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Abstract

A space X is star-K-Menger if for each sequence (Un : n ∈ N) of open
covers of X there exists a sequence (Kn : n ∈ N) of compact subsets of X
such that {St(Kn,Un) : n ∈ N} is an open cover of X. In this paper, we
construct an example of a Hausdorff star-Menger space that is not star-K-
Menger which gives an answer to a question of Song [12], and continue to
investigate topological properties of star-K-Menger spaces.

1 Introduction

By a space, we mean a topological space. We give definitions of terms which are
used in this paper. Let N denote the set of positive integers. Let X be a space and
U a collection of subsets of X. For A ⊆ X, let St(A,U ) =

⋃
{U ∈ U : U ∩ A 6= ∅}.

As usual, we write St(x,U ) instead of St({x},U ).
Let A and B be collections of open covers of a space X. Then the symbol

S1(A,B) denotes the selection hypothesis that for each sequence (Un : n ∈ N) of
elements of A there exists a sequence (Un : n ∈ N) such that for each n ∈ N,
Un ∈ Un and {Un : n ∈ N} is an element of B. The symbol S f in(A,B) denotes the
selection hypothesis that for each sequence (Un : n ∈ N) of elements of A there
exists a sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of
Un and

⋃
n∈N Vn is an element of B (see [6,11]).

Koc̆inac [7,8] introduced star selection hypothesis similar to the previous ones.
Let A and B be collections of open covers of a space X. Then:

(A) The symbol S∗
f in(A,B) denotes the selection hypothesis that for each

sequence (Un : n ∈ N) of elements of A there exists a sequence (Vn : n ∈ N) such
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that for each n ∈ N, Vn is a finite subset of Un and
⋃

n∈N{St(V,Un) : V ∈ Vn} is
an element of B.

(B) The symbol SS∗
comp(A,B) (SS∗

f in(A,B)) denotes the selection hypothesis

that for each sequence (Un : n ∈ N) of elements of A there exists a sequence
(Kn : n ∈ N) of compact (resp., finite) subsets of X such that {St(Kn ,Un) :
n ∈ N} ∈ B.

Let O denote the collection of all open covers of X.

Definition 1.1. ([7,8]) A space X is said to be star-Menger if it satisfies the selection
hypothesis S∗

f in(O,O).

Definition 1.2. ([7,8,12]) A space X is said to be star-K-Menger (strongly star-Men-
ger) if it satisfies the selection hypothesis SS∗

comp(O,O) (resp., SS∗
f in(O,O) ).

Definition 1.3. ([3,9]) A space X is said to be K-starcompact if for every open cover
U of X there exists a compact subset F of X such that St(F,U ) = X.

From the definitions, it is clear that every K-starcompact space is star-K-Men-
ger, every strongly star-Menger space is star-K-Menger and every star-K-Menger
space is star-Menger.

The author [12] studied the star-K-Menger and related spaces, and inves-
tigated topological properties of star-K-Menger spaces. The author [12] con-
structed a T1 star-Menger space which is not star-K-Menger and asked if there
exists Hausdorff or Tychonoff example. The purpose of this paper is to show the
statement stated in the abstract, which gives an answer to the question above of
Song in class of Hausdorff spaces, and continue to investigate topological prop-
erties of star-K-Menger spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω1 the first un-
countable cardinal, c the cardinality of the set of all real numbers. For a cardinal
κ, let κ+ be the smallest cardinal greater than κ. For each pair of ordinals α, β
with α < β, we write [α, β) = {γ : α ≤ γ < β}, (α, β] = {γ : α < γ ≤ β},
(α, β) = {γ : α < γ < β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is
an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal is often
viewed as a space with the usual order topology. Other terms and symbols that
we do not define follow [5].

2 Star-K-Menger spaces and related spaces

In this section, first we construct the example stated in the abstract.

Lemma 2.1. If X =
⋃
{Xn : n ∈ N} and each Xn is star-Menger, then X is star-

Menger.

Proof. Let (Un : n ∈ N) be a sequence of open covers of X and let N = N1 ∪N2 ∪
· · · be a partition of N into infinitely many infinite pairwise disjoint subsets. For
each n ∈ N, since Xn is star-Menger, thus for the sequence (Um : m ∈ Nn) of open
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covers of X, there exists a sequence {Vm : m ∈ Nn} such that for each m ∈ Nn,
Vm is a finite subset of Um and

Xn ⊆
⋃

m∈Nn

St(∪Vm ,Um).

Hence the sequence {Vn : n ∈ N} witnesses for {Un : n ∈ N} that X is star-
Menger. Therefore we complete the proof.

It is clear that every compact space is star-Menger. Thus we have the following
corollary by Lemma 2.1.

Corollary 2.2. If X is a σ-compact space, then X is star-Menger.

Example 2.3. There exists a Hausdorff star-Menger space which is not star-K-Menger.

Proof. Let
A = {aα : α < c}, B = {bn : n ∈ ω}

and Y = {〈aα , bn〉 : α < c, n ∈ ω},

and let
X = Y ∪ A ∪ {a} where a /∈ Y ∪ A.

We topologize X as follows: every point of Y is isolated; a basic neighborhood of
a point aα ∈ A for each α < c takes the form

Uaα(n) = {aα} ∪ {〈aα , bm〉 : m > n} for n ∈ ω

and a basic neighborhood of a point a takes the form

Ua(F) = {a} ∪ ∪{〈aα , bn〉 : aα ∈ A \ F, n ∈ ω} for a countable subset F of A.

Clearly, X is a Hausdorff space by the construction of the topology of X. How-
ever, X is not regular, since the point a can not be separated from the closed subset
A by disjoint open subsets of X.

Now we show that X is star-Menger. To this end, let (Un : n ∈ N) be a
sequence of open covers of X. Without loss of generality, we assume that Un

consists of basic open sets of X for each n ∈ N. Since U1 is an open cover of X,
there exists Ua ∈ U1 such that a ∈ Ua. By assumption, there exists a countable
subset F of A such that

Ua = Ua(F) = {a} ∪ ∪{〈aα , bn〉 : aα ∈ A \ F, n ∈ ω}

by the definition of the topology of X, thus we have

F ∪ Ua ⊆ St(Ua ,U ).

For each aα ∈ F, let
Baα = {aα} ∪ {〈aα , bn〉 : n ∈ ω}.

Then Baα is a compact subset of X by the definition of the topology of X. Let
A =

⋃
aα∈F Baα . Then A is σ-compact and X = A ∪ F ∪Ua. Thus A is star-Menger
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by Corollary 2.2. For the sequence (Un : n > 1) of open covers of X, there exists a
sequence (Vn : n > 1) such that for each n > 1, Vn is a finite subset of Un and

A ⊆
⋃

n>1

St(∪Vn ,Un).

Let V1 = {Ua}. Then the sequence {Vn : n ∈ N} witnesses for {Un : n ∈ N} that
X is star-Menger.

Next we show that X is not star-K-Menger. For each α < c, let

Uα = {aα} ∪ {〈aα , bn〉 : n ∈ ω} and U = Ua(∅).

Then Uα is open and closed in X by the construction of the topology of X and

Uα ∩ Uα′ = ∅ for α 6= α′.

For n ∈ N, let
Un = {Uα : α < c} ∪ {U}.

Let us consider the sequence (Un : n ∈ N) of open covers of X. We only show
that

⋃
n∈N st(Kn,Un) 6= X for any sequence (Kn : n ∈ N) of compact subsets of

X. Let (Kn : n ∈ N) be any sequence of compact subsets of X. For each n ∈ N,
since Kn is compact, then there exists αn < c such that Kn ∩ Uα = ∅ for each
α > αn. Let α′ = sup{αn : n ∈ N}. If we pick β > α′. Then Uβ ∩ Kn = ∅ for each
n ∈ N. Hence aβ /∈ St(Kn,Un) for each n ∈ N, since Uβ is the only element of Un

containing the point aβ for each n ∈ N, which shows that X is not star-K-Menger.
Thus we complete the proof.

Question 2.1. The author does not know if there exists a regular (or Tychonoff) star-
Menger space which is not star-K-Menger.

The author [12] showed that a regular-closed subset of a Tychonoff star-K-
Menger space X need not be star-K-Menger. Next we construct an example show-
ing that assuming d = c, there exists a Tychonoff star-K-Menger space having a
regular-closed Gδ-subspace which is not star-K-Menger by using the following
example from [1, 10]. We make use of two of the cardinals defined in [3,4]. Define
ωω as the set of all functions from ω to itself. For all f , g ∈ωω, we say f ≤∗ g
if and only if f (n) ≤ g(n) for all but finitely many n. The unbounding number,
denoted by b, is the smallest cardinality of an unbounded subset of (ωω,≤∗). The
dominating number, denoted by d, is the smallest cardinality of a cofinal subset
of (ωω,≤∗). It is not difficult to show that ω1 ≤ b ≤ d ≤ c and it is known that
ω1 < b = c, ω1 < d = c and ω1 ≤ b < d = c are all consistent with the axioms of
ZFC (see [3] for details).

Example 2.4. ([1, 9]) Let A be an almost disjoint family of infinite subsets of ω
(i.e., the intersection of every two distinct elements of A is finite) and Let X = ω ∪ A
be the Isbell-Mrówka space constructed from A([4,5]). Then X is strongly star-Menger
if and only if |A| < d.

For the next example, we need the following Lemma. For a Tychonoff space
X, let βX denote the Čech-Stone compactification of X.
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Lemma 2.5. Let κ be infinite cardinal and D = {dα : α < κ} be a discrete space of
cardinality κ. Then the subspace X = (βD × κ) ∪ (D × {κ}) of the product space
βD × (κ + 1) is not star-K-Menger.

Proof. We show that X is not star-K-Menger. For each α < κ, let Uα = {dα} ×
(α, κ]. Then Uα is open in X and

Uα ∩ Uα′ = ∅ for each α 6= α′

For each n ∈ N, let
Un = {Uα : α < κ} ∪ {βD × κ}.

Then Un is an open cover of X. Let us consider the sequence (Un : n ∈ N) of
open covers of X. It suffices to show that

⋃
n∈N St(Kn,Un) 6= X for any sequence

(Kn : n ∈ N) of compact subsets of X. Let (Kn : n ∈ N) be any sequence of
compact subsets of X. For each n ∈ N, since Kn is compact and {〈dα, κ〉 : α < κ}
is a discrete closed subset of X, the set Kn ∩ {〈dα, ω〉 : α < c} is finite. Then there
exists αn < κ such that

Kn ∩ {〈dα, κ〉 : α > αn} = ∅.

Let α′ = sup{αn : n ∈ N}. Then α′
< κ and

(
⋃

n∈N

Kn) ∩ {〈dα, κ〉 : α > α′} = ∅.

On the other hand, for each n ∈ N, let An = {α : 〈dα, κ〉 ∈ Kn}. Then An is
finite, since Kn is compact and {〈dα, κ〉 : α < κ} is discrete and closed in X. Let
K′

n = Kn \
⋃
{Uα : α ∈ An}. Then K′

n is closed in Kn and K′
n ⊆ βD × κ. Hence

π(K′
n) is a compact subset of the countably compact space κ, where π : βD × κ →

κ is the projection, thus there exists α′
n < κ such that π(K′

n) ∩ (α′
n, κ) = ∅. Let

α′′ = sup{α′
n : n ∈ N}. Then α′′

< κ. If we pick β > max{α′, α′′}. Then
Uβ ∩ Kn = ∅ for each n ∈ N. Hence 〈dβ, κ〉 /∈ St(Kn,Un) for each n ∈ N, since
Uβ is the only element of Un containing the point 〈dβ, κ〉 for each n ∈ N, which
shows that X is not star-K-Menger.

Recall from [3,9] that a space X is said to be strongly starcompact if for every
open cover U of X there exists a finite subset F of X such that St(F,U ) = X.
It is well known that strongly starcompactness is equivalent to countably com-
pactness for Hausdorff spaces (see [3,9]).

Example 2.6. Assuming d = c, there exists a Tychonoff star-K-Menger space having a
regular-closed Gδ-subspace which is not star-K-Menger.

Proof. Assuming d = c, let S1 = ω ∪A be the same space X as in the construction
of Example 2.4 with |A| = ω1. Then S1 is strongly star-Menger by Example
2.4. Hence S1 is star-K-Menger, since every strongly star-Menger space is star-K-
Menger.

Let D = {dα : α < ω1} be a discrete space of cardinality ω1 and let

S2 = (βD × ω1) ∪ (D × {ω1})
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be the subspace of the product space βD × (ω1 + 1). Then S2 is not star-K-Menger
by Lemma 2.5.

Let π : A → D × {ω1} be a bijection and let X be the quotient image of the
disjoint sum S1 ⊕ S2 by identifying A of S1 with π(A) of S2 for every A ∈ A. Let
ϕ : S1 ⊕ S2 → X be the quotient map. Then ϕ(S2) is a regular-closed subspace of
X. For each n ∈ ω, let Fn = {m ∈ ω : m ≤ n}. For each n ∈ ω, let

Un = ϕ({{A} ∪ (A \ Fn) : A ∈ A}) ∪ ϕ(βD × ω1).

Then Un is open in X and ϕ(S2) =
⋂

n∈ω Un. Thus ϕ(S2) is a regular-closed
Gδ-subspace of X. However ϕ(S2) is not star-K-Menger, since it is homeomorphic
to S2.

Finally we show that X is star-K-Menger. To this end, let {Un : n ∈ N} be a
sequence of open covers of X. Since ϕ(βD × ω1) is homeomorphic to βD × ω1,
and consequently ϕ(βD × ω1) is countably compact, we can find a finite subset
K1 of ϕ(βD × ω1) such that

ϕ(βD × ω1) ⊆ St(K1,U1).

On the other hand, Since ϕ(S1) is homeomorphic to S1 and consequently ϕ(S1)
is star-K-Menger. Thus for the sequence (Un : n > 1) of open covers of X, there
exists a sequence {Kn : n > 1} of compact subsets of ϕ(S1) such that

ϕ(S1) ⊆
⋃

n>1

St(Kn,Un).

Hence the sequence {Kn : n ∈ N} of compact subsets of X witnesses for
{Un : n ∈ N} that X is star-K-Menger. Therefore we complete the proof.

Question 2.2. The author does not know if there exists an example in ZFC showing that
a regular-closed Gδ-subspace of a star-K-Menger space is not star-K-Menger.

The following example gives an answer to Question 2.2 for Hausdorff spaces.

Example 2.7. There exists a Hausdorff star-K-Menger space having a regular-closed
Gδ-subspace which is not star-K-Menger.

Proof. Let D = {dα : α < c} be a discrete space of cardinality c and let

S1 = (βD × (c+ 1)) ∪ (D × {c})

be the subspace of the product space βD × (c+ 1). Then S2 is not star-K-Menger
by Lemma 2.5.

Let S2 = Y ∪ A ∪ {a} where a /∈ Y ∪ A be the same space X as the proof of
Example 2.3. We topologize S2 as follows: every point of Y ∪ A has the same
neighborhood as the proof of Example 2.3 and a basic neighborhood of a point a
takes the form

Ua(F) = {a} ∪ ∪{〈aα , bn〉 : aα ∈ A \ F, n ∈ ω} for a finite subset F of A.

Clearly, S2 is a Hausdorff space, but is not regular.
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Now we show that S2 is star-K-Menger. We only show that S2 is K-starcompact,
since every K-starcompact space is star-K-Menger. To this end, let U be an open
cover of S2. Without loss of generality, we assume that U consists of basic open
sets of S2. Since U is an open cover of S2, there exists Ua ∈ U such that a ∈ Ua. By
assumption, there exists a finite subset F of A such that

Ua = Ua(F) = {a} ∪ ∪{〈aα , bn〉 : aα ∈ A \ F, n ∈ ω}

by the definition of the topology of S2, thus we have

Ua ⊆ St(a,U ).

For each aα ∈ F, let
Baα = {aα} ∪ {〈aα , bn〉 : n ∈ ω}.

Then Baα is a compact subset of S2 by the definition of the topology of S2. On the
other hand, for each aα ∈ A \ F, there exists Uaα ∈ U such that aα ∈ Uaα . Thus
there exists αn ∈ ω such that 〈aα, αn〉 ∈ Uaα . Let C = {〈aα , αn〉 : aα ∈ A \ F}. Then
C ∪ {a} is a compact subset of S2 by the definition of S2 and

A \ F ⊆ St(C ∪ {a},U ).

Set
K = {a} ∪ C ∪ {Baα : aα ∈ F}.

Then K is a compact subset of S2 such that S2 = St(K,U ), which shows that S2 is
K-starcompact.

We assume S1 ∩ S2 = ∅. Let π : D × {c} → A be a bijection and let X be
the quotient image of the disjoint sum S1 ⊕ S2 by identifying 〈dα, c〉 of S1 with
π(〈dα , c〉) of S2 for every α < c. Let ϕ : S1 ⊕ S2 → X be the quotient map. Clearly,
ϕ(S1) is a regular-close subspace of X. For each n ∈ ω, let

Un = π(S1 ∪ {〈aα , bm〉 : m > n, α < c}).

Then Un is open in X and ϕ(S1) =
⋂

n∈ω Un. Thus ϕ(S1) is a regular-closed
Gδ-subspace of X. However ϕ(S1) is not star-K-Menger, since it is homeomorphic
to S1.

Similarly to the proof that the space X in Example 2.6 is star-K-Menger, we
can prove that X is star-K-Menger. Thus we complete the proof.

We give a positive result on star-K-Menger spaces:

Theorem 2.8. An open and closed subset of a star-K-Menger space is star-K-Menger.

Proof. Let X be a star-K-Menger space and let Y be an open and closed subset of
X. To show that Y is star-K-Menger. Let (Un : n ∈ N) be a sequence of open
covers of Y, we have to find a sequence {Fn : n ∈ N} of compact subsets of Y
such that

Y =
⋃

n∈N

St(Fn ,Un).

For each n ∈ N, let
Vn = Un ∪ {X \ Y}.
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Then {Vn : n ∈ N} is a sequence of open covers of X, there exists a sequence
{F′

n : n ∈ N} of compact subsets of X such that X =
⋃

n∈N St(F′
n ,Vn), since

X is star-K-Menger. For each n ∈ N, let Fn = F′
n ∩ Y. Thus {Fn : n ∈ N} is

a sequence of compact subsets of Y, since Y is a closed subset of X. For each
y ∈ Y, if y ∈ St(F′

n ,Vn), then y ∈ St(Fn ,Un) by the construction of Vn. Hence the
sequence {Fn : n ∈ N} of compact subsets of Y witnesses for {Un : n ∈ N} that
Y is star-K-Menger. Therefore we complete the proof.

For a space X, recall that the Alexandroff duplicate A(X) of a space X,
denoted by A(X), is constructed in the following way: The underlying set A(X) is
X × {0, 1}; each point of X × {1} is isolated and a basic neighborhood of
〈x, 0〉 ∈ X × {0} is a set of the form (U × {0}) ∪ ((U × {1}) \ {〈x, 1〉}), where
U is a neighborhood of x in X. It is well known that a space X is compact if and
only if so is A(X). In the following, we give two examples to show that the result
can not be generalized to star-K-Menger. For a Tychonoff space X, let βX denote
the Čech-Stone compactification of X. We give a lemma from [9]. Here we give
the proof for the sake of completeness.

Lemma 2.9. Let κ be infinite cardinal and D = {dα : α < κ} be a discrete space of
cardinality κ. Then the subspace X = (βD × κ+) ∪ (D × {κ+}) of the product space
βD × (κ+ + 1) is K-starcompact (hence star-K-Menger).

Proof. We only show that X is K-starcompact. To this end, let U be an open cover
of X. For each α < κ, there exist βα < κ+ and Uα ∈ U such that {dα} × (βα, κ+] ⊆
Uα. Let β = sup{βα : α < κ}. Then β < κ+. Let K1 = βD × {β + 1}. Then K1

is a compact subset of X and D × {κ+} ⊆ St(K1,U ). On the other hand, since
βD × [0, κ+) is countably compact, there exists a finite subset K2 of βD × [0, κ+)
such that βD × [0, κ+) ⊆ St(K2 ,U ). If we put K = K1 ∪ K2, then K is a compact
subset of X such that X = St(K,U ), which shows that X is K-starcompact.

Example 2.10. There exists a Tychonoff star-K-Menger space X such that A(X) is not
star-K-Menger.

Proof. Let D = {dα : α < c} be a discrete space of the cardinality c, and let

X = (βD × c
+) ∪ (D × {c+})

be the subspace of the product space βD × (c+ + 1). Then X is star-K-Menger by
Lemma 2.9.

However A(X) is not star-K-Menger. In fact, since D × {c+} is a discrete
closed subset of X with |D × {c+}| = c, then the set (D × {c+}) × {1} is an
open and closed subset of A(X) with |(D × {c+}) × {1}| = c, and each point
〈〈dα , c+〉, 1〉 is isolated for each α < c. Hence A(X) is not star-K-Menger by The-
orem 2.8, since (D × {c+})× {1} is not star-K-Menger.

Now we give a positive result. For showing the result, we need a lemma from
[2]. For a space X, the extent e(X) of X is the supremum of cardinalities of closed
discrete subsets of X.

Lemma 2.11. For T1-space X, e(X) = e(A(X)).
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Theorem 2.12. If X is a star-K-Menger space with e(X) < ω1, then A(X) is star-K-
Menger.

Proof. We show that A(X) is star-K-Menger. To this end, let (Un : n ∈ N) be
a sequence of open covers of A(X). For each n ∈ N and each x ∈ X, choose
an open neighborhood Wnx = (Vnx × {0, 1}) \ {〈x, 1〉} of 〈x, 0〉 satisfying that
there exists some U ∈ Un such that Wnx ⊆ U, where Vnx is an open subset of X
containing x. For each n ∈ N, let Vn = {Vnx : x ∈ X}, then Vn is an open cover
of X, thus (Vn : n ∈ N) is a sequence of open covers of X, there exists a sequence
(Kn : n ∈ N) of compact subsets of X such that

⋃
n∈N{St(Kn ,Vn) : V ∈ V ′

n} is an
open cover of X, since X is star-K-Menger. For each n ∈ N, let K′

n = A(Kn). Then
K′

n is a compact subset of A(X). Thus we get a sequence (K′
n : n ∈ N) of compact

subsets of A(X) and

X × {0} ⊆
⋃

n∈N

St(K′
n ,Un).

Let A = A(X) \
⋃

n∈N St(K′
n,Un). Then A is a discrete closed subset of A(X). By

Lemma 2.11, the set A is countable, we can enumerate A as {an : n ∈ N}. For
each n ∈ N, let K′′

n = K′
n ∪ {an}. Then K′′

n is a compact subset of A(X) and

A(X) =
⋃

n∈N

St(K′′
n ,Un),

which shows that A(X) is star-K-Menger.

From the proof of Example 2.10, it is not difficult to show the following result.

Theorem 2.13. If X is a T1-space and A(X) is a star-K-Menger space. Then e(X) < ω1.

Proof. Suppose that e(X) ≥ ω1. Then there exists a discrete closed subset B of
X such that |B| ≥ ω1. Hence B × {1} is an open and closed subset of A(X) and
every point of B × {1} is an isolated point. Thus A(X) is not star-K-Menger by
Theorem 2.8, since B × {1} is not star-K-Menger.

We have the following corollary from Theorems 2.12 and 2.13.

Corollary 2.14. If X is a star-K-Menger T1-space, then A(X) is star-K-Menger if and
only if e(X) < ω1.
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