
On the geometry of complete submanifolds

immersed in the hyperbolic space

Henrique F. de Lima∗ Fábio R. dos Santos
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Abstract

We deal with n-dimensional complete submanifolds immersed with par-
allel nonzero mean curvature vector H in the hyperbolic space H

n+p. In
this setting, we establish sufficient conditions to guarantee that such a sub-
manifold Mn must be pseudo-umbilical, which means that H is an umbilical
direction. In particular, we conclude that Mn is a minimal submanifold of a
small hypersphere of H

n+p.

1 Introduction and statement of the main result

The study of Bernstein-type properties concerning complete hypersurfaces of the
hyperbolic space H

n+1 constitutes a classical and interesting theme into the scope
of the isometric immersions. In this branch, do Carmo and Lawson [7] used the
well known Alexandrov’s reflexion method to show that a complete hypersur-
face properly embedded with constant mean curvature in H

n+1 with a single
point at the asymptotic boundary must be a horosphere. They also observed that
the statement is no longer true if we replace embedded by immersed. Later on,
Alı́as and Dajczer [1] proved that the horospheres are the only surfaces properly
immersed in H

3 with constant mean curvature −1 ≤ H ≤ 1 and which are con-
tained in a slab (that is, the region between two horospheres that share the same
point in the asymptotic boundary).
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More recently, the first author jointly with Aquino [3] used some generalized
maximum principles in order to obtain another characterization result for the
horospheres of H

n+1. Meanwhile, these same authors jointly Barros showed that
the only complete constant mean curvature hypersurfaces immersed in H

n+1

with scalar curvature bounded from below and whose angle function with re-
spect to some fixed vector a does not change sign, and with a⊤ having Lebesgue
integrable norm along them, are the totally umbilical ones (see Theorem 1.2 of [4]).

Our purpose in this paper is to study the geometry of n-dimensional complete
submanifolds immersed with parallel nonzero mean curvature vector (that is,
the mean curvature vector field is parallel as a section of the normal bundle) in
the (n + p)-dimensional hyperbolic space H

n+p, which we are considering as

being a quadric of the (n+ p+ 1)-dimensional Lorentz-Minkowski space R
n+p+1
1

(for more details, see Section 2). In this setting, we use a technique developed
by Alı́as and Romero [2] jointly with the application of a suitable extension of a
generalized maximum principle of Yau [11] due to Caminha in [5] (cf. Lemma 1)
to prove the following result

Theorem 1. Let Mn be a complete submanifold immersed in H
n+p ⊂ R

n+p+1
1 with

nonzero parallel mean curvature vector H and normalized scalar curvature bounded from

below. Suppose that there exists a fixed vector a ∈ R
n+p+1
1 such that |a⊤| ∈ L1(M), aN

does not vanish on Mn and aN is collinear to H. Then, Mn is pseudo-umbilical and, in
particular, Mn is a minimal submanifold of a small hypersphere of H

n+p.

Here, a⊤ and aN denote, respectively, the tangential and normal components

of the vector a with respect to the immersion Mn →֒ H
n+p ⊂ R

n+p+1
1 , and L1(M)

stands for the space of Lebesgue integrable functions on the submanifold Mn.
Moreover, we recall that a submanifold Mn of H

n+p is called pseudo-umbilical
when its mean curvature vector is an umbilical direction.

We note that, when p = 1, the notion of pseudo-umbilical coincides with that
of totally umbilical. Moreover, we also observe that the hypothesis that aN does
not vanish on Mn amounts to the angle function fa = 〈a, ν〉 having strict sign
on it, where ν stands for the Gauss mapping of Mn →֒ H

n+1. Consequently,
Theorem 1 can be regarded as an extension of Theorem 1.2 of [4]. Section 3 is
devoted to present the proof of Theorem 1.

2 Preliminaries

Let R
n+p+1
1 be the (n + p + 1)-dimensional Lorentz-Minkowski space endowed

with metric tensor 〈, 〉 of index 1, given by

〈v, w〉 =
n+p

∑
i=1

viwi − vn+p+1wn+p+1,

and let H
n+p be the (n + p)-dimensional unitary hyperbolic space, that is,

H
n+p = {x ∈ R

n+p+1
1 ; 〈x, x〉 = −1},
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which has constant sectional curvature equal to −1.

Along this work, we will consider x : Mn → H
n+p ⊂ R

n+p+1
1 a submanifold

isometrically immersed in H
n+p. In this setting, we will denote by ∇◦, ∇ and ∇

the Levi-Civita connections of R
n+p+1
1 , H

n+p and Mn, respectively, and ∇⊥ will
stand for the normal connection of Mn in H

n+p.
We will denote by α the second fundamental form of Mn in H

n+p and by Aξ

the shape operator associated to a fixed vector field ξ normal to Mn in H
n+p. We

note that, for each ξ ∈ X
⊥(M), Aξ is a symmetric endomorphism of the tangent

space TxM at x ∈ Mn. Moreover, Aξ and α are related by

〈Aξ X, Y〉 = 〈α(X, Y), ξ〉, (2.1)

for all tangent vector fields X, Y ∈ X(M).
We also recall that the Gauss and Weingarten formulas of Mn in H

n+p are
given by

∇◦
XY = ∇XY + 〈X, Y〉x = ∇XY + α(X, Y) + 〈X, Y〉x, (2.2)

and
∇◦

Xξ = ∇Xξ = −AξX +∇⊥
X ξ,

for all tangent vector fields X, Y ∈ X(M) and normal vector field ξ ∈ X
⊥(M).

As in [10], the curvature tensor R of the submanifold Mn is given by

R(X, Y)Z = ∇[X,Y]Z − [∇X,∇Y]Z,

where [, ] denotes the Lie bracket and X, Y, Z ∈ X(M).
A well known fact is that the curvature tensor R of Mn can be described in

terms of its second fundamental form α and the curvature tensor R of the ambient
spacetime H

n+p by the so-called Gauss equation, which is given by

〈R(X, Y)Z, W〉 = 〈Y, Z〉〈X, W〉 − 〈X, Z〉〈Y, W〉 (2.3)

+ 〈α(X, Z), α(Y, W)〉 − 〈α(X, W), α(Y, Z)〉,

for all tangent vector fields X, Y, Z, W ∈ X(M). Moreover, Codazzi equation
asserts that

(∇X Aξ)Y = (∇Y Aξ)X, (2.4)

for all X, Y ∈ X(M) and ξ ∈ X
⊥(M).

The mean curvature vector H of Mn →֒ H
n+p is defined by

H =
1

n
tr(α).

We recall that Mn has parallel mean curvature vector when ∇⊥
X H ≡ 0, for every

X ∈ X(M). Furthermore, according to [6], a submanifold Mn of H
n+p with H 6= 0

is called pseudo-umbilical when there exists a nonzero constant λ such that

〈α(X, Y), H〉 = λ〈X, Y〉,

for all tangent vector fields X, Y ∈ X(M).
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At this point, we will describe the main analytical tool which is used along the
proofs of our results in the next section. In [11] Yau, generalizing a previous result
due to Gaffney [8], established the following version of Stokes’ Theorem on an
n-dimensional, complete noncompact Riemannian manifold Mn: if ω ∈ Ωn−1(M)
is an integrable (n − 1)-differential form on Mn, then there exists a sequence Bi of
domains on Mn such that Bi ⊂ Bi+1, Mn =

⋃

i≥1 Bi and

lim
i→+∞

∫

Bi

dω = 0.

Suppose that Mn is oriented by the volume element dM. If ω = ιXdM is the
contraction of dM in the direction of a smooth vector field X on Mn, then Cam-
inha obtained a suitable consequence of Yau’s result, which can be regarded as
an extension of Hopf’s maximum principle for complete Riemannian manifolds
(cf. Proposition 2.1 of [5]). In what follows, L1(M) and div denote the space of
Lebesgue integrable functions and the divergence on Mn, respectively.

Lemma 1. Let X be a smooth vector field on the n-dimensional complete noncompact
oriented Riemannian manifold Mn, such that divX does not change sign on Mn. If
|X| ∈ L1(M), then divX = 0.

Remark 1. Lemma 1 can also be seen as a consequence of the version of Stokes’ Theorem
given by Karp in [9]. In fact, using Theorem in [9], condition |X| ∈ L1(M) can be
weakened to the following technical condition:

lim inf
r→+∞

1

r

∫

B(2r)\B(r)
|X|dM = 0,

where B(r) denotes the geodesic ball of radius r center at some fixed origin o ∈ Mn. See
also Corollary 1 and Remark in [9] for some another geometric conditions guaranteeing
this fact.

3 Proof of Theorem 1

Initially, taking a local orthonormal frame {e1, . . . , en} on Mn, from (2.3) we get
that the squared norm of second form fundamental α of Mn satisfies

|α|2 = ∑
i,j

|α(ei, ej)|
2 = n2〈H, H〉 − n(n − 1)(R + 1), (3.1)

where R stands for the normalized scalar curvature of Mn.
On the other hand, since we are supposing that Mn has nonzero parallel mean

curvature vector H, a simple computation allows us to verify that 〈H, H〉 is a
nonzero constant. Consequently, since we are also assuming that Mn has nor-
malized scalar curvature R bounded from below, from (3.1) we conclude that α is
bounded on Mn.

Let a ∈ R
n+p+1
1 be a fixed nonzero vector and put

a = a⊤ + aN − 〈a, x〉x, (3.2)
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where a⊤ ∈ X(M) and aN ∈ X
⊥(M) denote, respectively, the tangential and nor-

mal components of a with respect to Mn →֒ H
n+p. By taking covariant derivative

in (3.2) and using (2.2), we get for all tangent vector field X ∈ X(M) that

∇Xa⊤ = AaN X + 〈a, x〉X. (3.3)

Hence, from (2.1) and (3.3) we obtain

div(a⊤) = tr(AaN ) + n〈a, x〉 = n〈a, H〉 + n〈a, x〉. (3.4)

Moreover, we also have that

tr(∇a⊤ Aξ) = ∑
i

〈∇a⊤ Aξei, ei〉 − ∑
i

〈∇a⊤ei, Aξei〉

+ n〈∇⊥
a⊤

H, ξ〉 − ∑
i

a⊤〈Aξei, ei〉.

So, considering a local orthonormal frame {e1, . . . , en} on Mn such that Aξei =

λ
ξ
i ei, with a straightforward computation we can verify that

tr(∇a⊤ Aξ) = n〈∇⊥
a⊤

H, ξ〉. (3.5)

From Codazzi equation (2.4) jointly with the equations (3.3) and (3.5) we ob-
tain, for all ξ ∈ X

⊥(M),

div(Aξ a⊤) = n〈∇⊥
a⊤

H, ξ〉+ tr(AaN ◦ Aξ) + 〈a, x〉tr(Aξ)

+∑
i

〈α(a⊤ , ei),∇
⊥
ei

ξ〉. (3.6)

Now, let us suppose that aN is collinear to H. Taking ξ = H in (3.6), we get

div(AHa⊤) = tr(AaN ◦ AH) + 〈a, x〉tr(AH). (3.7)

On the other hand, from (3.4) we have

〈a, x〉 =
1

n
div(a⊤)− 〈a, H〉. (3.8)

Consequently, from (3.7) and (3.8) we obtain

div(AHa⊤) = tr(AaN ◦ AH) + tr(AH)
1

n
div(a⊤)−

1

n
tr(AaN )tr(AH). (3.9)

Moreover, taking into account once more that H is parallel, we also have

div
(

tr(AH)a⊤
)

= tr(AH)div(a⊤). (3.10)

Hence, from (3.9) and (3.10) we get

divX = tr(AaN ◦ AH)−
1

n
tr(AaN )tr(AH), (3.11)
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where X is a tangent vector field on Mn given by

X =

(

AH −
1

n
tr(AH)I

)

a⊤.

Since aN does not vanish on Mn, there exists a smooth function λ having strict
sign on Mn such that aN = λH. So, from (3.11) we get

divX = λ

(

tr(A2
H)−

1

n
tr(AH)2

)

. (3.12)

But, we observe that the function u = tr(A2
H
)−

1

n
tr(AH)2 is always nonnegative

with u = 0 if, and only if, H is a umbilical direction. Consequently, from (3.12)
we conclude that divX does not change sign on Mn.

Furthermore, since |a⊤| ∈ L1(M), we also have that

|X| ≤ (|AH|+ |〈H, H〉|) |a⊤| ∈ L1(M).

Hence, we can apply Lemma 1 to conclude that divX = 0 on Mn.
Therefore, returning to (3.12) we obtain that

λ

(

tr(A2
H)−

1

n
tr(AH)

2

)

= 0,

which implies that H is an umbilical direction. Finally, from Proposition 4.2 of [6]
we conclude that Mn must also be a minimal submanifold of a small hypersphere
of H

n+p.
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