
Optimization through dense sets

C. R. Jayanarayanan T. S. S. R. K. Rao

Abstract

In this paper, we study two optimization problems where solutions on
a dense set yield global solution. We study these problems for spaces of
Bochner integrable functions and for spaces of continuous functions. The
first one deals with expressing the length of a vector as a sum of the distance
to a best approximation and minimal best approximation and the second
one relates to approximating a subsequence of a minimizing sequence with
a sequence of proximinal vectors.

1 Introduction

Let X be a real Banach space and let A ⊆ X be an absolutely convex and closed
set. Let Ao = { f ∈ X∗ : | f | ≤ 1 on A}. Let Aoo be the double polar in X∗∗. An
important problem in optimization theory is to study the proximinality proper-
ties of A vis a vis those of Aoo. Clearly because bounded weak∗-closed sets in X∗∗

are weak∗-compact, Aoo is better suited for the study of optimization problem (in
particular it is a proximinal set). We assume that X is canonically embedded in
X∗∗ via the map x → x̂, where x̂ is the evaluation map on X∗. It is well known
that X under this embedding is a weak∗-dense subspace of X∗∗. For notational
convenience, we ignore the embedding and denote x̂ by x itself. In this paper, we
study a variation on the classical theme by studying optimization problems for
Aoo where the constraints are imposed only on vectors in X. We mainly deal with
the situation when A = Y is a closed subspace so that Aoo = Y⊥⊥. Throughout
the paper, we shall assume all subspaces are closed.

Received by the editors in March 2016 - In revised form in June 2016.
Communicated by G. Godefroy.
2010 Mathematics Subject Classification : Primary 41A65, secondary 46E40, 46B20, 41A50.
Key words and phrases : Proximinality, strong proximinality, space of Bochner integrable func-

tions, space of continuous functions.

Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 583–594



584 C. R. Jayanarayanan – T. S. S. R. K. Rao

We note that Y⊥⊥ is isometrically identified with Y∗∗. It is well known that
optimization is quite a delicate operation under perturbation and even existence
of best approximation at a dense set of points need not imply proximinality. In
this paper, we study two stronger forms of proximinality, that allow us to make
the passage from a dense set to the whole space. For x ∈ X, let PA(x) denote
the set of best approximations to x in A (possibly empty set). Elements of PA(x)
are called proximinal vectors. When A is a proximinal set in X, we recall from [5]
that A has property (∗) at x, if ‖x‖ = d(x, A)+ d(0, PA(x)). In Section 2, we show
that for any complete probability measure space (Ω,A, µ) and for any subspace
Y ⊆ X, Y has property (∗) in X implies that the space of Bochner integrable func-
tions L1(µ, Y) has property (∗) at all simple functions in L1(µ, X). If, in addition,
Y is separable, then L1(µ, Y) has property (∗) in L1(µ, X). We also show that for a
closed subspace Y ⊂ X, if Y⊥⊥ has property (∗) for all x ∈ X, then it has property
(∗) at all points of X∗∗.

Let BX denote the closed unit ball of X and B(x, r) denote the closed ball with
center at x ∈ X and radius r > 0. Ignoring the canonical embedding of X in X∗∗,
we continue to denote by B(x, r) the larger closed ball in X∗∗ with center at x. The
distinction will be clear from the context.

We next consider the following weaker form of property (∗), which amounts
to approximating a subsequence of a minimizing sequence with a sequence of
proximinal vectors.

Definition 1.1 ([4]). We recall that a proximinal subspace Y of a Banach space X is
said to be strongly proximinal at x ∈ X if for every ε > 0, there exists a δ > 0 such
that PY(x, δ) ⊆ PY(x) + εBX , where PY(x, δ) = {y ∈ Y : ‖x − y‖ < d(x, Y) + δ}.
If Y is strongly proximinal at all points of X, we say that Y is strongly proximinal
in X.

Fact 1.2 ([4]). Let Y be a proximinal subspace of a Banach space X, x ∈ X and
ε > 0. Now let QY(x) = x − PY(x) and QY(x, ε) = x − PY(x, ε). Moreover, for an
x ∈ X with ‖x‖ = 1 = d(x, Y), we have

QY(x) = {z ∈ X : ‖z‖ = 1 and f (z) = f (x) for all f ∈ Y⊥},

QY(x, ε) = {z ∈ X : ‖z‖ ≤ 1 + ε and f (z) = f (x) for all f ∈ Y⊥}.

Now it follows that Y is strongly proximinal at x if and only if limε→0 sup
{d(z, QY(x)) : z ∈ QY(x, ε)} = 0.

It is easy to see that property (∗) implies strong proximinality. It is known that
this property is easier to handle and better understood when Y is a subspace of
finite co-dimension (see [4]). For a compact Hausdorff space K, we shall denote
by C(K) the space of all continuous functions on K equipped with the supre-
mum norm and it is known that its dual C(K)∗ is the space of all regular Borel
measures on K. In Section 3, we show that for a finite co-dimensional proximi-
nal subspace Y of C(K), if Y⊥⊥ is strongly proximinal at all points of C(K), then
Y⊥ ⊆ {µ ∈ C(K)∗ : µ is finitely supported}. In a general set up, we also show
that if W ⊂ X∗∗ is a weak∗-closed subspace of finite co-dimension in X∗∗, then
under some additional conditions, strong proximinality of W at points of X,
implies strong proximinality of W in X∗∗.
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2 Invariance of property (∗)

In this section, we start by giving an example of a Banach space and a subspace
for which the existence of a best approximation for all points of a dense subset
need not imply proximinality of the subspace. Let (Ω,A, µ) be a finite positive
measure space and let L1(µ, X) denote the space of X-valued Bochner integrable
functions on Ω.

Example 2.1. If Y is a proximinal subspace of a Banach space X, then every sim-
ple function in L1(µ, X) has a best approximation from L1(µ, Y). Indeed, let
s = ∑

n
i=1 xiχAi

, where xi ∈ X (1 ≤ i ≤ n) and {A1, . . . , An} is a finite family
of mutually disjoint measurable sets. For 1 ≤ i ≤ n, let yi ∈ PY(xi). Then, by
[9, Corollary 2.11], s′ = ∑

n
i=1 yiχAi

is a best approximation for s from L1(µ, Y). In
[10, Example 3.1], Mendoza gave an example of a Banach space X and a prox-
iminal subspace Y of X such that L1([0, 1], Y) is not proximinal in L1([0, 1], X).
Thus we have that L1([0, 1], Y) is not proximinal in L1([0, 1], X) even though the
set { f ∈ L1([0, 1], X) : PL1([0,1],Y)( f ) 6= ∅} is dense in L1([0, 1], X).

Let (Ω,A, µ) be a finite positive measure space and let Y be a subspace of
X. In what follows, we will be using the integral formula, for f ∈ L1(µ, X),

d( f , L1(µ, Y)) =
∫

Ω
d( f (t), Y) dµ, and g ∈ PL1(µ,Y)( f ) if and only if g(t) ∈ PY( f (t))

for almost all t ∈ Ω (see [9, Lemma 2.10, Corollary 2.11]).

We next show that for a subspace Y of a Banach space X with property (∗) in
X, L1(µ, Y) has property (∗) at all points of a dense subsets of L1(µ, X).

Theorem 2.2. Let (Ω,A, µ) be a finite positive measure space. Let Y be a subspace of a
Banach space X such that Y has property (∗) in X. Then L1(µ, Y) has property (∗) at
all simple functions in L1(µ, X).

Proof. By hypothesis as Y is proximinal in X, it follows from Example 2.1 that
every simple function in L1(µ, X) has a best approximation from L1(µ, Y). Let
s = ∑

n
i=1 xiχAi

, where xi ∈ X (1 ≤ i ≤ n) and {A1, . . . , An} is a finite family of
mutually disjoint measurable sets. For 1 ≤ i ≤ n, let yi ∈ PY(xi).
Claim: d(0, PL1(µ,Y)(s)) = ∑i d(0, PY(xi))µ(Ai).

For, let g ∈ PL1(µ,Y)(s). Then, by [9, Corollary 2.11], g(t) ∈ PY(s(t)) for almost all

t ∈ Ω. Thus ‖g‖ =
∫

Ω
‖g(t)‖ dµ ≥

∫

Ω
d(0, PY( f (t)) dµ = ∑i d(0, PY(xi))µ(Ai).

Hence d(0, PL1(µ,Y)( f )) ≥ ∑i d(0, PY(xi))µ(Ai).

For the reverse inequality suppose ε > 0. Then there exists a yi ∈ PYi
(xi) such

that ‖yi‖ < d(0, PY(xi)) +
ε

nµ(Ω)
. Thus, by [9, Corollary 2.11], s′ = ∑

n
i=1 yiχAi

is a

best approximation for s from L1(µ, Y). Hence

‖s′‖ = ∑
i

‖yi‖µ(Ai) ≤ ∑
i

(
d(0, PY(xi)) +

ε

nµ(Ω)

)
µ(Ai)

≤ ∑
i

d(0, PY(xi))µ(Ai) + ε.
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Hence the claim follows. Now

‖s‖ = ∑
i

‖xi‖µ(Ai) = ∑
i

d(xi, Yi)µ(Ai) + ∑
i

d(0, PYi
(xi))µ(Ai)

= d(s, L1(µ, Y)) + d(0, PL1(µ,Y)(s)).

The last equality above is a consequence of the integral formula for distance func-
tion applied to the case of a simple function.

As an application of von Neumann’s selection theorem (see [12]
*Corollary 5.5.8), we next show that if Y is a separable subspace of a Banach
space X having property (∗) in X and the positive measure space is complete,
then L1(µ, Y) has property (∗) in L1(µ, X). We now recall that under the same
assumptions on Y, by [10, Theorem 3.4], L1(µ, Y) is proximinal in L1(µ, X).

Theorem 2.3. Let (Ω,A, µ) be a complete probability measure space. Let Y be a separa-
ble subspace of a Banach space X such that Y has property (∗) in X. Then L1(µ, Y) has
property (∗) in L1(µ, X).

Proof. Let f ∈ L1(µ, X). As f is an almost everywhere separably valued function,
by discarding a null set we may assume that f is everywhere defined. Since, by
hypothesis, d(0, PY( f (t)) = ‖ f (t)‖ − d( f (t), Y) for almost all t ∈ Ω, the function
t → d(0, PY( f (t)) is integrable.

We now prove the integral version of the claim stated in Theorem 2.2.

Claim: d(0, PL1(µ,Y)( f )) =
∫

Ω
d(0, PY( f (t)) dµ.

For, let g ∈ PL1(µ,Y)( f ). Then, by [9, Corollary 2.11], g(t) ∈ PY( f (t)) for almost all

t ∈ Ω. Thus ‖g‖ =
∫

Ω
‖g(t)‖ dµ ≥

∫

Ω
d(0, PY( f (t)) dµ. Hence d(0, PL1(µ,Y)( f )) ≥

∫

Ω
d(0, PY( f (t)) dµ.

For the reverse inequality suppose ε > 0. Now define a set valued map
H : Ω → 2Y by

H(t) = {y ∈ PY( f (t)) : ‖y‖ ≤ d(0, PY( f (t))) + ε} for t ∈ Ω.

Since Y is proximinal in X, H(t) 6= ∅ for all t ∈ Ω. We now use von Neumann
selection theorem (see [12, Corollary 5.5.8]) to obtain a measurable selection for
the set valued map H. Since Y is a separable Banach space, to use von Neumann
selection theorem, it is enough to show that the graph of H, {(t, y) ∈ Ω × Y : y ∈
H(t)} = {(t, y) ∈ Ω × Y : ‖ f (t) − y‖ = d( f (t), Y) and ‖y‖ ≤ d(0, PY( f (t))) + ε}
is a measurable set in the product space. As all the functions involved in the
description of the graph of H are measurable, it follows that the graph of H
is a measurable set in the product space. Then there exists a measurable func-
tion h : Ω → Y such that h(t) ∈ H(t) for all t ∈ Ω. Since h is separably
valued, it is strongly measurable. Now, since h(t) ∈ PY( f (t)) for all t ∈ Ω,
by [8, Lemma 1], we get h ∈ PL1(µ,Y)( f ). Then the claim follows from the fact that

‖h‖ ≤
∫

Ω
‖h(t)‖ dµ ≤

∫

Ω
d(0, PY( f (t))) dµ + ε.
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Now

‖ f‖ =
∫

Ω
‖ f (t)‖ dµ

=
∫

Ω
d( f (t), Y) dµ +

∫

Ω
d(0, PY( f (t)) dµ

=d( f , L1(µ, Y)) + d(0, PL1(µ,Y)( f )).

Remark 2.4. Since only countably many functions are involved in the proofs of
the above theorems and as Bochner integrable functions have σ-finite support,
Theorem 2.2 and Theorem 2.3 are valid for any complete measure space.

We next prove that property (∗) is invariant under certain weak∗-dense sub-
sets. Our exposition requires some notions from [5]. We start by recalling the
following equivalent form of property (∗) from [13].

Definition 2.5. A subspace Y of a Banach space X is said to have the 11
2-ball

property if the conditions x ∈ X, y ∈ Y, r, s > 0 with ‖x − y‖ < r + s and
B(x, r)

⋂
Y 6= ∅ imply that B(x, r)

⋂
B(y, s)

⋂
Y 6= ∅.

Theorem 3 of [13] shows that a subspace Y of X has the 11
2-ball property in

X if and only if Y⊥⊥ has the 11
2-ball property in X∗∗. In the next set of results

we prove a strong version of this by showing that, for a subspace Y of X, if the
conditions in the definition of the 11

2-ball property for Y⊥⊥ in X∗∗ are satisfied

when one ball has center from X and the other one has center from Y, then Y⊥⊥

still has the 11
2 -ball property in X∗∗.

Lemma 2.6. Let X be a Banach space and Z be a proximinal subspace of X∗∗. Then the
following are equivalent.

(i) For every x ∈ X, r > 0,s > 0 with ‖x‖ < r + s and B(x, r)
⋂

Z 6= ∅;

B(x, r)
⋂

B(0, s)
⋂

Z 6= ∅.

(ii) For every x ∈ X, ‖x‖ = d(x, Z) + d(0, PZ(x)).

(iii) For every x ∈ X, z ∈ Z, r > 0, s > 0 with ‖x − z‖ < r + s and B(x, r)
⋂

Z 6= ∅;

B(x, r)
⋂

B(z, s)
⋂

Z 6= ∅.

Proof. (i) =⇒ (ii) Suppose (i) holds. Let x ∈ X. Now let ε > 0. Then there exists a
Λε ∈ PZ(x) such that ‖Λε‖ < d(0, PZ(x)) + ε. Then

‖x‖ − d(x, Z) = ‖x‖ − ‖x − Λε‖

≤ ‖Λε‖ ≤ d(0, PZ(x)) + ε.

Thus ‖x‖ ≤ d(x, Z) + d(0, PZ(x)).
Now suppose ‖x‖ < d(x, Z) + d(0, PZ(x)). Let η > 0 be such that

‖x‖ − d(x, Z) + η < d(0, PZ(x)). Now set r = d(x, Z) and s = ‖x‖ − d(x, Z) + η.
Then ‖x‖ < r + s and B(x, r) ∩ Z 6= ∅. Hence, by (i), there exists a Λ0 ∈ B(x, r)

⋂
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B(0, s)
⋂

Z. Since ‖x − Λ0‖ ≤ r = d(x, Z), Λ0 ∈ PZ(x). Then ‖Λ0‖ ≤ s <

d(0, PZ(x)), which is a contradiction.

(ii) =⇒ (iii) Suppose (ii) holds. Let x ∈ X, z ∈ Z, r, s > 0 be such that
‖x − z‖ < r + s and B(x, r)

⋂
Z 6= ∅. Then d(x, Z) ≤ r. Without loss of generality,

we assume ‖x − z‖ > r. Let ε = r − d(x, Z) and let C = {Λ ∈ Z : ‖x − Λ‖ ≤
d(x, Z) + ε}. Then we claim that d(z, C) ≤ ‖x − z‖ − r. If not, then there exists
an η > 0 such that ‖x − z‖ − r + η < d(z, C). Let Λ0 ∈ PZ(x) be such that

‖z − Λ0‖ < d(z, PZ(x)) + η. Now let Λ′ = Λ0 +
ε(z−Λ0)
‖z−Λ0‖

. Then Λ′ ∈ C. Thus

d(z, C) ≤ ‖z − Λ′‖

= ‖z − Λ0‖ − ε

≤ d(z, PZ(x)) + η − r + d(x, Z)

≤ d(0, PZ(x − z)) + η − r + d(x − z, Z)

= ‖x − z‖ − r + η,

which is a contradiction to the assumption that ‖x − z‖ − r + η < d(z, C). There-

fore d(z, C) ≤ ‖x − z‖ − r < s. Let Λ̃ ∈ C be such that ‖z − Λ̃‖ ≤ s. Then

‖x − Λ̃‖ ≤ d(x, Z) + ε = r and hence (iii) follows.

We thank the referee for suggesting this formulation of Lemma 2.6, which
improves on an earlier version of ours. In what follows we will be using Lemma
2.6 for the proximinal subspace Z = Y⊥⊥.

Theorem 2.7. Let Y be a subspace of a Banach space X such that for all x ∈ X,
‖x‖ = d(x, Y⊥⊥) + d(0, PY⊥⊥(x)). Then for all x∗∗ ∈ X∗∗, ‖x∗∗‖ = d(x∗∗, Y⊥⊥) +
d(0, PY⊥⊥(x)).

Proof. We first show that Y has the 11
2 -ball property in X. Let x ∈ X, y ∈ Y and

r, s > 0 be such that ‖x − y‖ ≤ r + s and B(x, r)
⋂

Y 6= ∅. Also let ε > 0. Since
Y⊥⊥ is a weak∗-closed subspace of X∗∗, it is proximinal and so by Lemma 2.6,
there exists an element Λ ∈ Y⊥⊥ such that Λ ∈ B(x, r)

⋂
B(y, s)

⋂
Y⊥⊥. Let

E = span{x, y, Λ} and m = max{r, s}. Then, by an extended version of prin-
ciple of local reflexivity (see [1, Theorem 3.2]), there exists an operator Tǫ : E → X
such that

(1) Tǫ(z) = z if z ∈ E ∩ X,

(2) Tǫ(E ∩ Y⊥⊥) ⊆ Y,

(3) ‖Tǫ‖ ≤ 1 +
ǫ

r
.

Now take z = Tε(Λ). Then z ∈ B(x, r + ε)
⋂

B(y, s + ε)
⋂

Y. Thus, by [13, Theo-
rem 3], Y has the 11

2-ball property in X and hence, by the same theorem, Y⊥⊥ has

the 11
2 -ball property in X∗∗. Then, by [5, Corollary 3(i)], the theorem follows.
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3 Strong proximinality

In [3], A. L. Garkavi obtained the following characterization for finite co-dimen-
sional proximinal subspaces of C(K). See also [11, Page 302].

Theorem 3.1 ([3]). Let K be a compact Hausdorff space and let Y be a finite co-dimen-
sional subspace of C(K). Then Y is proximinal in C(K) if and only if the annihilator Y⊥

satisfies the following three conditions:

(a) supp(µ+)
⋂

supp(µ−) = ∅ for each µ ∈ Y⊥ \ {0},

(b) µ is absolutely continuous with respect to ν on supp(ν) for every pair
µ, ν ∈ Y⊥ \ {0},

(c) supp(ν) \ supp(µ) is closed for each pair µ, ν ∈ Y⊥ \ {0}.

We now recall the following characterization of finite co-dimensional strongly
proximinal subspace of C(K).

Theorem 3.2 ([2]). Let K be a compact Hausdorff space and let Y be a finite co-dimen-
sional subspace of C(K). Then Y is strongly proximinal in C(K) if and only if
Y⊥ ⊆ {µ ∈ C(K)∗ : µ is finitely supported}.

Our next result shows that the above theorem is valid for weak*-closed sub-
spaces of finite co-dimension in C(K)∗∗ (which is again a space of continuous
functions), under a weaker hypothesis. We first observe that for a Banach space X
and a finite co-dimensional weak∗-closed subspace W of X∗∗, its annihilator W⊥

in X∗∗∗ is actually contained in X∗. Thus a weak∗-closed subspace of finite co-
dimension in X∗∗ is of the form Y⊥⊥, where Y is a finite co-dimensional subspace
of X. We also recall from [7] that a finite co-dimensional proximinal subspace Y
of X is strongly proximinal in X if and only if Y⊥⊥ is strongly proximinal in X∗∗.
In this section, we strengthen this result by considering strong proximinality of
Y⊥⊥ only at the points of X.

Theorem 3.3. Let K be a compact Hausdorff space and let Y be a finite co-dimensional
proximinal subspace of C(K). If Y⊥⊥ is strongly proximinal at all points of C(K), then
Y⊥ ⊆ {µ ∈ C(K)∗ : µ is finitely supported}.

We will prove the above theorem later as its proof requires several results that
analyze the structure of subspaces of finite co-dimension which we will prove in
a general setup.

Our exposition relies on a detailed study of strong proximinality for subspaces
of finite co-dimension carried out in [4].

We now recall some notation from [6] which will play an important role in the
rest of this section.

Let X be a Banach space and { f1, . . . , fn} be a set of linearly independent func-
tionals in X∗. Let M1 = M∗

1 = ‖ f1‖, JX( f1) = {x ∈ BX : f1(x) = ‖ f1‖} and
JX∗∗( f1) = {x∗∗ ∈ BX∗∗ : x∗∗( f1) = ‖ f1‖}.



590 C. R. Jayanarayanan – T. S. S. R. K. Rao

Now suppose, for an i ∈ {2, . . . , n}, JX( f1, . . . , fi−1) is defined and is a non-
empty set. We define

Mi = sup{ fi(x) : x ∈ JX( f1, . . . , fi−1)},

M∗
i = sup{x∗∗( fi) : x∗∗ ∈ JX∗∗( f1, . . . , fi−1)},

JX( f1, . . . , fi) = {x ∈ JX( f1, . . . , fi−1) : fi(x) = Mi},

JX∗∗( f1, . . . , fi) = {x∗∗ ∈ JX∗∗( f1, . . . , fi−1) : x∗∗( fi) = M∗
i }.

For ε > 0, let JX( f1, ε) = {x ∈ BX : f1(x) > ‖ f1‖ − ε}.
For i = 2, . . . , n, define

JX( f1, . . . , fi, ε) = {x ∈ JX( f1, . . . , fi−1, ε) : fi(x) > Mi − ε}.

Using a weak∗-compactness argument, one can see that JX∗∗( f1, . . . , fi) 6= ∅

for i = 1, . . . , n. In [6, Theorem 1], it is proved that if Y is a finite co-dimensional
proximinal subspace of X, then JX( f1, . . . , fi) 6= ∅ for i = 1, . . . , n and for every
basis { f1, . . . , fn} of Y⊥.

For a finite co-dimensional subspace Y of a Banach space X and for a basis
{ f1, . . . , fn} of Y⊥, we define the following sets as in [6].

(Y⊥)∗( f1) = {φ ∈ (Y⊥)∗1 : φ( f1) = ‖ f1‖},

(Y⊥)∗( f1, . . . , fi) = {φ ∈ (Y⊥)∗( f1, . . . , fi−1) : φ( fi) = max
ψ∈(Y⊥)∗( f1,..., fi−1)

ψ( fi)}.

We now obtain a relationship between the notions defined above.

Proposition 3.4. Let Y ⊂ X be a subspace of finite co-dimension. Then M∗
i =

max{φ( fi) : φ ∈ (Y⊥)∗( f1, . . . , fi−1)} for 2 ≤ i ≤ n and for every basis { f1, . . . , fn}
of Y⊥.

Proof. Let { f1, . . . , fn} be a basis of Y⊥. For 2 ≤ i ≤ n, let

Ai = {φ( fi) : φ ∈ (Y⊥)∗( f1, . . . , fi−1)},

Bi = {ψ( fi) : ψ ∈ JX∗∗( f1, . . . , fi−1)} and

Ni = max{φ( fi) : φ ∈ (Y⊥)∗( f1, . . . , fi−1)}.

Claim: M∗
2 = N2.

For, let φ ∈ (Y⊥)∗( f1). Now let φ̃ be a Hahn-Banach extension of φ to X∗. Since
‖φ̃‖ ≤ 1 and φ̃( f1) = φ( f1) = ‖ f1‖, φ̃ ∈ JX∗∗( f1). Then φ( f2) = φ̃( f2) ∈ B2 and
thus A2 ⊆ B2. Therefore N2 ≤ M∗

2 .
On the other hand, let ψ ∈ JX∗∗( f1). Now let φ = ψ|Y⊥ . Since ‖φ‖ ≤ 1 and

φ( f1) = ψ( f1) = ‖ f1‖, φ ∈ (Y⊥)∗( f1). Thus B2 ⊆ A2. Therefore M∗
2 ≤ N2 and

the claim follows.
Now let i ∈ {2, . . . , n− 1} and let M∗

j = Nj for 2 ≤ j ≤ i. Let φ ∈ (Y⊥)∗( f1, . . . ,

fi). Now let φ̃ be a Hahn-Banach extension of φ to X∗. Since φ̃( f j) = φ( f j) = Nj =
M∗

j for 1 ≤ j ≤ i, it follows that φ̃ ∈ JX∗∗( f1, . . . , fi). Then Ai+1 ⊆ Bi+1 and hence

Ni+1 ≤ M∗
i+1.

Let ψ ∈ JX∗∗( f1, . . . , fi). Now set φ = ψ|Y⊥ . Since φ( f j) = ψ( f j) = M∗
j = Nj

for 1 ≤ j ≤ i, we have φ ∈ (Y⊥)∗( f1, . . . , fi). Then Bi+1 ⊆ Ai+1 and hence
M∗

i+1 ≤ Ni+1. Now the result follows by induction.
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By combining Proposition 3.4 and [6, Theorem 1], the following corollary is
easy to see.

Corollary 3.5. Let Y be a subspace of finite co-dimension in a Banach space X. Then Y
is proximinal in X if and only if JX( f1, . . . , fi) 6= ∅ and Mi = M∗

i for 1 ≤ i ≤ n and

every basis { f1, . . . , fn} of Y⊥.

The next set of results are needed to understand the implication of the strong
proximinality of Y⊥⊥ at points of X in terms of Y. Some of the computations
below are appropriate modifications of the arguments given in [4, 7], we include
these for the sake of completeness of the exposition.

Lemma 3.6. Let Y be a subspace of a Banach space X. If Y⊥⊥ is strongly proximinal
at all x ∈ X, then for every x ∈ X with ‖x‖ = 1 = d(x, Y) and ε > 0, there exists a
δ > 0 such that if z ∈ BX and ‖x − z + Y‖ < δ, then there exists a φ ∈ BX∗∗ such that
x − φ ∈ Y⊥⊥ and ‖z − φ‖ < ε.

Proof. Let x ∈ X be such that ‖x‖ = 1 = d(x, Y) and let ε > 0. Since Y⊥⊥ is
strongly proximinal at x, there exists 0 < δ < ε/2 such that if ϕ ∈ PY⊥⊥(x, δ), then
d(ϕ, PY⊥⊥(x)) < ε/2. Hence for every ϕ ∈ QY⊥⊥(x, δ), we have d(ϕ, QY⊥⊥(x)) <
ε/2.

Now let z ∈ BX and ‖x − z + Y‖ < δ. Choose an element y∗∗0 ∈ PY⊥⊥(x − z)

and let w = x − z − y∗∗0 . Then ‖w‖ < δ and f (w) = f (x − z) for all f ∈ Y⊥.

Now let v = z + w. Then ‖v‖ ≤ 1 + δ and f (v) = f (x) for all f ∈ Y⊥. Thus
v ∈ QY⊥⊥(x, δ). Then there exists a φ ∈ QY⊥⊥(x) such that ‖v − φ‖ < ε/2. Since
φ ∈ QY⊥⊥(x), φ ∈ BX∗∗ and x − φ ∈ Y⊥⊥. Now the result follows from the fact
that ‖z − φ‖ ≤ ‖z − v‖+ ‖v − φ‖ < ε.

Lemma 3.7. Let Y be a proximinal subspace of finite co-dimension in a Banach space X.
If Y⊥⊥ is strongly proximinal at x for all x ∈ X, then for any basis { f1, . . . , fn} of Y⊥,

lim
ε→0

sup{d(x, JX∗∗( f1, . . . , fi)) : x ∈ JX( f1, . . . , fi, ε)} = 0.

Proof. Suppose Y⊥⊥ is strongly proximinal at all x ∈ X and let { f1, . . . , fn} be a
basis of Y⊥⊥⊥ = Y⊥. Let η > 0 and i ∈ {1, . . . , n}.

Now for x ∈ X with ‖x‖ = 1 = d(x, Y), there exists a δx > 0 such that

z ∈ BX, ‖x − z + Y‖ < δx =⇒ ∃ φ ∈ BX∗∗ with x − φ ∈ Y⊥⊥ and (3.1)

‖z − φ‖ < η.

If δx > 0 holds for an x ∈ X, then the same holds for all the elements in the coset
x + Y. Also, if x ∈ JX( f1, . . . , fi) then ‖x‖ = 1 = d(x, Y). Now let
Ci = JX( f1, . . . , fi). Since X/Y is finite dimensional, Ci + Y is a compact sub-
set of BX/Y. Now for each element x + Y ∈ Ci + Y, let δx be as in (3.1). Then
the open cover {BX/Y(x + Y, δx) : x ∈ Ci} of Ci + Y has a finite subcover, say
{BX/Y(xj + Y, δxj

) : 1 ≤ j ≤ m}.

Let δ = minj

δxj

2 . We now claim that, since Y is of finite co-dimension in X,
there exists an ε > 0 such that

v ∈ JX( f1, . . . , fi, ε) =⇒ d(v + Y, JX( f1, . . . , fi) + Y) <
δ

2
. (3.2)
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For, if not, then there exists a sequence (vn) in JX( f1, . . . , fi,
1
n) such that

d(vn + Y, JX( f1, . . . , fi) + Y) ≥ δ
2 . Then by passing onto a subsequence, if nec-

essary, we can assume that the sequence (vn + Y) converges, say to v0 + Y. Then

d(v0 + Y, JX( f1, . . . , fi) + Y) ≥ δ
2 . Now choose an element y0 ∈ PY(v0). Then

‖v0 − y0‖ = ‖v0 + Y‖ ≤ 1. Since vn ∈ JX( f1, . . . , fi,
1
n ) and f j(vn) converges to

f j(v0) for 1 ≤ j ≤ i, it follows that f j(v0) = Mj for 1 ≤ j ≤ i. Thus v0 + y0 ∈

JX( f1, . . . , fi), which is a contradiction since d(v0 + Y, JX( f1, . . . , fi) + Y) ≥ δ
2 .

Hence the claim follows.
Now let v ∈ JX( f1, . . . , fi, ε). Then there exists an element x0 ∈ JX( f1, . . . , fi)

such that ‖v − x0 + Y‖ <
δ
2 . Let k ∈ {1, . . . , m} be such that ‖x0 − xk + Y‖ <

δxk
2 .

Thus ‖v − xk + Y‖ < δxk
. Then there exists a φ ∈ BX∗∗ such that xk − φ ∈ Y⊥⊥

and ‖v − φ‖ < η. Since φ( f j) = f j(xk) = Mj = M∗
j for 1 ≤ j ≤ i, we get

φ ∈ JX∗∗( f1, . . . , fi). Thus d(v, JX∗∗( f1, . . . , fi)) < η and hence the conclusion
follows.

Now again using principle of local reflexivity one can prove that
d(x, JX∗∗( f1, . . . , fi)) = d(x, JX( f1, . . . , fi)). We skip the proof of the following
lemma as its proof is same as that of [7, Lemma 3.7] except for the following facts.
The proof of [7, Lemma 3.7] requires the fact that Mi = M∗

i which they obtained
using the strong proximinality assumption on Y. But Corollary 3.5 shows that the
proximinality assumption on Y is enough to guarantee Mi = M∗

i .

Lemma 3.8. Let Y be a proximinal subspace of finite co-dimension in a Banach space X
and let { f1, . . . , fn} ⊆ SY⊥ be any basis of Y⊥. If Y⊥⊥ is strongly proximinal at x for all
x ∈ X, then d(x, JX∗∗( f1, . . . , fi)) = d(x, JX( f1, . . . , fi)) for 1 ≤ i ≤ n.

In [7], it is proved that if Y is a finite co-dimensional proximinal subspace of
X, then Y is strongly proximinal in X if and only if Y⊥⊥ is strongly proximinal
in X∗∗. We now strengthen this result by requiring strong proximinality of Y⊥⊥

only at elements of X.

Proposition 3.9. Let Y be a proximinal subspace of finite co-dimension in a Banach space
X. If Y⊥⊥ is strongly proximinal at all points of X, then Y⊥⊥ is strongly proximinal in
X∗∗.

Proof. Let Y⊥⊥ be strongly proximinal at all points of X. Then for every basis
{ f1, . . . , fn} of Y⊥, by Lemma 3.7 and Lemma 3.8, limε→0 sup{d(x, JX( f1, . . . , fi)) :
x ∈ JX( f1, . . . , fi, ε)} = 0 for 1 ≤ i ≤ n. Hence, by [4, Theorem 2.5], Y is
strongly proximinal in X. Then, by [7, Theorem 3.10], Y⊥⊥ is strongly proxim-
inal in X∗∗.

The following theorem exhibits strong proximinality through a weak∗-dense
subset of X∗∗.

Theorem 3.10. Let X be a Banach space and W be a finite co-dimensional weak∗-closed
subspace of X∗∗ such that for every basis { f1, . . . , fn} of W⊥, JX( f1, . . . , fi) 6= ∅ and
Mi = M∗

i for 1 ≤ i ≤ n. If W is strongly proximinal at all x ∈ X, then W is strongly
proximinal in X∗∗.
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Proof. Since W is a finite co-dimensional weak∗-closed subspace of X∗∗, there
exists a basis {g1, . . . , gn} ⊂ X∗ of W⊥. Now let Y =

⋂
i ker(gi). Then Y⊥⊥ = W.

Since Y⊥ = Y⊥⊥⊥ = W⊥, each basis of Y⊥ is also a basis of W⊥. Thus for every
basis { f1, . . . , fn} of Y⊥, JX( f1, . . . , fi) 6= ∅ and Mi = M∗

i for 1 ≤ i ≤ n. Then,

by Corollary 3.5, Y is a proximinal in X. Thus, by Proposition 3.9, W = Y⊥⊥ is
strongly proximinal in X∗∗.

We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. If Y⊥⊥ is strongly proximinal at all points of C(K), then, by
the proof of Proposition 3.9, Y is strongly proximinal in C(K). Hence, by Theo-
rem 3.2, the result follows.
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