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Abstract

In this paper, we find coefficient estimates by a new method making use
of the Faber polynomial expansions for a comprehensive subclass of analytic
bi-univalent functions, which is defined by subordinations in the open unit
disk. The coefficient bounds presented in this paper would generalize and
improve some recent works appeared in the literature.

1 Introduction

Let C be the set of complex numbers, N := {1,2,--- } and Z := {0,+1,£2,--- }.
Let A denote the class of all functions of the form

f(z)=z+ i anz", (1.1)
n=2

which are analytic in the open unit disk

U={z:zeC and |z] <1}.
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Denote by S the class of all functions in the normalized analytic function class A
which are univalent in U.

Since univalent functions are one-to-one, they are invertible and the inverse
functions need not be defined on the entire unit disk U. In fact, the Koebe one-
quarter theorem [10] ensures that the image of U under every univalent function
f € S contains a disk of radius 1/4. Thus every function f € S has an inverse
f~1, which is defined by

i) =2 (zeU)
and

_ 1
Frt@)=o (ol <nin =),
In fact, the inverse function f ! is given by
f_l (ZU) :w_a2w2+ (2&1%—613) w® — (503—5612613-1—&24) wr..

A function f € S is said to be bi-univalent in U if both f and f~! are univalent
in U. Let £ denote the class of bi-univalent functions in U given by (1.1).

Determination of the bounds for the coefficients a, is an important problem
in geometric function theory as they give information about the geometric prop-
erties of these functions.

Lewin [21] investigated the class X of bi-univalent functions and showed that
laz| < 1.51 for the functions belonging to . Subsequently, Brannan and Clunie
[6] conjectured that |ay| < V2. Kedzierawski [19] proved this conjecture for a
special case when the function f and f~! are starlike functions. Recently, Srivas-
tava et al. [24], Frasin and Aouf [12], and Ali et al. [4] found estimates for the
first two coefficients of certain subclasses of bi-univalent functions. Not much is
known about the higher coefficients of bi-univalent functions; in fact Ali et al. [4]
remarked that finding the bounds for |a,| (n € IN — {1,2}) for the bi-univalent
functions is an open problem.

Recently, Bulut [8] introduced a comprehensive subclass ’Hg’” (¢,©) of ana-
lytic bi-univalent functions and obtained estimates on the coefficients |a;| and
lag| for functions in this subclass. In this paper, we use the Faber polynomial
expansions to obtain estimates of coefficients |a,| where n > 3, of functions in
these subclasses. Consequently, we obtain improvements on the bounds found
by Bulut [8] for the first two coefficients |a;| and |a3| of functions in this subclass.

2 Preliminary results

Some special classes of univalent functions play an important role in geomet-
ric function theory because of their geometric properties, such as, the classes of
convex, starlike, strongly convex and strongly starlike functions. It is fairly com-
mon that a function in one of these classes is lying in a given region in the right
half-plan and the region is often symmetric with respect to the real axis. In this
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section we define a subclass ’Hg’” (¢; ©) (Definition 2.1), which in particular case
(for A =1, p = 0and ©® = %) reduces to class starlike functions (zf'(z)/ f(z)).
Therefore in this paper, we assume that ¢ is an analytic function with positive
real part in the unit disk U and ¢(U) is symmetric with respect to the real axis,
satisfying ¢(0) =1, ¢'(0) > 0 such that it has series expansion of the form

@(z) =14 Biz+Boz> + B3z’ + -+ (By > 0). (2.1)

Denote by f * ® the Hadamard product (or convolution) of the functions f and
O, thatis, if f(z) =z+ Y, ra,2" and O(z) = z+ Y ;7 , b,z", then

(f+*0®)(z) =z+ i anbyz".
n=2

For two functions f and F which are analytic in U, we say that the function f is
subordinate to F in U, and write

f(z) <EF(z) (zeU),
if there exists a Schwarz function w, which is analytic in U with
w(0)=0 and lw(z)|<1 ,ze,

such that
f(z)=F(w(z)), zel.

By Schwarz’s lemma we have |w(z)| < |z|, which concludes w(U) C U. Since
w(0) =0and w(U) C U it follows that

if f(z) < F(z) then f (0) = F(0) and f (U) C F(U).

Furthermore, if the function F is univalent in U, then we have the following
equivalence

f(z) <E(z) (zeU)s f(0)=F(0) and f(U)cC E(U).

Recently, Bulut [8] introduced a comprehensive subclass of analytic bi-univa-
lent functions and obtained non-sharp estimates on the coefficients |a| and |a3|
for functions in this subclass as follow.

Definition 2.1. [8] Let the function f, defined by (1.1), be in the class A and let
©cX and O(z)=z+ ) buz" ,(ba>0). (2.2)
n=2

We say that
feH (@®)  (A=1,p>0),

if the following conditions are satisfied:

fex,

(1- 1) <M>H+/\(f*®)’(z) (M)H Z¢(z) ,(zeU)

Z z
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and

*_1wy ! *_1wy_1
O_A)<g;g%_gj> wa((Fre)) wo<Q¥9l—il> <pw),

(w e U),

where the function (f * @)_1 is given by
(f * @)_1 (w) = w — arbryw?* + <2a%b§_ — a3b3> w—
(561317% — 5a,bra3bs + a4b4> w4

Theorem 2.2. [8] Let the function f (z) given by the Taylor-Maclaurin series expansion
(1.1) be in the function class

Hy' (9;0)  (A=1,1>0),

with © is given by (2.2). Then

a| < 1 min{ D1 2(B1+ B> — Ba)
2=, A\ (u+1D)02A+0) 7

B1v/2B; (2.3)
VB G+ D @A) 28— B (1

and

1
az| < — min
b

{ B3 Bi  Bi[(u+3)+|1—p|] . 2|B.— B
3

Atn? 2 p’ 2rD) @ p) DA

2B3 N B, o
)B%(er)(2A+y)—2(32_31)@+y)2’ A+u [ :

In the present paper by using the Faber polynomial expansions we obtain es-

timates of coefficients |a, | where n > 3, of functions in the subclasses Hg’” (¢;09).
The Faber polynomials introduced by Faber [13] play an important role in various
areas of mathematical sciences, especially in geometric function theory. Several
authors worked on using Faber polynomial expansions to find coefficient esti-
mates for classes bi-univalent functions, see for example [8, 14, 15, 16, 17, 18]. For
this purpose we need the following lemmas.
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Lemma 2.3. Let ¢(z) = asz + azz*> + - - + a1z + - - -. Then for any m € N, the
coefficient of z" in (¢p(z))™ is equal to

Z m!(a2)i1 U (an+1)i;1 (25)

NN ’

DjH(ap, a3, - -ay11) = i -
n-

where the sum is taken over all nonnegative integers iy, - - - , i, satisfying
ih+iy+-+ip=m,
i1 +2ip+ -+ ni, =n.

It is clear that

DZ (512/ as, - - 'an—i-l) = ag'
Proof. Tt is derived from the expansion (a2z + a3z% + - - - + a, . 12")™. [

Lemma 2.4. [1, 2] Let f(z) = z+ Y ;. ra,2" € S. Then for any p € Z, there are the
polynomials K}, such that

(I+az+az+- - a2 )P =1+ Y Ki(ag,a3,- - ,a,41)7",
n=1

where

— |
pPp=—Dpp 7

D L BRI L
R Py T D

(p —n)!(n)!

2.6)
with DI is given by (2.5). In particular, K} = a,.1, K¢ = 2ay, K3 = 2a3 + a3,
KZ = 2a4 + 2apa3, K3 = 2a5 + 2a5a4 + a3,

KZ(QQ, T /ﬂn+1) = Pan—H +

Lemma 2.5. Let f(z) = z+ Y ,a,2" € S, then for every u > 0, we have the
following expansion,

on (1) i (12)”

=1+7§1<

) KZ (aZI as,- - '/an—|—1)zn/

where

(F520) Koz o+ ) = [ Al = 1)
(a2)"(a3)" - - - (@ny1)™

2.7)
X T | ; T
2y iy 11120 ciplp = (i i+ in)]!

In particular, the first two terms are, (%) Ki(a2) = (u+A)ay, (#) Kb (az,a3) =
(4 +27) (B3 83 + as).
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Proof. For f(z) = z+ Y ;. ,a,2", consider h(z) = M =14 Y ,>1a,+12", then by
using Lemma 2.4, we have h(z)# =1+ Y, K} (ap, a3, -+ ,a,11)z", therefore

" N
a-0 (L) war@ (12) =ner+ 2 Lo

A
=1+ (V_; n) K (az, a3, -+, ay41)2"

n>1

Now by using equation (2.6), we have the result. n

Corollary 2.6. Let f € Hg’” (¢; ®), then we have the following expansion

- (0D) ooy (£22E)

. (2.8)
=1 + Z Fn—l(aZbZI a3b3/ T '/al’lbn)zn_ll
n=2
where
+(n—-1)A
Fn—l(aZbZI a3b3/ U /anbn) — <%) Kf:_l(azbZ/ a3b3/ U /anbn)

=[p+m—1)A[(p —1)!x
Y (a2ba) (azba) - - () } |

T A 1 EEt MY TRy R S e Y

Proof. Since (f * ®)(z) = z + ¥,;>1 a4.bnz", by applying Lemma 2.5 we have the
result. n

Lemma 2.7. Let f(z) = z+ Yo, anz" € S. Then for every u > 0, (f~1)#, is given
by the expansion,

(f ( P‘ — wh + Z ”+P‘) W't

n>1

- iz
Proof. Let (#) =143 ,>1cnw", then by Cauchy theorem,

1 B
Cn = 217r wP‘w”“ 217T/f 142, where w = f(z).
Integrate by parts, then
(n+pu)
6 = | LV ) S el U521
2im) p+n z—(n+p) zn+1 H+n
Consequently, the expansion of (#) , is given by
-1 K
(fi(w)) =1+ Y E g, e, (2.9)
w SiHtn
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If we take 1 = 1 in Lemma 2.7, we have the following result.

Corollary 2.8. [2] Let f(z) = z+ Y . pa,z" € S. Then the inverse map of f, is given
by the expansion,

- 1.,
flw)=w+ ) Eanl(az,@,- e a)w". (2.10)

In particular, the first three terms of K. ", are

1 1 1
§K1_2 = —ay, 51(2_3 = 243 — a3, —K3_4 = —(5a3 — 5aya3 + a4).

Corollary 2.9. Let f(z) = z+ Y ;o ra,2" € S, then for every uy > 0, we have the
following expansion,

1= (#)y A (w) (M)”‘l

An
=1+ Z MKH (”ﬂ*)wn

(w) = hy(w) + why(w). Now by Lemma

Proof. Let f~1(w) = why (w), then (f 1)’
LK, (n+4) w". Therefore

2.7, we have (hi(w))* =143 ,>1

p+n

w
= (1= A) (i (w))* + A(hy (w) + whi (w)) (hy (w))F !
= (hy (w))" + Awh} (w) (hy (w))F
= (I (w ))”+)‘7wdi((h1( w))")
=14+ Z U +/\1’Z n-Hl)

n>1

Corollary 2.10. Let f(z) = z+ Y ;0o a,2" € S, then for every uy > 0 and n € IN we
have

where L, = %K;ﬁ’l(az,@, e, dp).
Proof. From equation (2.10) we have
-1
(i) =1+ Z ( 02,03, Lln)) w”_l.
w n>2
Therefore by using Lemma 2.4, we have

-1 14
(f uEW)) 14 Y KLy, Ly ), (2.11)

n>1
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1y—n
where L, = K. " (a2,a3,-- -, a,).

Comparing the corresponding coefficients of equations (2.9) and (2.11), we have
the result. ]
Lemma 2.11. Let f € ”H%’” (¢; ©), then we have the following expansion

= (W)y FA((f +©) 1) (w) (M)P‘

w

= 14+ Y F1(Ay As, -+, Ap)w™ !, (2.12)
n=2

where F,_1 = (Wr(r;i_m) Kf;_l and A, = XK " (aybo,azbs, - - -, anby).

nn—1

Proof. By applying Corollary 2.9 for (f * ®)(z) = z + YL ,>2a,b4z" and using
Corollary 2.10, we have the result. n

Lemma 2.12. Assume that u(z) and v(z) are analytic in the unit disk U with u(0) =
v(0) =0, |u(z)| <1, |v(z)| < 1, and suppose that

u(z) = 2(pr+ Y pu ) and o(z) =2q+ Y g (zEU). (213)
n=2 n=2

Then

P <1, lpal <1=1|p1% |0l <1, lgul <1—|@f>,  n=23,--- (214)
Proof. For proof see [22, Page 172]. [ |
Lemma 2.13. Let f € ”Hg’” (¢;0©). Then

n—1
Fn—l (a2b2l a3b3l Tty anbn) = Z BkD;]f[—l(pll pZ/ Tty Pn—l)/ (215)
k=1
and
n—1 .
Fu1(Az, As,- -+, Ay) = Y BiDy (41,92, - Gn—1), (2.16)
k=1

nn—1

where F,_1 = (’H(V;i_l))‘) Kf;_l and A, = LK (ayby, azbs, - - -, anby).

Proof. By Definition 2.1, since f € Hg’y (¢;©), there are two Schwarz functions
u,v:U — Uwithu(0) =v(0) =0, as in (2.13), so that

(1-2) (f—@”)” FA(f+0)'(2) (f—@”)”l —p(uz),  @17)

and
-1

(F+©) 1 (w)\" g (2O @)\
=) (L) (s w0ty (L2222 —qo(v((z;)fé)
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Now by using (2.1) and (2.5) we have,

¢(u(z)) = 1+ Biu(z) + Ba(u(2))* +--- =14 Bip1z + (Bip2 + Bop)z* + - - -
= 1+ Y BDi(pi,p2 - pu)2", (2.19)
n=1k=1
and
¢(v(w)) = 1+ B1o(2) + Ba(v(2))* +--- = 1+ Biaw + (B1g2 + Bag)w” + - - -
& n
= 1+ Y. Y BDi(qu, 42, qn)w’”. (2.20)
n=1k=1

Comparing the corresponding coefficients of (2.8), (2.17) and (2.19) we get (2.15).
Similarly, from (2.12), (2.18) and (2.20) we obtain (2.16). ]

Our first theorem introduces an upper bound for the coefficients |a,| of func-
tions in the class Hg’” (¢;0).

3 Main Results

In this section, first we obtain estimates of coefficients |a,| where n > 3, of an-

alytic bi-univalent functions in the subclasses Hg’” (¢; ®). Next, we obtain esti-
mates of coefficients |a;| and |a3| of functions in this subclass which are improve-
ments on the bounds found by Bulut [8].

Theorem 3.1. For A > land u > 0, let f € Hg’” (¢; ©) be given by (1.1). Ifay =0
for2 <k <mn—1,then

By
U+ (n—1)Alb,’

Proof. Note thatay =0for2 <k <n—1,sowehave A, = —aybp,and p; =--- =

|an| < [ n>3. 3.1)

pn—2 =0, g1 =+ =gu_2 = 0. From (2.15)-(2.16), we have
[+ (n —1)Alanby = Bipy_1, (3.2)
and
—[p+ (n = 1)AJanby = B1gy1. (3.3)

Now, by solving either of the equations (3.2) and (3.3) for a, and applying
a1l S1=[p1P <1, Jguaa| < 1—|qf? < 1, it yields
an| = Bilpnaal — _  Bilgn]
[+ (n—=1)Aby  [u+ (n—1)A]by
By
[+ (n = 1)A]by’

<

which gives the bound as asserted in (3.1) and this completes the proof. n
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If we take ©(z) = 1% and

go(z):w:l—l—Z(l—ﬁ)z—l—Z(l—ﬁ)zz—l—-“ (0<p<1,zel),

then, B; = By = 2(1 — B), in Theorem 3.1, and we have the following corollary
which generalizes the results obtained by Bulut, see formula (27) in [8].

Corollary 3.2. For A > land y > 0, let f € ’Hg’” (¢;©) be given by (1.1). Ifay =0
for2 <k <mn-—1,then

] gyi((ln—__ﬁl)m, n>3.

Remark 3.3. If we take A = 1 and y = 1in Corollary 3.2, the estimates of Jahangiri
et al. [16, Theorem 1] and Jahangiri et al. [18, Theorem 2.1] are obtained.

Corollary 3.4. For A > 1,y > 0and 0 < a <1, let f € Hg’” ((%)a;G)) be given
by (1.1). Ifay =0 for2 < k <n—1, then
2

< >
S RS A

Proof. Since

1 44
p(z) = <1f§> =14 2az 42022 +---,

then B; = 2&, now by using (3.1), we have result. m
In what follows, we give refinements of inequalities (2.3) and (2.4) for class

1y (9;0).

Theorem 3.5. Let f € 7—[%’” (¢;©) be given by (1.1), A > 1and u > 0, with © is
given by (2.2). Then

las] < - min { (A, ) Biv2B:
2 > 7 7 7 7
% V[2B1(A+ 1002 4 [BE2A + o) (1 + 1) — 2Bo(A + )2
(3.4)
and
1 .
oa] < 5-min {k(A, ), (A, 1)} (3.5)
where
2|By|
1A, ) = 0 (i) [B2| < By
' B 1 — |B,| > B
@A+ p) (u+1) 2 I
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B ()\-i— )2
(2 By < orfy
k(A p) =
By | B (2A+p1) (u+1) 2By (A+p)?|+2(2A+p) B B, > (Atu?
[2B1 (A+10)2+ B} (2A+10) (1) 2By (A+ 12| 2A+p0)” 1=
and
Bi[(u+3)+[1—pl] | _2(|By|~By)
AT ) T @D [B2| > By
M=, [(13)+1 ]
+3)+[1—-
ot |Ba| < By.

Proof. From equations (2.15) and (2.16) respectively for n = 2 and n = 3, we
have that

(A + p)azby = Byipy, (3.6)
(1 +20)asbs + (u 1) (A+ ) 33 = Bipz + Bapd, (3.7)
—(A + p)azby = Biqy, (3.8)
and
~(+2\)asba + (u +3) (A + 5 a3t = Biga + Bag?. (39)
From (3.6) and (3.8), we get
pP1= —q1. (3.10)
By using (3.7), (3.9), and (3.10), it yields
(24 + p) (i +1)a3b3 = Bi(p2 +42) + 2Bapi. (3.11)

From (3.11) and (3.6), we have
Bf (2A + ) (1 + 1)a3b3 — 2B2(A + p)?azbi = By (p2 + q2)-
By (2.14) and (3.6), we get
[BI(2A + ) (1 +1) = 2B2(A + 1) b3]aa|* < By (|p2| + |4a)
< 2Bi(1 - |p1|?) = 2B} — 2B1(A + p)?b3|az .
Therefore,
a] < B1v/2B4
V2B + 02 + [BR2A + 1) (1 + 1) — 2By (A + )2 B3
Also, by (2.14) and (3.11),
(27 + p) (4 + 1) b3 a3

(3.12)

< Bi(|p2| + |q2]) + 2|B2||p3]
< 2Bi(1— |p1]?) +2|Ba||p1[?
= 2B +2|p1|*(|B2| — B1)

{ 2|By] |B2| < By

2|B,| |B2| > By



498 A. Zireh — E. A. Adegani - S. Bulut

Consequently,
2|By]
G Bof < By
jaz] < (3.13)
2|B, |
@ng (P> B

Hence, the desired estimate on the coefficient |a;| as asserted in (3.4) is obtained
from (3.12) and (3.13).

Next, in order to find the bound on the coefficient |a3|, by subtracting (3.9)
from (3.7), and using (3.10), we get

2(2A + p)bzaz = Bi(pz — q2) + 2(2A + p)asb3. (3.14)
From (2.14), (3.11) and (3.14), we have

Bi(p2 —q2) |, Bi(p2+q2) +2Bopi

b
343 2024 + 1) QA+ 1) (p+1)
By[(j +3)p2 + (1 — p)q2] + 4B2p?
20+ u)(p+1)
Therefore,
Bi[(y +3)|p2| + 1 — pl|g2]] + 4| B2 || p1|?
lag] <
22+ ) (u+1)bs
< Bi[(#4+3)(A = |p1/*) + 11— u|(1 = |p1/*)] + 4|B2||p1|?
= 2A 4+ u)(u+1)bs3
_ B =y +3) + 11— pul] +4IBa||pa?
2A 4+ u)(p+1)bs
_ Bi[(p+3) + |1 — pl] +4Ballp1|* — Balp1 P[(n +3) + |1 — p]
222+ ) (p+1)bs3 '

Thus for 4 > 0, we conclude that

Bi[( +3) + |1 — u|] + 4|Ba|p1|> — 4B1|p1|?

< 3.15
as] - < 202A + ) (u +1)bs (3.15)
_ Bal(p+3) 11— ull + 4 (1ol — By) 616
20+ 1) (5 + 1)bs | |
Consequently,
Bi[(u43)+[1-p]] | _2(|By|=B1)
1 | erwn + @ B2| > By
jas| < e (3.17)
3 By[(n+3)+[1—pl] |By| < By.

22A4u) (p+1)
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On the other hand, by using (2.14) and (3.10) for (3.14), we have

224 + w)bslas| < Bi(|p2| + |g2]) +2(2A + p)|aa|?b3
< 2B1(1—|p1]?) +2(2A + p) |ax |*b3.

From (3.6), we get that
B1(2A + p)bs|as| < [(2A + u)By — (A + p)?]|a2|?b3 + B
Now, from (3.12), we have

Bi(2A + w)bslas| < [(2A + u)By — (A + p)?]
y 2B}
2B1(A + u)2 4 [BF(2A + ) (1 + 1) — 2B2(A + )2

+ B2

Thus, we get

< — B[, 2B, [By(2A + 1) — (A +1)?]
U= 20+ p)bs 2B1(A+ )2+ [B2 (u+1) A+ p) —2Bo(A + p)?| |
(3.18)
Hence, from (3.17) and (3.18), we obtain the desired estimate on |a3| given in
(3.5). This completes the proof. ]

Remark 3.6. Theorem 3.5 is an improvement of the estimates obtained by Bulut
[8] in Theorem 2.2. It is easy to see that, for the coefficient |a;|,

B1v/2B; _ _ BiV2B
VI2BI A+ 2+ (B @A+ ) (p +1) —2B(A+ w)2l]  V2Bi(A+p)?
B,
A+

4

B1v2B;
V [2Bu(A + )2 + [BR2A + 1) (1 + 1) — 2Ba(A + o)2]]
< B1v/2B;
T /IB @A+ ) (1) — 2(Bs — By)(A + )|
and if |By| < By or |By| > By, then

2(B1 + |By — By))
) < \/ OEMITESIN

7

Also, for the coefficient |a3|, we make the following cases

(i) If By < (é‘;f;z, then

B B 283
1 < 1 + 1
2A+p T 2A+p \/\B%(2A+y)(y+1)—2(32—31)()\+P‘)2}

4
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and

By B? By
< + .
2+~ (A+p)?2  2A+u

(ii) If By > (é‘;fﬁz, then

2B3 (20 + 1) + By | B3 (4 +1) (24 + ) — 2By (A + p)?|
(24 + 1) [2B1(A + u)2 + [BF (1 +1) (24 + ) — 2B2(A + 2]
2B3
2By(A + )2 + | B (n + 1)1(2A + 1) —2Ba(A + p)?|
N Bi|B3 (+1) (2A + p) — 2Ba(A + )?|
(2A + ) [2B1(A + )2+ B2 (u+1) (2A 4+ 1) — 2Ba(A + p)?|]

. _ 2B B1|BE(2A + 1) (1 +1) — 2By(A + 1)’
T 2Bi(A+p)? QA+ ) [BE(p+1) (24 + ) — 2Ba(A + p)?|
- B? B,

+ .
A+u)? 2A+u
(111) If ’Bz’ < Bjor ’B2| > B, then

Bi[(#+3) +[1—p] 2|B, — By|

A S D@ ) T B )

Remark 3.7. With similar argument of Remark 3.6 in Theorem 3.5,

(1) If we take ©(z) = 1Z;, then we obtain improvement of the estimates
obtained by Tang et al. [25, Theorem 2.1].

(2) If weset A = y = 1and O(z) = %, we get improvement of the estimates

obtained by Ali et al. [4, Theorem 2.1].

(3) By taking 1 = 1,A > 1 and ©(z) = 1%, we obtain improvement of the

—z/

estimates obtained by Kumar et al. [20, Theorem 2.2].

Taking ¢(z) = (%) " in Theorem 3.5, then we have the following result.

Corollary 3.8. Let f € Hg’” (¢;©) be given by (1.1), A > 1and y > 0. Then

|a |<lmin da 2
* = b A+ (u+1) A+ )2 tajut2r A2 [’

and

1o af(p+3) + 11— pl]
ol < g min {500 SR
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where
2 (A+p)?
(ZAiy)’ 0<a< 2(2A+ 1)
K = 200420~ A2 4402 (24 0) (A+p)?
207 | u+2A = A7 +H4a” (2A+p +u
[(Ap)2+a|p+2A—A2[](2A+pu)” 2(2A+u) <a<l

Remark 3.9. With similar argument of Remark 3.6 in Corollary 3.8,

(1) If u = 1, then we have improvement of the estimates which were given by
El-Ashwah [11, Theorem 1].

(2) If A = 1and ©(z) = 1%;, then we have improvement of the estimates which
were given by Prema and Keerthi [23, Theorem 2.2].

(3) If ®(z) = 7%, then we obtain the same estimate |a3| and improvement of
the estimates which were given by Caglar et al. [9, Theorem 2.2].

(4) If x = A = 1and ©(z) = %5, then we have improvement of the estimates
which were given by Srivastava et al, [24, Theorem 1].

(5) If y = 1and O(z) = 1%, then we have improvement of the estimates which
were given by Frasin and Aouf [12, Theorem 2.2].

6) Ify =1and O(z) = z+ Y, 2”1—&’;”1 12", then we have improve-

ment of the estimates which were given by Aouf et al. [5, Theorem 4].

(7) If A =1, y = 0and O(z) = 1=, then we have improvement of the estimates

which were given by Brannan and Taha [7].
By choosing ¢(z) = %, in Theorem 3.1, then we have the following
result.

Corollary 3.10. Let f € ’Hg’” (¢;0©) be given by (1.1), A > 1and y > 0. Then

|a2]<lmin \/ 41— p)
~ by A+ pu)(n+1)°

2(1-p) }
VA+u)2+[0=B)2A+u)(n+1) — (A + p)?]
and
L. (1=B)[(p+3)+[1—ul]

ol < g min {x0, ST
where

6a R <
k(A p) =

2(1-p)|(A—B) @A +p) (1) = (A+ )| +42A+) (1-B)? B < 2QM+p)— (A+p)
(A2 +(1=B) A1) (u+1) = (A2 [|2A+p) 7 7 = 2(2A+p)
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Remark 3.11. With similar argument of Remark 3.6, in Corollary 3.10,

(1) If u = 1, then we have improvement of the estimates which were given by
El-Ashwah [11, Theorem 2].

(2) If A = 1and ©(z) = 1=, then we have improvement of the estimates which
were given by Prema and Keerthi [23, Theorem 3.2].

(3) If ®(z) = 1=, then we obtain the same estimate of |a3| and improvement
of the estimates which were given by Caglar et al. [9, Theorem 3.1].

(4) If x = A = 1and ©O(z) = %5, then we have improvement of the estimates
which were given by Srivastava et al, [24, Theorem 2].

(5) If y = 1and O(z) = 1=, then we have improvement of the estimates which
were given by Frasin and Aouf [12, Theorem 3.2].

6) Ify =1and O(z) = z+ Y, %%z”, then we have improve-

ment of the estimates which were given by Aouf et al. [5, Theorem 8].

(7) If A =1, y = 0and O(z) = 1=, then we have improvement of the estimates
which were given by Brannan and Taha [7].

(8) If y = 1and @(z) = 1%, then we have improvement of the estimates which
were given by Jahangiri et al. [16, Theorem 2].

9) If ©(z) = 1%, then we have improvement of the estimates which were
given by Bulut [8, Theorem 2].

(10) If ©(z) = 1%, then we have improvement of the estimates which were
given by Jahangiri et al. [18, Theorem 2.2].
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