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Abstract

We introduce the notion of primitive arc of a curve defined over a field k
and study criterions for the existence of such objects in terms of the
geometry of the curve. We prove that this notion provides a criterion which
determines when the normalization of an irreductible curve singularity (X, x)
induces an isomorphism between the formal neighborhoods of the associ-
ated arc schemes at the constant arc x and its lifting x̄ to the normalization
X̄. We also show that the existence of a primitive arc at x ∈ X is equivalent
to the smoothness of the analytically irreducible curve X at x. In this end, we
interpret this notion in terms of the formal deformations of the constant arc
x in the associated arc scheme.

1 Introduction

1.1 Let k be a field. A test-ring A (or (A,mA)) is a local k-algebra, whose maximal
ideal mA is nilpotent with residue field A/mA

∼= k. A primitive arc γ of a k-curve
X at x ∈ X(k) is a primitive k-parametrization OX,x → k[[T]] (see definition
3.1), which satisfies the following property: For every test-ring (A,mA), for every
commutative diagram of morphisms of local k-algebras

OX,x
γA

//

x
��

A[[T]]

rA
��

k �
�

// k[[T]],

(1)
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where rA : A[[T]] → k[[T]] is the continuous morphism of complete local k-alge-
bras defined by T 7→ T with kernel mA, there exists a unique power series
pA ∈ mA[[T]] which induces a continuous morphism of complete local k-algebras
p♯A : k[[T]] → A[[T]] that verifies the formula γA = p♯A ◦ γ. If it exists, a primitive
arc is unique (up to isomorphism).

1.2 The basic subject of this article could be summarized by the following ques-
tion:

Question 1.1. Which class of pointed k-curves admits primitive arcs?

This article provides a complete answer to question 1.1 for analytically ir-
reducible curves. Precisely, we establish various criterions for the existence of
primitive arcs on k-curves. In this way, the existence of primitive arcs can be
interpreted as an original criterion of local smoothness (for k-curves) in terms of
the associated arc schemes, or as a criterion for determining when the normaliza-
tion morphism induces an isomorphism at the level of the involved arc schemes.
If X is a k-curve and x ∈ X(k), recall that the point x can be viewed as a constant
arc of the associated arc scheme L∞(X), and we denote by L∞(X)x the formal
neighborhood of the arc x in L∞(X), i.e., the formal k-scheme Spf( ̂OL∞(X),x).

Theorem 1.1. Let k be an algebraically closed field. Let X be a k-curve which is uni-
branch at x ∈ X(k). Then the following assertions are equivalent:

1. The k-curve X is smooth at x;

2. There exists a primitive arc γ at x on X;

3. The formal k-scheme L∞(X)x is isomorphic to Spf(k[[(Ti)i∈N]]);

4. The normalization π : X̄ → X induces, at the level of formal neighborhoods of the
associated arc schemes, an isomorphism of formal k-schemes

L̂∞(π)x : L∞(X̄)x̄ → L∞(X)x ,

where x̄ ∈ X̄(k) is the lifting of x;

5. The morphism (L̂∞(π)x)♯ : ̂OL∞(X),x → ̂OL∞(X̄),x̄ is surjective.

1.3 The point of view of formal neighborhoods of arc schemes has been intro-
duced in [8] (see also [6]). If V is a variety, the formal neighborhood L∞(V)γ

parametrizes the formal deformations of the arc γ in L∞(V). In [8, 6] (see also [3]
for an analog statement in the context of formal geometry), the authors prove a
structure theorem for formal neighborhoods of arc schemes at non-constant arcs,
which are not contained in the singular locus of the involved variety. The in-
terpretation of such a result in terms of singularity theory remains a challenging
problem, and works [3, 4, 5] are, to the best of our knowledge, the first steps in
this direction. Let us also mention [7, 12] where some properties of formal neigh-
borhoods of arc schemes are also studied in other frameworks.
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Contrary to these works, the involved arcs in our statement are constant; hence,
our result provides information for arcs contained in the singular locus. (Let us
note that in general the main theorem of [8, 6] does not hold for singular con-
stant arcs, see [2] for counter-examples). Roughly speaking, the present work
(see assertion (3) of theorem 1.1) investigates the study of the smoothness of
an analytically irreducible k-curve X at a point x from the point of view of the
“deformations” of the constant arc x in the associated arc scheme L∞(X). In this
context, the notion of rigidity (i.e., situation where there is no non-trivial defor-
mation) corresponds to the existence of a primitive arc.

2 Preliminaries

2.1 Let k be a field. A k-variety is a k-scheme of finite type. A k-curve is a reduced
k-variety of dimension 1. We say that a pointed curve (X, x), with x ∈ X(k), is
unibranch (or analytically irreducible) at x if the ring ÔX,x is a domain.

2.2 Let k be a field. Let V be a k-variety. The functor S 7→ Homk(S⊗̂kk[[T]], V)
defined from the category of k-schemes to that of sets is representable by a
k-scheme L∞(V). (Let us note that this presentation uses a recent non-trivial
result due to B. Bhatt, see [1, Theorem 1.1]). If V is an affine k-variety, for
every k-algebra A, every element γA ∈ L∞(V)(A) coincides with the datum
of a morphism of k-algebras O(V) → A[[T]].

2.3 Let V be a k-variety and γ ∈ L∞(V)(k). Yoneda’s lemma [9, 8.1.4] and the
properties of completion formally imply that the formal neighborhood L∞(V)γ

of the k-scheme L∞(V) at γ is completely determined by the functor of points

A 7→ Homcpl
k ( ̂OL∞(V),γ, A),

when A runs over the category of test-rings, and where the considered mor-
phisms are the continuous morphisms of complete local k-algebras from ̂OL∞(V),γ
to A. See [8, 6] or also [3].

3 The proof of theorem 1.1

Definition 3.1. Let k be a field. Let X be a k-curve with x ∈ X(k). A primitive
k-parametrization of X at x is a morphism of local k-algebras γ : OX,x → k[[T]],
which satisfies the following property: For every morphism γ′ : OX,x → k[[T]]
of local k-algebras, there exists a power series pk ∈ Tk[[T]] such that we have
γ′ = p♯k ◦ γ.

If k is algebraically closed and X is unibranch at x, the normalization
π : X̄ → X of X provides a primitive k-parametrization of X at x by consider-
ing the induced morphism of local k-algebras πx : OX,x → ÔX̄,x̄.
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Remark 3.1. A primitive k-parametrization may not be a primitive arc. Let X be
the affine plane k-curve defined by the datum of the polynomial F = T3

1 − T2
2 ∈

C[T1, T2]. Let us consider the primitive k-parametrization γ at the origin o in
X = Spec(C[T1, T2]/〈T3

1 − T2
2 〉) defined by the element (T2, T3) ∈ C[[T]]. Let

A := C[S]/〈S2〉. We observe that the element γA ∈ L∞(X)o(A) given by T1 7→ S,
T2 7→ S, can not be written under the form γ ◦ pA. So, γ is not a primitive arc.

Let us mention that implication 4 ⇒ 5 is obvious, and that implication 4 ⇒ 1
also is obvious since we have L∞(X̄)x̄

∼= Spf(k[[(Ti)i∈N]]). Let us prove the other
implications.

1 ⇒ 2 Since X is smooth at x, there exists an affine open subscheme U of X,
which contains x, endowed with an étale morphism of k-schemes U → A1

k =
Spec(k[t]), corresponding to the choice of a local parameter in O(U) (i.e., a gen-
erator t of the maximal ideal mx in the ring OX,x). Up to shrinking X, we may
assume that X = U. Then, let γ be the arc corresponding to the following mor-
phism of k-schemes:

OX,x
�

�

//

γ

##

ÔX,x
∼

// k[[t]] t→T
// k[[T]], (2)

obtained by composition via the completion morphism. It gives rise to a primitive
k-parametrization of X at x. Then, it is easy to check that the arc γ is primitive,
since, in this case, for every test-ring A, and every γA ∈ L∞(X)x(A), we take
pA = γA.

2 ⇒ 4 Let γ be a primitive arc at x on the curve X. Let A be a test-ring. By
§2.3, we only have to prove that the map:

πA := L̂∞(π)x(A) : L∞(X̄)x̄(A) → L∞(X)x(A)

is a bijection. Let γA ∈ L∞(X)x(A). By assumption, there exists a unique power
series pA ∈ mA[[T]] such that γA = γ ◦ pA (where we identify pA and the induced
morphisms of k-schemes). Since the morphism π is proper and birational, the
valuative criterion of properness implies the existence of a unique non-constant
arc γ̄ ∈ L∞(X̄)(k) such that π ◦ γ̄ = γ. Then, we easily observe that γ̄ ◦ pA is the
unique preimage by πA of γA.

5 ⇒ 1 We assume that the morphism (L̂∞(π)x)♯ is surjective. Then, for every
test-ring A, the induced map:

πA := (L̂∞(π)x)
♯(A) : Homcpl

k ( ̂OL∞(X̄),x̄, A) → Homcpl
k ( ̂OL∞(X),x, A)

is injective. We are going to show that this property implies the smoothness of X
at x. Let us denote by multx(X) the integer defined as follows. If γ is a primitive
k-parametrization at x, let us consider the ideal γ(mx) in the ring ÔX̄,x̄ = k[[t]]
(t is here a generator of the maximal ideal mx̄ of the ring OX̄,x̄). There exists an
integer n such that γ(mx) = 〈tn〉. We then set n =: multx(X). This definition
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does not depend on the choice of γ. If the k-curve X is singular at x, we have
multx(X) ≥ 2.

Let us assume that x is a singular point of X. Up to shrinking X, we may
assume that X is affine, embedded in AN

k = Spec(k[T1, . . . , TN]), and, up to a
translation, we may assume that x is the origin o of AN

k . Let A := k[U]/〈U2〉.
The power series ϕ1 = 0 ∈ A[[T]] and ϕ2 = UT ∈ A[[T]] define two elements of
L∞(X̄)x̄(A). It follows from the definition that

L∞(π)(ϕ1) = L∞(π)(ϕ2). (3)

since multx(X) > 1. Indeed, every variable Ti (seen in the ring OX,x) is sent by
the morphism of local k-algebras πx : OX,x → ÔX̄,x̄ to an element in the ideal
〈tmultx(X)〉, where t is a generator of the ideal mx̄. So, we obtain formula (3) since
L∞(π)(ϕi) corresponds, for every integer i ∈ {1, 2}, to the following composition
of morphisms of local k-algebras:

OX,x
πx

// ÔX̄,x̄
t 7→ϕi

// A[[T]] .

The injectivity of the map πA then implies that ϕ1 = ϕ2. That is a contradiction,
which concludes the proof.

3 ⇒ 1 It is sufficient to prove that the ring OX,x is formally smooth for the
mx-adic topology thanks to [11, 17.5.3]. By [10, 19.3.3,19.3.6], we observe that, due
to our assumption, the ring ̂OL∞(X),x is formally smooth, and we conclude by the
existence of the following diagram of continuous morphisms of local k-algebras:

ÔX,x //

Id

&&

̂OL∞(X),x
// ÔX,x.

Example 3.1. Keep the notation of remark 3.1. In this case, the normalization morphism
π♯ : O(X) → k[T] is defined by T1 7→ T2, T2 7→ T3; hence, every A-deformation of the
origin in X̄ is sent to the origin in X. We easily conclude that the deformation (S, S) of
the origin in X does not lift to the normalization X̄.

Remark 3.2. By base change, we observe that theorem 1.1 can be generalized to
every geometrically unibranch integral curve X and any closed point x ∈ X.

Remark 3.3. Keep the notation and assumptions of theorem 1.1. It is not hard to

prove that the morphism (L̂∞(π)x)♯ : ̂OL∞(X),x → ̂OL∞(X̄),x̄ is a formal invariant
of the curve singularity (X, x). By this way, formal neighborhoods at constant
arcs in arc scheme provide new formal invariants of curve singularities. It would
be interesting to study these invariants with respect to the classical theory of sin-
gularities.

Acknowledgement. We would like to thank the referee for his comments and David
Bourqui for pointing out the current argument used in the proof of implication
3 ⇒ 1 to us.
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