
valued function on X.

Kamowitz proved two interesting and useful lemmas [14, Lemmas 2.3 and 2.4]
and by using them determined the spectrum of a compact weighted composition
operator uCϕ on disc algebra A(D), when ϕ has a fixed point in D. These lemmas
still valid for general case as follows.

Lemma 3.1. Let X be a compact plane set with nonempty interior. Suppose A is a
unital subalgebra of A(X) containing the coordinate function z. If u is a complex-valued
function on X and ϕ is a self-map of X which is analytic on intX and ϕ(z0) = z0 for
some z0 ∈ intX. Then for the weighted composition operator uCϕ on A, we have

{u(z0)ϕ′(z0)
k : k is a positive integer} ∪ {u(z0)} ⊆ σ(uCϕ).

Proof. Since u(z0) f − uCϕ f 6= 1 for all f ∈ A, u(z0)− uCϕ is not surjective and so
invertible. Thus u(z0) ∈ σ(uCϕ).

If u(z0) = 0, then the same as the above argument uCϕ is not surjective. When
ϕ′(z0) = 0, the operator uCϕ is not surjective too. Since otherwise, we must have
uCϕ f = 1 for some f ∈ A. In particular, u(z0) f (ϕ(z0)) = 1. This implies that
f (z0) 6= 0. Moreover, for such function f we have u′( f ◦ ϕ) + uϕ′( f ′ ◦ ϕ) = 0 on
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intX and hence u′(z0) f (z0) + u(z0)ϕ′(z0) f ′(z0) = 0, which implies u′(z0) = 0,
since ϕ′(z0) = 0 and f (z0) 6= 0. Therefore, when ϕ′(z0) = 0, the surjectivity
of uCϕ implies that u′(z0) = 0 which lead to (uCϕg)′(z0) = 0 for all g ∈ A, in
particular, for a function g ∈ A with uCϕg = z which is impossible. Therefore, if
u(z0)ϕ′(z0) = 0, the operator uCϕ is not (surjective) invertible and consequently

u(z0)ϕ′(z0)
k = 0 ∈ σ(uCϕ) for every positive integer k.

Suppose now u(z0)ϕ′(z0) 6= 0. Let k be a positive integer such that ϕ′(z0)
j 6= 1

for each j (1 ≤ j ≤ k) and

u(z0)ϕ′(z0)
k f (z)− u(z) f (ϕ(z)) = (z − z0)

k (z ∈ X), (3.1)

for some f ∈ A. Choose r > 0 such that ∆r = {z ∈ C : |z − z0| < r} ⊆ intX. Thus
the elements of A are analytic on ∆r and by (3.1), f is not the zero function on ∆r.
Now by replacing D and ∆r and applying the same argument as in the proof of
[14, Lemma 2.3], the relation (3.1) leads to a contradiction. Consequently, (z− z0)

k

is not in the range of u(z0)ϕ′(z0)
k − uCϕ. Therefore this operator is not invertible

and hence u(z0)ϕ′(z0)
k ∈ σ(uCϕ).

Lemma 3.2. Let X be a compact plane set with connected and dense interior. Let A be a
subspace of A(X) containing constant functions and the coordinate function z. Suppose
u is a non-zero complex-valued function on X, ϕ ∈ A(X) is a non-constant self-map of
X with ϕ(z0) = z0 for some z0 ∈ intX and uCϕ is a weighted composition operator on
A. If λ 6= 0 is an eigenvalue of uCϕ, then

λ ∈ {u(z0)ϕ′(z0)
k : k is a positive integer} ∪ {u(z0)}.

Proof. By the property of z0, ∆r = {z ∈ C : |z − z0| < r} ⊆ intX for some r. Now
by replacing D and ∆r, and the same argument as in the proof of [14, Lemma 2.4],
the result concludes.

It is known that if T is a Riesz operator, then every non-zero number in σ(T)
is an eigenvalue of T [10, Theorem 3.14]. Thus we have the following theorem.

Theorem 3.3. Let X be a compact plane set with connected and dense interior. Let A be
a unital Banach subalgebra of A(X) containing the coordinate function z. Suppose u is a
non-zero complex-valued function on X, ϕ ∈ A(X) is a non-constant self-map of X with
ϕ(z0) = z0 for some z0 ∈ intX and uCϕ is a Riesz weighted composition operator on A,
then

σ(uCϕ) = {u(z0)ϕ′(z0)
k : k is a positive integer} ∪ {0, u(z0)}.

Corollary 3.4. Let X be a perfect compact plane set with connected and dense interior
and satisfy the condition (1.1). Suppose u is a non-zero complex-valued function on X
and ϕ ∈ A(X) is a non-constant self-map of X with ϕ(z0) = z0 for some z0 ∈ intX.
If uCϕ is a Riesz weighted composition operator on Dn(X), then

σ(uCϕ) = {u(z0)ϕ′(z0)
k : k is a positive integer} ∪ {0, u(z0)}.

Using Theorem 2.7, as an immediate consequence of the above corollary we
get the following result for the spectrum of a quasicompact composition operator.



Weighted composition operators on algebras of differentiable functions 607

Corollary 3.5. Let X be a perfect compact plane set with connected and dense interior
and satisfy the condition (1.1). Let Cϕ be a quasicompact composition operator on Dn(X).
If ϕ(z0) = z0 for some z0 ∈ intX, then Cϕ is power compact and

σ(Cϕ) = {ϕ′(z0)
k : k is a positive integer} ∪ {0}.

In the case that X = D and all fixed points of ϕ are on the unit circle, we have
the following theorem, due to Kamowitz, for disc algebra A(D).

Theorem 3.6. [14, Theorem 2.2] Suppose u, ϕ ∈ A(D), ‖ϕ‖
D
= 1, ϕ is not a constant

function and ϕ has all its fixed points on the unit circle. If uCϕ is a compact operator on

A(D), then σA(D)(uCϕ) = {0}.

Using this theorem, we give a similar result for algebras Dn(D) as follows.

Corollary 3.7. Suppose u, ϕ ∈ Dn(D) and ϕ is a non-constant self-map of D whose
all fixed points lie on the unit circle. If uCϕ is a compact operator on Dn(D), then
σ(uCϕ) = {0}.

Proof. It is clear that Dn(D) ⊆ A(D) and uCϕ is also a weighted composition

operator on A(D). By Theorem 2.5, the compactness of uCϕ on Dn(D) implies
that ϕ(coz(u)) ⊆ D. Thus, by [14, Theorem 1.2], uCϕ is also a compact operator

on A(D). Moreover, every eigenvalue of compact operator uCϕ on Dn(D) is

also an eigenvalue of compact operator uCϕ on A(D). Hence, by Theorem 3.6,
σDn(D)(uCϕ) = {0}.
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