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Abstract

First it is shown that the Nörlund matrix associated with the sequence of
positive integers is a coposinormal operator on ℓ2. This fact then turns out
to be useful for showing that this operator is also posinormal and hyponor-
mal. In contrast with the analogous weighted mean matrix result [6], the
proof of hyponormality is accomplished without resorting to determinants
or Sylvester’s criterion.

1 Introduction

Lat a :≡ {an} denote a sequence of nonnegative numbers with a0 > 0, and take
An :≡ ∑

n
j=0 aj > 0. The Norlund matrix Ma :≡ [mij]i,j≥0 is defined by

mij =

{

ai−j/Ai f or 0 ≤ j ≤ i
0 f or j > i.

Over the last few decades, these operators, acting on various Banach spaces, have
been studied by various authors in a number of papers, including [1], [2], [3], [7],
and [8].

If B(H) denotes the set of all bounded linear operators on a Hilbert space H,
then the operator A ∈ B(H) is hyponormal if

< (A∗A − AA∗) f , f > ≥ 0
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for all f ∈ H. The aim of this note is to show that the Nörlund matrix associ-
ated with the sequence of positive integers is a hyponormal operator on ℓ2. This
example is not easily seen to be hyponormal directly from the definition, but, for-
tunately, posinormality turns out to be a useful tool for achieving our goal. The
operator A ∈ B(H) is said to be posinormal (see [5]) if

AA∗ = A∗PA

for some positive operator P ∈ B(H), called the interrupter, and A is coposinormal
if A∗ is posinormal. The following proposition (see [4]) contains some key facts
about posinormal operators.

Proposition 1.1. If A ∈ B(H), then the following are equivalent.

(a) There exists a nonnegative P ∈ B(H) such that AA∗ = A∗PA (i.e., A is posinor-
mal).

(b) There exists a nonnegative P ∈ B(H) such that AA∗ ≤ A∗PA.

(c) There exists a nonnegative α ∈ R such that AA∗ ≤ α
2A∗A.

(d) Ran(A) ⊆ Ran(A∗), where Ran(A) = {g ∈ H : g = A f for some f ∈ H}.

(e) There exists a B ∈ B(H) such that A = A∗B.

Moreover, each of the above assertions implies the following one.

(f) Ker(A) ⊆ Ker(A∗), where Ker(A) = { f ∈ H : A f = 0}.

Furthermore, if Ran(A) is closed, then these six assertions are all
equivalent.

Proof. See [4].

Note that A is hyponormal if part (c) of the proposition is satisfied for
α = 1, so hyponormal operators are necessarily posinormal, although they need
not be coposinormal – e.g., the unilateral shift U ∈ B(ℓ2) is hyponormal but not
coposinormal. However, for the Nörlund operator Ma on ℓ2 determined by the
sequence of positive integers, coposinormality can be demonstrated more readily
than posinormality can, and that demonstration will become our first step toward
the goal of proving hyponormality for this operator.

2 Main Result

Under consideration here will be the Nörlund matrix M :≡ Ma associated with
the sequence a :≡ {an} given by

an = n + 1

for all n, so the entries mij of M are given by

mij =

{

2(i+1−j)
(i+1)(i+2)

f or 0 ≤ j ≤ i

0 f or j > i.
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An alternative equivalent formulation of part (e) of Proposition 1.1 provides the
starting place for our computations.

(e′) There exists a B ∈ B(H) such that BA = A∗.

For the operator M currently under consideration, it is a more straightforward
computation initially to produce a candidate for an operator B such that
BM∗ = M, which gives coposinormality, rather than trying to immediately pro-
duce a candidate satisfying BM = M∗, as required for posinormality. An addi-
tional benefit of this approach – determining coposinormality – will come in the
form of a corollary presented at the end of this section.

Lemma 2.1. If M is the Nörlund matrix determined by the sequence of positive integers
and B :≡ [bij]i,j≥0 is the matrix defined by

bij =











2(i+1−3j)
(i+1)(i+2)

i f j ≤ i + 1

1 i f j = i + 2
0 i f j > i + 2

,

then

(a) B is a bounded linear operator on ℓ2,

(b) BM∗ = M,

(c) BB∗ = diag{ (n+3)(n+4)
(n+1)(n+2)

: n ≥ 0},

(d) B is injective, and

(e) B is invertible.

Proof.

(a) First note that for j ≤ i, bij ∈ [−4/(i + 2), 2/(i + 2)] for all i, so the lower

triangular part T of matrix B is a bounded operator on ℓ2. If U denotes the
unilateral shift and W is the weighted shift with weight sequence
{4/(n + 2) : n ≥ 0}, then

B = T − W∗ + (U2)∗,

so B ∈ B(ℓ2).

(b) For j ≤ i + 1, the (i,j)-entry in the product matrix BM∗ is given by

j

∑
k=0

2(i + 1 − 3k)

(i + 1)(i + 2)
·

2(j + 1 − k)

(j + 1)(j + 2)
=

2(i + 1 − j)

(i + 1)(i + 2)
.

For j ≥ i + 2, the (i,j)-entry of BM∗ is given by

i+1

∑
k=0

2(i + 1 − 3k)

(i + 1)(i + 2)
·

2(j + 1 − k)

(j + 1)(j + 2)
+ 1 ·

2[j + 1 − (i + 2)]

(j + 1)(j + 2)
= 0.
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(c) For i = j, the (i,j)-entry in the product matrix BB∗ is given by

i+1

∑
k=0

{ 2(i + 1 − 3k)

(i + 1)(i + 2)

}2
+ 1 =

(i + 3)(i + 4)

(i + 1)(i + 2)
.

For j ≥ i + 1, the (i,j)-entry of BB∗ is given by

i+1

∑
k=0

2(i + 1 − 3k)

(i + 1)(i + 2)
·

2(j + 1 − 3k)

(j + 1)(j + 2)
+ 1 ·

2[j + 1 − 3(i + 2)]

(j + 1)(j + 2)
= 0.

For i ≥ j + 1, the computation is similar to the one immediately above, so it
is left to the reader.

(d) Suppose x :≡< x0, x1, x2, x3, ..., xn, .... >T∈ Ker(B). An induction argument
shows that

xn+2 = (n + 2)x1 − (n + 1)x0

for all n ≥ 0. Therefore, Ker(B) consists of linear combinations of the form

x0 < 1, 0,−1,−2,−3,−4, ... ,−(n + 1), .... >T

+ x1 < 0, 1, 2, 3, 4, 5, ... , n + 2, .... >T,

which can belong to ℓ2 only when x0 = x1 = 0. Therefore Ker(B) = {0}, so
B is injective.

(e) Using part (c), we find that

B(B∗diag{(n + 1)(n + 2)/(n + 3)(n + 4) : n ≥ 0}) = I,

so B is right-invertible. From part (d), we know that B is also left-invertible.
Therefore B is invertible, and

B−1 = B∗diag{(n + 1)(n + 2)/(n + 3)(n + 4) : n ≥ 0}.

Before continuing on, we note that the range of M contains all the en’s from
the standard orthonormal basis for ℓ2 since

M[((n + 1)(n + 2)/2)(en − 2en+1 + en+2)] = en.

Theorem 2.2. The Nörlund matrix M associated with the sequence an = n + 1 is a
coposinormal, posinormal, and hyponormal operator on ℓ2.

Proof. By Lemma 2.1 (b), M is coposinormal. It then follows from part (e) of the
lemma that M is also posinormal and

M∗ = B−1M = B∗DM

where D :≡ diag{(n + 1)(n + 2)/(n + 3)(n + 4) : n ≥ 0}. Therefore,

MM∗ = (M∗DB)(B∗DM) = M∗DM.

Consequently,

〈(M∗M − MM∗) f , f 〉 = 〈(M∗M − M∗DM) f , f 〉 = 〈(I − D)M f , M f 〉 ≥ 0

for all f ∈ ℓ2, which means that M is hyponormal.
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Corollary 2.3. If M is the Nörlund operator on ℓ2 determined by the sequence
an = n + 1, then both M and M∗ are injective and have dense range with

Ran(M) = Ran(M∗).

Proof. Since M is both posinormal and coposinormal, it follows from Proposi-
tion 1.1 that Ker(M) = Ker(M∗) and Ran(M) = Ran(M∗). It is easy to see that
Ker(M) = {0}. Consequently, both M and M∗ are one-to-one, and both have
dense range.

3 Concluding remarks

Will the procedure above be successful with other operators? In trying to apply
Proposition 1.1 (e′) to the adjoint of the Nörlund operator Modd ∈ B(ℓ2) associ-
ated with the sequence of odd positive integers

an = 2n + 1,

one finds that the first row of the matrix B is required to be

< 1,−3, 4,−4, 4,−4, 4,−4, 4...,−4, 4, .... >,

so B /∈ B(ℓ2), which means that Modd cannot be coposinormal. Similarly, if the
same procedure is applied to the adjoint of the Nörlund operator Msquares ∈ B(ℓ2)
associated with the sequence of squares of the positive integers

an = (n + 1)2,

the first row of B is then required to be

< 1,−4, 7,−8, 8,−8, 8,−8, 8, ...,−8, 8, .... >,

so once again B /∈ B(ℓ2), meaning that Msquares cannot be coposinormal either. Of
course, this does not settle the question of hyponormality for these two operators,
but it does make it clear that a different approach would be needed.
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