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Abstract

The aim of this paper is to discuss on some generalizations of the cele-
brate Darbo and Sadovskii fixed point theorems without using the maximum
property. Later on, we give an existence principle for a nonlinear integral
equation.

1 Introduction

In fixed point theory one of the most important results is due to G. Darbo [11], who
in 1955 using the concept of measure of noncompactness, which was introduce in
1930 by Kuratowski [15], proved a theorem which ensures the existence of a fixed
point of the so-called k-set contraction operators and generalizes both the classical
Schauder fixed point theorem and a special variant of Banach contraction princi-
ple. Darbo’s result has found many applications in linear and nonlinear analysis.
Such applications are characterized, in some sense, by loss of compactness which
arises in many fields. Later on, Sadovskii [18] gave, also by using measures of non-
compactness, a more general fixed point result than Darbo’s theorem, in this case,
Sadovskii introduced the concept of condensing map. As we have just mentioned,
Darbo and Sadovski’s results use strongly the concept of measure of noncompactness.
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Since 1930, when Kuratowski gave his definition of measure of noncompactness many
articles using different axioms to define a measure of noncompactness have appeared.

On the other hand, in 1977, De Blasi [12] introduced the concept of measure of
weak noncompactness and in 1981, G. Emmanuele [10] stated a fixed point result
for condensing mapping with respect to the measure of weak noncompactness. It is
worth to notice that in Emmanuele’ fixed point theorem the weak continuity of the
mapping is required.

In [16], motivated by a nonlinear equation arising in transport theory, the authors
established generalizations of the Schauder and Darbo fixed point theorems for the
weak topology. Such results also use the concept of the De Blasi measure of weak
noncompactness and, in contrast to Emmanuele’ result, those do not assume the
weak continuity of the mappings. In this sense, recently, in [13], a fixed point
result of Sadovskii type was obtained and the author applied such result to study
the existence of solutions for a generalized nonlinear Hammerstein equation on L1-
spaces.

The aim of this paper is to discuss on the axioms of a measure of (weak) non-
compactness and thus to obtain some generalizations of the above mentioned Darbo,
Sadovskii, etc · · · fixed point theorems. In particular by using Corollary 3.4 (see
below), we provide an existence principle for the following nonlinear integral equa-
tion

u(t) = f (t, u(t)) +
∫ t

0
g(s, u(s))ds,

where X is a Banach space, T > 0 and f , g : [0, T]× X → X are given functions.

2 Preliminaries

Throughout this paper we assume that X is a Banach space. Let B(X) denote the
collection of all nonempty bounded subsets of X, K(X) and W(X) are the subsets
of B(X) consisting of all compact and weakly compact subsets of X respectively. As
usual, for any r > 0, Br denotes the closed ball in X centered in 0X and with radius
r. If M is a subset of X, co(M) denotes the convex hull of M and M denotes the
strong closure of M.

We accept the following definition of a measure of (weak) noncompactness.

Definition 2.1. Let X be a Banach space and M, M1, M2 belong to B(X). A
mapping µ : B(X) → [0, ∞[ is said to be a measure of (weak) noncompactness in
the space X if it satisfies the following conditions:

(1) The family ker(µ) = {M ∈ B(X) : µ(M) = 0} is nonempty and ker(µ) ⊂
K(X)(W(X)).

(2) M1 ⊂ M2 =⇒ µ(M1) ≤ µ(M2),

(3) µ(co(M)) = µ(M),
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ker(µ) is called the kernel of the measure of (weak) noncompactness µ.

A consequence of the definition above is that µ(co(M)) = µ(M),

µ(M
w
) = µ(M) = µ(M)

where M
w
means the weak closure of M (cf. [9, p. 215]).

When ker(µ) = K(X)(W(X)) the measure of (weak) noncompactness is called full.
Quite often, the measure of (weak) noncompactness also satisfies:

(4) the maximum property, this is, for every x ∈ X, µ(M1 ∪ {x})) = µ(M1).

(5) µ(λM1 + (1 − λ)M2) ≤ λµ(M1) + (1 − λ)µ(M2), for λ ∈ [0, 1],

(6) if (Mn)n∈N is a sequence of closed sets from B(X) such that Mn+1 ⊂ Mn for
n = 0, 1, · · · and if lim

n→∞
µ(Mn) = 0, then M∞ =

⋂∞
n=0 Mn is nonempty.

It is clear that if a measure of (weak) noncompactness satisfies property (6), M∞

belongs to ker(µ) because M∞ ⊆ Mn for each n ∈ N and lim
n→∞

µ(Mn) = 0.

A measure of (weak) noncompactness is said to be regular if it has properties
(1)-(6) and it is full.

We give a list of some important examples of measures of (weak) noncompactness
which arise in applications. The two first examples are regular measures of non-
compactness which were introduced by Kuratowski [15] and Goldenstein et al. [14]
respectively.

Set measure or Kuratowski measure of noncompactness:

Given a bounded subset A of X,

α(A) = inf {r > 0 : A ⊂ ∪n
i=1Di, diam(Di) ≤ r} .

And the Hausdorffmeasure of noncompactness (or ball measure of noncompactness):

Given a bounded subset A of X,

χ(A) = inf {r > 0 : A ⊂ ∪n
i=1B(xi, r), xi ∈ X} .

The first example of a regular measure of weak noncompactness was introduced by
De Blasi [12]. He defined a measure of noncompactness ω : B(X) → [0, ∞[ in the
following way:

ω(M) := inf{r > 0 : there exists W ∈ W(X) with M ⊆ W + Br},

for every M ∈ B(X).

The De Blasi measure of weak noncompactness has interesting properties and
plays an important role in nonlinear analysis. In particular, Appell and De Pascale
in [6] proved that in L1-spaces the map ω(·) can be expressed as:

ω(M) = lim sup
ǫ→0

{

sup
ψ∈M

[

∫

D
‖ψ(t)‖Ydt : |D| ≤ ǫ

]

}

, (2.1)
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for every bounded subset M of L1(Ω; Y) where Y is a finite dimensional Banach
space and |D| denotes the Lebesgue measure of the set D.

Notice that in Definition 2.1 we do not assume that µ fulfills the maximum property,
thus the argument developed in [7] allows us to obtain that µ(M) = diam(M) and
µ(M) = sup{‖x‖ : x ∈ M} are both measure of noncompactness and measure of
weak noncompactness in the sense of Definition 2.1.

Let us now mention that in [8] was introduced the following measure of noncom-
pactness which does not have the maximum property. Let ℓ∞ be the Banach space
of all bounded sequences endowed with the standard sup norm.

The following formula gives the measure of noncompactness: Given C a bounded
subset of ℓ∞ and define the function γ : B(ℓ∞) → [0,+∞) by

γ(C) := lim sup
n→∞

diam(Cn), (2.2)

where Cn := {xn : x = (x1, x2, · · · ) ∈ C}.

Now, we introduce a measure of weak-noncompactness which does not satisfy
the maximum property.

Example 2.1. Let (X, ‖ · ‖) be a nonreflexive Banach space and let (X × X, ‖ · ‖1)
be the product space endowed with the norm ‖(a, b)‖1 := ‖a‖+ ‖b‖. Consider ω(·)
and diam(·) the measures of weak noncompactness on X given by De Blasi and by
the diameter respectively. Then

µ(C) := max{ω(C1), diam(C2)},

where Ci, i = 1, 2 denote the natural projections of C, defines a measure of weak
noncompactness, in the sense of Definition 2.1, on (X × X, ‖ · ‖1) with property (6)
and without the maximum property.

Let us see that µ(·) does not satisfy the maximum property. Indeed, it is easy
to check that if (x0, x), (x0, y) ∈ X × X with x 6= y, then µ({(x0, x)}) = 0 and
µ({(x0, y)}) = 0, but

µ({(x0, x)} ∪ {(x0, y)}) = µ({x0} × {x, y}) = ‖x − y‖ > 0.

Definition 2.2. Let (X, ‖ · ‖X) be a Banach and consider µ(·) a measure of (weak)
noncompactness on X. If C is a nonempty subset of X and T : C → C is a mapping,

(a) Given k ∈ [0, 1), the mapping T is called (µ)-k-set contractive if µ(T(A)) ≤
kµ(A) for all A ∈ B(C).

(b) The mapping T is called (µ)-condensing if µ(T(A)) < µ(A) for all bounded
subset A of C with µ(A) > 0.

(c) The mapping T is called nonexpansive if the inequality ‖T(x) − T(y)‖ ≤
‖x − y‖ holds for every x, y ∈ C.
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(d) The mapping T is said to be a weak contraction if the inequality
‖T(x)− T(y)‖ < ‖x − y‖ holds for every x, y ∈ C with x 6= y.

The following well known theorem was proved in 1967 by Sadovskii [18], it is a
generalization of Darbo’s fixed point theorem [11]. We refer to [4] where the reader
will find many applications of these theorems.

Theorem 2.1. Suppose that C is a closed convex bounded subset of a Banach space
X and T : C → C a continuous and condensing mapping for some regular measure
of noncompactness µ on X, then T has a fixed point.

Notice that Darbo’s theorem is a particular case of Theorem 2.1 since it only
works for k-set contractions. In [1, 2, 3] some generalizations of Darbo’s result are
obtained when the measure of noncompactness defined on X is under the conditions
of Definition 2.1 and it fulfills condition (6), that is, the measure does not satisfies
necessarily the maximum property. Nevertheless, the proof of Sadovskii’s result is
strongly based in the maximum property of the measure of noncompactness. One of
our goal in this paper will be to discuss about Sadovskii’s result when the measure
of noncompactness is under the conditions of Definition 2.1.

Concerning measures of weak noncompactness we will need the following con-
cept: a nonlinear operator J from a Banach space X into itself enjoys Property (A)
whenever:

(A)

{

If (xn)n∈N is a weakly convergent sequence in X, then

(Jxn)n∈N has a strongly convergent subsequence in X.

Remark 2.1. 1. Operators satisfying (A) are not necessarily weakly continuous
(see [5, Theorem 2.6]).

2. A map J satisfies (A) if and only if it maps relatively weakly compact sets into
relatively compact ones.

Now, we recall the following result established in [16] for the De Blasi measure
of weak noncompactness which remains valid for any abstract measure of weak
noncompactness (cf. Definition 2.1).

Theorem 2.2. Let X be a Banach space, K a nonempty closed convex subset of
X and T a continuous function from K into itself. If T satisfies (A) and T(K) is
relatively weakly compact, then there exists x ∈ K such that Tx = x.

3 Main results

3.1 Sadovskii’s fixed point theorem

Theorem 3.1. Let X be a Banach space and consider µ(·) a measure of noncompact-
ness on X . If M is a closed convex subset of X and T is a continuous µ-condensing
mapping from M into itself, then T has at least a fixed point whenever T(M) is
relatively weakly compact.
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Proof. If we define K := co(T(M)), clearly K is convex and T-invariant. Since
T(M) is relatively weakly compact, Krein- Smulian theorem ensures that it is also
a weakly compact subset of M.

Now, we consider the following family of subsets of K

F := {C ⊆ K : C is closed, convex and T − invariant},

F 6= ∅ since K ∈ F and since K is a weakly compact set, Zorn’s lemma guarantees
that there exists K0 ∈ F which is minimal with respect to the inclusion.
If we may show that K0 is compact, then Schauder’s fixed point theorem allows us
to achieve the result.
Suppose that K0 fails to be compact, in such case we have that µ(K0) > 0 and
according to our hypotheses the inequality µ(T(K0)) < µ(K0) should hold. Never-
theless, taking K1 = co(T(K0)) it is easy to see that K1 ∈ F and K1 ⊆ K0 (here
we again have to apply Krein- Smulian theorem). Now, the minimality of K0 yields
that K1 = K0. Finally, applying the properties of a measure of noncompactness, we
may conclude

µ(K0) = µ(K1) = µ(T(K0)) < µ(K0),

which is a contradiction.

Remark 3.1. If X is a reflexive Banach space, Theorem 3.1 allows us to recapture
Sadovskii’s theorem without using the maximum property with respect to the measure
of noncompactness. However, when X is nonreflexive, we only have the result if the
domain of the operator, in some sense, can be included in a weakly compact set.

If in the above theorem we consider the measure of noncompactness diam(·), then
we also obtain the uniqueness of the fixed point since in this particular case, the
condition diam(T(S)) <diamµ(S) for all S ⊂ K with diam(S) > 0 implies that T
is in fact a weak contraction (i.e., ‖Tx − Ty‖ < ‖x − y‖). It is interesting to notice
that the existence of fixed points for a weak contractive self-mapping defined on a
weakly compact convex subset of a Banach space is still an open question (see [19]).
In this sense, Theorem 3.1 solves the problem for those weak contractions which are
condensing with respect to the measure given by the diameter. Next example shows
that such condensing mappings are not necessarily contractions.

Example 3.1. Let (ℓ1, ‖ · ‖1) be the classical Banach space consisting of all real
sequences (xn) such that ∑

∞
n=1 |xn| < ∞ endowed with its usual norm ‖(xn)‖1 :=

∑
∞
n=1 |xn|. Let (en)n≥1 be the standard Schauder basis in ℓ1, so an element (xn) ∈ ℓ1

can be written as (xn) = ∑
∞
i=1 xiei.

Consider K := {(xi) ∈ B+
ℓ1

such that x1 = 1
2}, and let T : K → K be the mapping

defined by

T(
∞

∑
i=1

xiei) =
1

2
e1 + x2

2e2 +
1

2

∞

∑
i=3

xiei.

It is clear that T is a weak contraction which is not a contraction. Moreover, it
is not hard to show that T is condensing with respect to the diameter measure of
noncompactness.
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Theorem 3.1 along with the definition of measure of noncompactness given in
(2.2) provides the following result.

Corollary 3.1. Let (ℓ∞, ‖ · ‖∞) be the classical Banach space of all bounded
sequences and let K be a convex weakly compact subset of ℓ∞. If T : K → K is
a γ-condensing continuous mapping, then T has at least a fixed point in K

Notice that in the case of the above corollary, we cannot guarantee the uniqueness
of the fixed point. Nevertheless, since the set of fixed point of T (say Fix(T)) satisfies
that T(Fix(T)) = Fix(T), then γ(Fix(T)) = 0 that is, it is compact. Furthermore,
by definition of γ(·), we can conclude that given ε > 0 there exists n0 ∈ N such
that if (xn) and (yn) are two arbitrary fixed point of T, |xn − yn| < ε whenever
n ≥ n0. In particular, this fact implies that, if T has a fixed point x = (xn) such
that xn → x0 as n → ∞, then the same happens for every element of Fix(T).

Next example shows that, in general, γ-condensing mappings need not be weak
contractions.

Example 3.2. Let K be a weakly compact convex subset of ℓ∞ such that if
x = (x1, x2, · · · , xn, · · · ) ∈ K, then y = (x1, 1

2 x2, · · · , 1
2 xn, · · · ) ∈ K. If we de-

fine T : K → K by

T(x1, x2, · · · , xn, · · · ) = (x1,
1

2
x2, · · · ,

1

2
xn, · · · ),

T is a continuous mapping which is not a weak contraction. On the other hand, if
C is a subset of K, we have that diam((T(C))n) =

1
2diam(Cn) for any n ≥ 2, then

γ(T(C)) = 1
2 γ(C), which means that T is γ-condensing.

Proposition 3.1. Let X be a reflexive Banach space and let K be a closed and
convex element of B(X) and T : K → K a µ-condensing mapping, where µ(M) =
sup{‖x‖ : x ∈ M}. Then 0X is the unique fixed point of T.

Proof. Following the steps of the proof of Theorem 3.1, we obtain the existence of
a nonempty T-invariant closed convex subset K0 of K such that µ(K0) = 0, which
means that K0 = {0X} and therefore T(0X) = 0X.

Let us see that T does not have another fixed point. Indeed, if there exists 0X 6=
x0 ∈ K which is a fixed point of T, then {x0} = {Tx0}. Since µ({x0}) = ‖x0‖ > 0,
we obtain the following contradiction

µ({x0}) = µ({Tx0}) < µ({x0}).

Next example shows the existence of non continuous mappings satisfying the condi-
tions of the above proposition.
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Example 3.3. Consider (X, ‖ · ‖) a reflexive Banach space and let T : BX → BX

be the mapping defined by

T(x) =

{

1
2 x, if, ‖x‖ <

1
2

1
3 x, if, ‖x‖ ≥ 1

2

This mapping cannot be continuous on the set
{

x ∈ BX : ‖x‖ = 1
2

}

. Nevertheless,
it is easy to see that for every nonempty subset S 6= {0X} of BX, µ(T(S)) < µ(S).

Remark 3.2. As it was mentioned in the preliminaries section, recently Aghajain
et al. in [1, 2, 3] gave a number of results which generalize Darbo’s fixed point
theorem, it is not difficult to check that the conditions imposed on the mappings
in such theorems imply that they become condensing for some abstract measure of
noncompactness, hence in the framework of reflexive Banach spaces all these results
are consequence of Theorem 3.1. However, in the proof of Theorem 3.1, we do not
assume that the measure of noncompactness satisfies condition (6) which is the main
tool in the proofs of their results.

3.2 Nonreflexive Banach spaces

Let X be a nonreflexive Banach space and let µ(·) be a measure of non compactness
on X. Theorem 3.1 says that, if K is a convex subset of W(X) and T : K → K
is µ-condensing, then T has a fixed point. This fact is one of the reason to study
conditions as in [1, 2, 3] on the mapping supposing that X is a nonreflexive Banach
space. Another reason is that, in nonreflexive Banach spaces, the concept of measure
of weak noncompactness takes sense if we wish to obtain Darbo’s fixed point type
results without assuming the weak-sequentially continuity of the mapping.

Throughout this section X will denote a nonreflexive Banach space while µ(·) will
denote an arbitrary measure of (weak) noncompactness on X satisfying condition
(6).

Let F be the family of all functions φ : R
+ → R satisfying

(F1) φ is strictly increasing, i.e., for all x, y ∈ R
+ such that x < y, we have

φ(x) < φ(y);

(F2) for each sequence (αn)n∈N of positive numbers, lim
n→∞

αn = 0 if and only if

lim
n→∞

φ(αn) = −∞;

(F3) φ is continuous in (0,+∞).

Theorem 3.2. Let K be a closed convex element of B(X). Let µ be a measure
of noncompactness satisfying condition (6) and let T : K → K be a continuous
mapping. If there exist τ > 0, φ : R

+ → R satisfying condition (F2) such that, for
every M ⊂ K
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µ(T(M)) > 0 =⇒ τ + φ(µ(T(M))) ≤ φ(µ(M)), (3.1)

then T has at least a fixed point.

Proof. Let K0 = K and define the sequence (Kn)n∈N by Kn+1 = co(T(Kn)),
n = 0, 1, · · · . Note that T(K0) = T(K) ⊂ K = K0, K1 = co(T(K0)) ⊂ K = K0, and
by induction we get

K0 ⊃ K1 ⊃ K2 ⊃ · · · .

If there exists N ∈ N such that µ(T(KN)) = 0, then KN+1 is relatively compact.
Since T(KN+1) ⊂ co(T(KN+1)) = KN+2 ⊂ KN+1, applying Schauder’s Theorem
we infer that T has a fixed point. Assume now that, for all n ≥ 0, µ(T(Kn)) > 0.
Using (3.1), we get

φ(µ(Kn+1)) = φ(µ(co(T(Kn)))) = φ(µ(T(Kn))) ≤ φ(µ(Kn))− τ. (3.2)

Following an inductive argument, from (3.2) we have

φ(µ(Kn+1)) ≤ φ(µ(K0))− (n + 1)τ. (3.3)

Therefore
lim

n→∞
φ(µ(Kn+1)) = −∞.

Since φ satisfies condition (F2), it is clear that

lim
n→∞

µ(Kn+1) = 0.

Finally, since the sequence (Kn)n∈N is decreasing and µ fulfills property (6), we

have that K∞ =
∞
⋂

n=0

Kn is a nonempty closed convex T-invariant subset of K and

µ(K∞) = 0, i.e. K∞ is compact. Now applying Schauder’s theorem to the operator
T : K∞ −→ K∞ gives the desired result.

Corollary 3.2. Let K be a closed convex element of B(X). Let µ be a measure
of noncompactness satisfying condition (6) and T : K → K a continuous k-set
contraction mapping with respect to µ, then T has at least a fixed point.

Proof. Theorem 3.2 yields the desired result whenever we consider φ(t) = ln(t) and
τ = − ln(k).

Proposition 3.2. Let K be a closed convex element of B(X) and T : K → K a
mapping. If there exist τ > 0, φ : R

+ → R satisfying condition (F2) and for all
M ⊂ K with diam(T(M)) > 0 we have

τ + φ(diam(T(M))) ≤ φ(diam(M)), (3.4)

then T has a unique fixed point.
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Proof. It is well known that diam(·) is a measure of noncompactness in the sense
of Definition 2.1 and satisfying property (6). Hence, the proof of Theorem 3.2
guarantees the existence of a T-invariant nonempty closed convex subset K∞ with
diam(K∞) = 0, which means that K∞ is a singleton and therefore T has a fixed
point.

Let us see the uniqueness. Indeed, in order to get a contradiction we may suppose
that there exist two different fixed points x0, x1 ∈ K, then we may define the set
M := {x0, x1}. In this case diam(M) = diam(T(M)) = ‖x0 − x1‖ > 0. This yields
a contradiction because

τ + φ(diam(T(M)) ≤ φ(diam(M)).

Recently, H. Piri and P. Kumam, [17] introduced the concept of the F-contraction
as follows.

Definition 3.1. Let (X, d) be a metric space. A mapping T : X → X is said to be
F-contraction if there exist τ > 0 and φ ∈ F such that, for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + φ(d(Tx, Ty)) ≤ φ(d(x, y)).

Regarding the existence and uniqueness of the fixed point, Proposition 3.2 allows
us to recapture [17, Theorem 2.1] in the framework of the bounded closed convex
subsets of a Banach space.

Corollary 3.3. [17] Let (X, ‖ · ‖) be a Banach space and let K be a closed convex
element of B(X). Let T : K → K. Suppose φ ∈ F and there exists τ > 0 such that,
for all x, y ∈ K,

‖Tx − Ty‖ > 0 ⇒ τ + φ(‖Tx − Ty‖) ≤ φ(‖x − y‖).

Then T has a unique fixed point x∗ ∈ K.

Proof. First, it is clear that T : K → K is a weak contraction (i.e., ‖Tx − Ty‖ <

‖x − y‖). So, it is continuous.
Second, since φ is strictly increasing and continuous, we easily see that φ(diam(K)) =
sup{φ(‖x − y‖) : x, y ∈ K}.
Third, if diam(T(K)) > 0, then there exist x, y ∈ K such that ‖Tx − Ty‖ > 0 and
then, we know that

τ + φ(‖Tx − Ty‖) ≤ φ(‖x − y‖).
This implies that

τ + φ(diam(T(K))) ≤ φ(diam(K)).

Finally, in order to obtain the result, we only have to apply the above proposition.
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Corollary 3.4. Let (X, ‖ · ‖) be a Banach space and let K be a closed convex element
of B(X). Let T, G : K → X be two mappings satisfying the following conditions.

(a) (T + G)(K) ⊆ K,

(b) T is an F-contraction,

(c) G is a continuous and compact operator.

Then J := T + G : K → K has a fixed point x∗ ∈ K.

Proof. Let α : B(X) → [0, ∞) be the Kuratowski measure of noncompactness.
Assume that C is a subset of K with 0 < α(C). By the definition of Kuratowski
measure of noncompactness, for each n ∈ N, there exist S1, · · · Sm(n) bounded sub-

sets such that C ⊆ ∪m(n)
i=1 Si and diam(Si) ≤ α(C) + 1

n . Suppose that α(T(C)) > 0.

Since T(C) ⊆ ∪m(n)
i=1 T(Si), there exists i0 ∈ {1, 2, · · · , m(n)} such that α(T(C)) ≤

diam(T(Si0)). Since T is an F contraction, there exist τ > 0 and φ ∈ F such that,
for all x, y ∈ X,

‖Tx − Ty‖ > 0 ⇒ τ + φ(‖Tx − Ty‖) ≤ φ(‖x − y‖).

Thus, arguing as in the proof of the above corollary, we infer that

φ(α(T(C))) ≤ φ(diam(T(Si0))) ≤ φ(diam(Si0))− τ ≤ φ(α(C) +
1

n
)− τ.

Now, taking limits as n → ∞, the continuity of φ yields

τ + φ(α(T(C))) ≤ φ(α(C)).

By using the properties of α(·) and having in mind that G is a compact operator,
we obtain

τ + φ(α(J(C)) ≤ τ + φ(α(T(C) + G(C)))
≤ τ + φ(α(T(C)) + α(G(C)))
= τ + φ(α(T(C)))
≤ φ(α(C)).

Finally, the use of Theorem 3.2 achieves the proof.

We also have the following result for a measure of weak noncompactness.

Theorem 3.3. Let K be a closed convex element of B(X). Let µ(·) be a measure
of weak noncompactness satisfying condition (6) and let T : K → K be a continuous
mapping with property (A). If there exist τ > 0, φ : R

+ → R satisfying condition
(F2) such that, for every M ⊂ K

µ(T(M)) > 0 =⇒ τ + φ(µ(T(M))) ≤ φ(µ(M)), (3.5)

then T has at least a fixed point.
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Proof. Working as in the proof of Theorem 3.2 we may obtain K∞ a weakly compact
convex T-invariant subset. Thus, the conclusion follows from Theorem 2.2.

We close this section by the following remark.

Remark 3.3. Let X be a nonreflexive Banach space and let µ(·) be a measure
of weak noncompactness on X satisfying condition (6). Let K be a closed convex
element of B(X) and let T be a a continuous mapping with property (A).

1. If T fulfills either condition (2.1) or (2.2) in [2], then T has at least a fixed
point.

2. If T fulfills condition (2.1) in [1], then T has at least a fixed point.

In order to show the above items we follow the same strategy as in the original
proofs replacing Schauder’s fixed point theorem by Theorem 2.2.

4 An integral equation

Let (X, ‖ · ‖) be a Banach space. In this section we will discuss the existence of a
solution u ∈ C(0, T; X) to the following integral equation

u(t) = f (t, u(t)) +
∫ t

0
g(s, u(s))ds (4.1)

where

(a) f : [0, T] × X → X is a continuous mapping such that there exist a φ :
(0, ∞) → (−∞, 0) bijective, strictly increasing and τ > 0 satisfying:

‖ f (t, x)− f (t, y)‖ > 0 =⇒ τ + φ(‖ f (t, x) − f (t, y)‖) ≤ φ(‖x − y‖) (4.2)

for every t ∈ [0, T],

(b) g : [0, T] × X → X is a continuous mapping such that there exist m, k ∈
L1(0, T, R

+) and an increasing continuous function Ω : R
+ → R

+ such that

‖g(t, x)‖ ≤ m(s)Ω(‖x‖) + k(t),

for any x ∈ X and a.e. t ∈ [0, T]. Moreover, g(., x) is measurable for x ∈ X,
g(t, .) is continuous for a.e. t ∈ [0, T],

(c) lim inf
r→∞

‖m‖1Ω(r)

r
< 1.

Theorem 4.1. If (a), (b), (c) hold, then there exists at least one solution of Problem
(4.1).
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Proof. It is clear that we will obtain the result if we show that the mapping
J : C(0, T; X) → C(0, T; X) defined by

Ju(t) = f (t, u(t)) +
∫ t

0
g(s, u(s))ds

has a fixed point. Now, we can introduce the following two mappings:

G : C(0, T; X) → C(0, T; X) by G(u)(t) =
∫ t

0
g(s, u(s))ds and

T : C(0, T; X) → C(0, T; X) by T(u)(t) = f (t, u(t)).

This allows us to write J = T + G.
By using the Ascoli’s theorem, it is not difficult to see that G is a compact and
continuous mapping. On the other hand, since f (·, ·) is a continuous mapping, then
T is also a continuous operator.

Now, we are going to show that T is an F-contraction. Indeed, consider u, v ∈
C(0, T; X) with ‖Tu − Tv‖∞ > 0, this means that there exists t ∈ [0, T] such that
0 < ‖Tu − Tv‖∞ = ‖ f (t, u(t)) − f (t, v(t))‖, in this case, by (a) we have

τ + φ(‖Tu − Tv‖∞) = τ + φ(‖ f (t, u(t)) − f (t, v(t))‖)
≤ φ(‖u(t) − v(t)‖) ≤ φ(‖u − v‖∞),

which means that T is an F-contraction. Moreover, since φ : (0, ∞) → (−∞, 0) is
bijective and strictly increasing, it is clear that

‖Tu − Tv‖∞ ≤ φ−1(φ(‖u − v‖∞)− τ). (4.3)

Let us show that there exists M > 0 such that ‖Tu‖∞ ≤ M for every u ∈ C(0, T; X).

If ‖Tu‖∞ 6= 0, bearing in mind that φ(‖u‖∞) < 0, inequality (4.3) yields

‖Tu‖∞ ≤ ‖Tu − T0‖∞ + ‖T0‖∞

≤ φ−1(φ(‖u‖∞)− τ) + ‖T0‖∞

≤ φ−1(−τ) + ‖T0‖∞.

Hence, putting M := φ−1(−τ) + ‖T(0)‖∞, we may conclude that

‖Tu‖∞ ≤ M.

Finally, given r > 0, consider Br(0) = {u ∈ C(0, T; X) : ‖u‖∞ ≤ r}. We will
show that there exists r0 > 0 such that J(Br0(0)) ⊆ Br0(0) . Otherwise, for every

r > 0, we can find ur ∈ Br(0) with ‖J(ur)‖∞ > r. This means that 1
r ‖J(ur)‖∞ > 1.

Therefore we can assume that lim inf
r→∞

1

r
‖J(ur)‖∞ ≥ 1. Nevertheless,

‖J(ur)(t)‖ ≤ ‖ f (t, ur(t))‖ +
∫ t

0 ‖g(s, ur(s))‖ds

≤ M +
∫ t

0 ‖g(s, ur(s))‖ds

≤ M +
∫ T

0 m(s)Ω(‖ur(s)‖)ds + ‖k‖1

≤ M + Ω(r)‖m‖1 + ‖k‖1.
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Consequently,

lim inf
r→∞

1

r
‖J(ur)‖∞ ≤ lim inf

r→∞

‖m‖1Ω(r)

r
< 1.

Thus, by Corollary 3.4 we obtain the result.

Example 4.1. Consider the nonlinear integral equation

u(t) = cos(et) +
|u(t)|

(1 + τ
√

|u(t)|)2
+

∫ t

0
(s + sin(s)

√

|u(s)|)ds. (4.4)

In order to show that (4.4) admits a solution in C(0, T; R), we are going to check
that the conditions of Theorem 4.1 are satisfied. In this case, put X := R and define
the function f : [0, T]× R → R by

f (t, x) = cos(et) +
|x|

(1 + τ
√

|x|)2
.

This function is continuous. Moreover,

| f (t, x)− f (t, y)| ≤ | |x|
(1 + τ

√

|x|)2
− |y|

(1 + τ
√

|y|)2
|.

Notice the following elemental facts:

• The function ϕ : [0, ∞) → [0, ∞), ϕ(t) = t
(1+τ

√
t)2 , is strictly increasing since

ϕ′(t) = 1
(1+τ

√
t)3 > 0,

• ϕ is concave since ϕ′′(t) = −3τ
2
√

t(1+τ
√

t)4 < 0,

• since ϕ(0) = 0 and ϕ is concave, then ϕ(t + s) ≤ ϕ(t) + ϕ(s).

Without loss of generality we can suppose that |x| ≥ |y|. Consequently,

| f (t, x)− f (t, y)| ≤ ϕ(|x|)− ϕ(|y|)
≤ ϕ(|x| − |y|) ≤ ϕ(|x − y|)
=

|x−y|
(1+τ

√
|x−y|2

.
(4.5)

Take the function φ : (0, ∞) → (−∞, 0) given by φ(t) = − 1√
t
. Expression (4.5)

says that inequality (4.2) holds. Hence, f (·, ·) satisfies condition (a) of Theorem
4.1.

The function g : [0, T]× R → R defined by g(t, x) = t + sin(t)
√

|x| is continuous.
Taking m(t) = t and Ω(r) = 1 +

√
r we infer that |g(t, x)| ≤ m(t)Ω(|x|). This

implies that g(·, ·) fulfills condition (b) of Theorem 4.1.

Condition (c) of Theorem 4.1 holds since,

lim
r→∞

‖m‖1Ω(r)

r
= lim

r→∞

T2(1 +
√

r)

2r
= 0.
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