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Abstract

In this paper, we consider the existence and multiplicity of solutions for
perturbed p-Laplacian equation problems with critical nonlinearity in RN:

−εp
[

g
( ∫

RN
|∇Au|pdx

)]
∆p,Au + V(x)|u|p−2u = |u|p

∗−2u + h(x, |u|p)|u|p−2u

for all (t, x) ∈ R × RN, where V(x) is a nonnegative potential, ∆p,Au(x) :=
div(|∇u + iA(x)u|p−2(∇u + iA(x)u) and ∇Au := (∇ + iA)u. By using
Lions’ second concentration compactness principle and concentration com-
pactness principle at infinity to prove that the (PS)c condition holds locally
and by variational method, we show that this equation has at least one solu-
tion provided that ε < E , for any m ∈ N, it has m pairs of solutions if ε < Em,
where E and Em are sufficiently small positive numbers.

1 Introduction

The main purpose of this paper is to study the existence and multiplicity of so-
lutions for the following perturbed p-Laplacian equation problems with critical
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nonlinearity of the form

− εp
[

g
( ∫

RN
|∇Au|pdx

)]
∆p,Au + V(x)|u|p−2u =

|u|p
∗−2u + h(x, |u|p)|u|p−2u, x ∈ R

N, (1)

where ∆p,Au(x) := div(|∇u + iA(x)u|p−2(∇u + iA(x)u), here i is the imaginary
unit, p∗ := pN/(N − p) denotes the Sobolev critical exponent and N ≥ 3.

We make the following assumptions on V(x), g(x) and h(x) throughout this
paper:

(V) V(x) ∈ C(RN , R), V(x0) = min V = 0 and there is τ0 > 0 such that the set
Vτ0 = {x ∈ RN : V(x) < τ0} has finite Lebesgue measure;

(G) (g1) There exists α0 > 0 such that nondecreasing function g(t) ≥ α0 for all
t ≥ 0;
(g2) There exists θ satisfied

p
µ < θ < 1 and G(t) ≥ θg(t)t for all t ≥ 0, where

G(t) =
∫ t

0 g(s)ds;

(A) Aj(x) ∈ C(RN , R)(j = 1, 2, . . . , N) and A(x0) = 0;

(H) (h1) h ∈ C(RN × [0,+∞), R) and h(x, t) = o(|t|) uniformly in x as t → 0;

(h2) there are C0 > 0 and q ∈ (p, p∗) such that |h(x, t)| ≤ C0(1 + t
q−p

p );

(h3) there l0 > 0, s >
p
θ and p < µ < p∗ such that H(x, t) ≥ l0|t|

s
p and

µH(x, t) ≤ h(x, t)t for all (x, t), where H(x, t) =
∫ t

0 h(x, s)ds.

Mathematics is successfully applied in numerous technical problems, semi-
subsistence agriculture systems, biology, farming systems research, agricultural
production planning, control theory, etc [4, 5, 6, 21, 25, 26, 35, 41, 45]. There are
many methods to delta with these problems, for example: variational method,
Morse theory, mathematical programming and multi-variate analysis etc. We
can use the methods of mathematical programming and multi-variate analysis
to delta with the agricultural production planning. The agricultural production
planning has been defined as a process for the spatial organization of agricultural
and forestry products that allocates particular uses to preferential land areas in
an attempt to attain sustainable development by optimizing the agricultural pro-
duction systems according to environmental concerns and socioeconomic and
structural conditions. The aim of this process is to determine a sustainable devel-
opment path in the relationship between agriculture and its natural environment.
Therefore, a profound knowledge of this complex system and its behaviour un-
der different socio-economic conditions is necessary.

In this paper, we want to use variational method to delta with problem (1). We
note that problem (1) with p = 2, A(x) ≡ 0 g(t) = 1, it reduces to the well-known
Schrödinger equation

−ε2∆u + V(x)u = f (x, u), x ∈ R
N. (2)

Different approaches have been taken to attack this problem under various hy-
potheses on the potential and the nonlinearity. See for examples [16, 17, 36, 37]
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and the references therein. Observe that in all these papers the nonlinearities are
assumed to be subcritical

| f (x, u)| ≤ c(1 + |u|p−1) with p ∈ (2, 2∗), (3)

together with some other technical conditions of course. Under the condition
V(x) > 0, there have been enormous investigations on problem (2). Much of the
impetus for these studies seems to have originated from the pioneering paper [23]
by Floer and Weinstein in which the one-dimensional case (N = 1) with a cubic
nonlinearity was studied by assuming that V(x) is a bounded potential having a
single non-degenerate minimum point x0 while infR V > 0. As a matter of fact,
based on a Lyapounov-Schmidt reduction technique, it was shown there that (2)
admits, for ε > 0 sufficiently small, a family of spike-like solutions which in the
semiclassical limit (i.e. as ε → 0) concentrate around x0; see also [36, 37]. The
extension of this important result to higher dimensions with condition (3) and
V(x) having a finite set of non-degenerate critical points was achieved in [38]
while this last hypothesis was eventually removed in [18]; for complementary
results obtained by perturbation or variational methods see [1, 40], as well as
the recent monograph [2]. For more results, we refer the reader to [3, 11, 22]. If
the nonlinearities are assumed to be critical, Clapp and Ding [15] studied prob-
lem (2) with f (x, u) = µu + u2∗−1 and V(x) ≥ 0 and has a potential well and
is invariant under an orthogonal involution of RN, they established existence
and multiplicity of solutions which change sign exactly once and these solutions
localize near the potential well for µ small and λ large. Ding and Lin [19] showed
that the existence and multiplicity of semiclassical solutions of perturbed non-
linear Schrödinger equations with critical nonlinearity. Ding and Wei [20] estab-
lished the existence and multiplicity of semiclassical bound states of the nonlin-
ear Schrödinger equations under the assumption of V(x) changes sign and f is
superlinear with critical or supercritical growth as |u| → ∞.

In equation (1) with bounded domain, if we set p = 2, A(x) ≡ 0, ε = 1,
V(x) = 0 and g(t) = a + bt, it reduces to the following Dirichlet problem of
Kirchhoff type





−

(
a + b

∫

Ω
|∇u|2dx

)
∆u = f (x, u), x ∈ Ω,

u|∂Ω = 0.

(4)

Problem (4) is a generalization of a model introduced by Kirchhoff [30]. More
precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−

(
ρ0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0, (5)

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave
equation, by considering the effects of the changes in the length of the strings
during the vibrations. The equation (4) is related to the stationary analogue
of problem (5). (4) received much attention only after Lions [33] proposed an
abstract framework to the problem. Some important and interesting results can
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be found, see for example [27, 29, 32]. We note that the results dealing with the
problem (4) with critical nonlinearity are relatively scarce.

In equation (1) with p 6= 2, A(x) ≡ 0, ε = 1, V(x) = 0, it reduces to the
p-Kirchhoff type problem. p-Kirchhoff type problem began to attract the atten-
tion of several researchers mainly after the work of Lions [33], where a functional
analysis approach was proposed to attack it. However, in this work, we use a
different approach to those explored in [29], because here we are working with
the p-Laplacian operator. Because p-Laplacian operator is nonlinear, some esti-
mates for this type of operator can not be obtained using the same kind of ideas
explored for the case p = 2. For example, We know that W1,p(RN) is not a Hilbert
space for 1 < p < N, except for p = 2. The space W1,p(RN) with p 6= 2 does not
satisfy the Lieb lemma [42].

When A(x) 6≡ 0, there are also many works dealing with the magnetic case.
The first one seems to be [22] where the existence of standing waves was obtained
for h̄ > 0 fixed and for special classes of magnetic fields. If A and W are periodic
functions, the existence of various types of solutions for fixed h̄ > 0 was proved
in [7] by applying minimax arguments. Concerning semiclassical bound states,
it was proved in [31] that for h̄ > 0 small and admits a least energy solution
which concentrates near the global minimum of W. A multiplicity result for so-
lutions was obtained in [12] by using a topological argument. There it was also
proved that the magnetic potential A only contributes to the phase factor of the
solitary solutions for h̄ > 0 sufficiently small. In [13] single-bump bound states
were obtained by using perturbation methods. These concentrate near a non-
degenerate critical point of W as h̄ → 0. Chabrowski and Szulkin [14] considered
problems (4) under assumption that V(x) changes sign, by using a min-max type
argument based on a topological linking, they obtained a solution in the Sobolev
space which defined in the paper. Assume K(x) ≡ 1, Han [28] studied the prob-
lem (7) and established the existence of nontrivial solutions in the critical case by
means of variational method.

To the best of our knowledge, the existence and multiplicity of solutions to
problem (1) on RN has not ever been studied by variational methods. As we
shall see in the present paper, problem (1) can be viewed as a Schrödinger equa-
tion coupled with a non-local term. The competing effect of the non-local term
with the critical nonlinearity and the lack of compactness of the embedding of
W1,p(RN) into the space Lp(RN), prevents us from using the variational methods
in a standard way. Some new estimates for such a Kirchhoff equation involving
Palais-Smale sequences, which are key points to apply this kinds of theory, are
needed to be re-established. Let us point out that although the idea was used
before for other problems, the adaptation to the procedure to our problem is not
trivial at all, since the appearance of non-local term, we must consider our prob-
lem for suitable space and so we need more delicate estimates.

Our main result is the following:
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Theorem 1.1. Let (V), (G), (A) and (H) be satisfied. Thus
(1) For any σ > 0 there is Eσ > 0 such that problem (1) has at least one solution uε for
each ε ≤ Eσ satisfying

θµ − 1

p

∫

RN
H(x, |uε|

p)dx +

(
θ

p
−

1

p∗

) ∫

RN
|uε|

p∗dx ≤ σεN (6)

and
(

θ

p
−

1

µ

)
α0

∫

RN
|∇Auε|

pdx +

(
1

p
−

1

µ

) ∫

RN
λV(x)|uε |

pdx ≤ σεN . (7)

(2) Assume additionally that h(x, t) is odd in t, for any m ∈ N and σ > 0 there is
Emσ > 0 such that if problem (1) has at least m pairs of solutions uε which satisfy the
estimates (6) and (7) whenever ε ≥ Emσ.

Remark 1.1. We should point out that Theorem 1.1 is different from the previous
results of [19, 20, 44] in four main directions:

(1) A(x) 6≡ 0 and p 6≡ 2. There exist many functions h(x, t) satisfying condi-
tion (H), for example, h(x, t) = P(x)|t|p−2t, where P(x) is a positive and
bounded function.

(2) g(t) 6≡ C. There exist many functions g(t) satisfying condition (g1)-(g2), for
example, g(t) = a + bt, a, b > 0 and θ = 1

2 .

(3) The potential function V(x) can also be assumed other cases such that the
embedding from Eλ →֒ Lp(RN) is compact holds. For example:
(i) V(x) ∈ C(RN , R) and lim inf|x|→∞ V(x) > V(x0) = minx∈RN V(x) = 0;

(ii) V(x) ∈ C(RN , R) with periodic function (or bounded function) and
V(x0) = minx∈RN V(x) = 0.

(4) We use Lions’ second concentration compactness principle and concentra-
tion compactness principle at infinity to prove that the (PS)c condition holds
which is different from methods used in [19, 20, 44].

2 Main result

We set λ = ε−p and rewrite (1) in the following form

−
[

g
( ∫

RN
|∇Au|pdx

)]
∆p,Au + λV(x)|u|p−2u =

λ|u|p
∗−2u + λh(x, |u|p)|u|p−2u, x ∈ R

N. (8)

We are going to prove the following result:

Theorem 2.1. Let (V), (G), (A) and (H) be satisfied. Thus
(1) For any σ > 0 there is Λσ > 0 such that problem (8) has at least one solution uλ for
each λ ≥ Λσ satisfying

θµ − 1

p

∫

RN
H(x, |uλ|

p)dx +

(
θ

p
−

1

p∗

) ∫

RN
|uλ|

p∗dx ≤ σλ
− N

p (9)
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and
(

θ

p
−

1

µ

)
α0

∫

RN
|∇Auλ|

pdx +

(
1

p
−

1

µ

) ∫

RN
λV(x)|uλ |

pdx ≤ σλ
1− N

p . (10)

(2) Assume additionally that h(x, t) is odd in t, for any m ∈ N and σ > 0 there is
Λmσ > 0 such that if problem (8) has at least m pairs of solutions uλ which satisfy the
estimates (9) and (10) whenever λ ≥ Λmσ.

In order to prove these theorems, we introduce the space

Eλ :=

{
u ∈ W1,p(RN , C) :

∫

RN
λV(x)|u|pdx < ∞, λ > 0

}

equipped with the norm

‖u‖
p
λ =

∫

RN
(|∇Au|p + λV(x)|u|p) dx,

where ∇Au := ∇u+ iAu. It is known that Eλ is the closure of C∞
0 (RN , C). Similar

to the diamagnetic inequality [22], we have the following inequality

|∇Au(x)| ≥ |∇|u(x)||, for u ∈ W1,p(RN , C).

Indeed, since A is real-valued

|∇|u|(x)| =

∣∣∣∣Re

(
∇u

u

|u|

)∣∣∣∣ =
∣∣∣∣Re (∇u + iAu)

u

|u|

∣∣∣∣ ≤ |∇u + iAu| ,

(the bar denotes complex conjugation) this fact means that if u ∈ Eλ,
then |u| ∈ W1,p(RN , C), and therefore u ∈ Ls(RN) for any s ∈ [p, p∗). Thus,
for each s ∈ [p, p∗], there is cs > 0 (independent of λ) such that if λ > 1

(∫

RN
|u|s
) 1

s

≤ cs

(∫

RN
|∇|u||p

) 1
p

≤ cs

(∫

RN
|∇Au|p

) 1
p

≤ cs‖u‖λ. (11)

The energy functional Jλ : Eλ → R associated with problem (8)

Jλ(u) :=
1

p
G
( ∫

RN
|∇Au|pdx

)
+

1

p

∫

RN
λV(x)|u|pdx−

λ

p∗

∫

RN
|u|p

∗
dx −

λ

p

∫

RN
H(x, |u|p)dx

is well defined. Thus, it is easy to check that as arguments [39, 43] Jλ ∈ C1(Eλ, R)
and its critical points are solutions of (8).

We call that u ∈ Eλ is a weak solution of (8), if

〈J′λ(u), v〉 = Re

{
g
( ∫

RN
|∇Au|pdx

) ∫

RN

(
|∇Au|p−2∇Au · ∇Av

)
dx +

λ
∫

RN
V(x)|u|p−2uvdx −λ

∫

RN
|u|p

∗−2uvdx − λ
∫

RN
h(x, |u|p)|u|p−2uvdx

}
,

where v ∈ Eλ.
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3 Behaviors of (PS) sequences

We recall the second concentration-compactness principle of Lions [34]

Lemma 3.1. [34] Let {un} be a weakly convergent sequence to u in W1,p(RN) such that
|un|p

∗
⇀ ν and |∇un|p ⇀ µ in the sense of measures. Then, for some at most countable

index set I,

(i) ν = |u|p
∗
+ ∑j∈I δxj

νj, νj > 0,

(ii) µ ≥ |∇u|p + ∑j∈I δxj
µj, µj > 0,

(iii) µj ≥ Sν
p/p∗

j ,

where S is the best Sobolev constant, i.e. S = inf

{∫

RN
|∇u|pdx :

∫

RN
|u|p

∗
dx = 1

}
,

xj ∈ RN, δxj
are Dirac measures at xj and µj, νj are constants.

Lemma 3.2. [10] Let {un} be a weakly convergent sequence to u in W1,p(RN) and
define

(i) ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R
|un|

p∗dx,

(ii) µ∞ = lim
R→∞

lim sup
n→∞

∫

|x|>R
|∇un|

pdx.

The quantities ν∞ and µ∞ exist and satisfy

(iii) lim sup
n→∞

∫

RN
|un|

p∗dx =
∫

RN
dν + ν∞,

(iv) lim sup
n→∞

∫

RN
|∇un|

pdx =
∫

RN
dµ + µ∞,

(v) µ∞ ≥ Sν
p/p∗

∞ .

We recall that a C1 functional Jλ on Banach space Eλ is said to satisfy the Palais-
Smale condition at level c ((PS)c in short) if every sequence {un} ⊂ Eλ satisfying
lim

n→∞
Jλ(un) = c and lim

n→∞
‖Jλ(un)‖E∗

λ
= 0 has a convergent subsequence.

Lemma 3.3. Suppose that (V), (A), (G) and (H) hold. Then any (PS)c sequence {un}
is bounded in Eλ and c ≥ 0.

Proof. Let {un} be a sequence in Eλ such that

c + o(1) = Jλ(un) =
1

p
G
( ∫

RN
|∇Aun|

pdx
)
+

1

p

∫

RN
λV(x)|un|

pdx

−
λ

p∗

∫

RN
|un|

p∗dx −
λ

p

∫

RN
H(x, |un|

p)dx, (12)
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〈J′λ(un), v〉 = Re

{
g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

p−2∇Aun · ∇Avdx

+ λ
∫

RN
V(x)|un|

p−2unvdx − λ
∫

RN
|un|

p∗−2unvdx

−λ
∫

RN
h(x, |un|

p)|un|
p−2unvdx

}
= o(1)‖un‖. (13)

By (12), (13) and together with conditions (G), (h3), we have

c + o(1)‖un‖ = Jλ(un)−
1

µ
〈J′λ(un), un〉

=
1

p
G
( ∫

RN
|∇Aun|

pdx
)
−

1

µ
g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

pdx

+

(
1

p
−

1

µ

) ∫

RN
λV(x)|un |

pdx +

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗dx

+ λ
∫

RN

[
1

µ
h(x, |un|

p)|un|
p −

1

p
H(x, |un|

p)

]
dx

≥

(
θ

p
−

1

µ

)
α0

∫

RN
|∇Aun|

pdx +

(
1

p
−

1

µ

) ∫

RN
λV(x)|un|

pdx.(14)

Therefore, the inequality (14) imply that {un} is bounded in Eλ. Taking the limit
in (14) shows that c ≥ 0. This completes the proof of Lemma (3.3).

The main result in this section is the following compactness result.

Lemma 3.4. Suppose that (V), (A), (G) and (H) hold. For any λ ≥ 1, Jλ satisfies

(PS)c condition, for all c ∈
(

0, σ0λ
1− N

p

)
, where σ0 :=

(
1
µ − 1

p∗

)
(α0S)

N
p , that is any

(PS)c-sequence (un) ⊂ Eλ has a strongly convergent subsequence in Eλ.

Proof. Let {un} be a (PS)c sequence, by Lemma 3.3, {un} is bounded in Eλ.
Hence, by diamagnetic inequality, {|un|} is bounded in W1,p(RN , C). Then, for
some subsequence, there is u ∈ W1,p(RN , C) such that un ⇀ u in W1,p(RN, C).
We claim that ∫

RN
|un|

p∗dx →
∫

RN
|u|p

∗
dx. (15)

In order to prove this claim, we suppose that

|∇|un||
p
⇀ |∇|u||p + µ and |un|

p∗
⇀ |u|p

∗
+ ν (weak∗ sense of measures).

Using the concentration compactness-principle due to Lions (cf. [[34], Lemma
1.2]), we obtain a countable index set I, sequences {xj} ⊂ RN, {µj}, {νj} ⊂ (0, ∞)
such that

ν = ∑
j∈I

δxj
νj, µ ≥ ∑

j∈I

δxj
µj and µj ≥ Sν

p/p∗

j (16)

for all j ∈ I, where δxj
are Dirac measures at xj and µj, νj are constants.

Now, let xj be a singular point of the measures µ and ν. We define a function
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φ(x) ∈ C∞
0 (RN, [0, 1]) such that φ(x) = 1 in B(xj, ε), φ(x) = 0 in R

N \ B(xj, 2ε)

and |∇φ| ≤ 2/ε in RN. Since {unφ} is bounded in W1,p(RN, C) and φ takes
values in R, a direct calculation shows that

〈J′λ(un), unφ〉 → 0

and

∇A(unφ) = iun∇φ + φ∇Aun.

Therefore,

g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

pφdx +
∫

RN
λV(x)|un|

pφdx

= −g
( ∫

RN
|∇Aun|

pdx
)

Re

(∫

RN
i|∇Aun|

p−2un∇Aun∇Aφdx

)

+ λ
∫

RN
h(x, |un|

p)|un|
pφdx + λ

∫

RN
|un|

p∗φdx + on(1). (17)

On the other hand, by Hölder’s inequality we obtain

lim sup
n→∞

∣∣Re
∫

RN
i|∇Aun|

p−2un∇Aun∇φdx
∣∣

≤ lim sup
n→∞

( ∫

RN
|∇Aun|

pdx
)(p−1)/p( ∫

RN
|un∇Aφ|pdx

)1/p

≤ C1

( ∫

B(xj,2ε)
|u|p|∇Aφ|pdx

)1/p

≤ C1

( ∫

B(xj,2ε)
|∇Aφ|Ndx

)1/N( ∫

B(xj,2ε)
|u|p

∗
dx
)1/p∗

≤ C2

( ∫

B(xj,2ε)
|u|p

∗
dx
)1/p∗

→ 0 as ε → 0 .

(18)

Similarly, it follows from the definition of φ and condition (H) that

lim
ε→0

lim
n→∞

∫

RN
h(x, |un|

p)|un|
pφdx = 0. (19)

Since φ has compact support, letting n → ∞ in (17) we deduce from (18) and (20)
that

α0

∫

RN
φdµ ≤ −

∫

RN
λV(x)|u|pφdx + λ

∫

RN
φdν.

Letting ε → 0, we obtain α0µj ≤ λνj. Combing this with Lemma 3.1, we obtain

νj ≥ α0λ−1Sν
p

p∗

j . This result implies that

(I) νj = 0 or (II) νj ≥
(

α0λ−1S
) N

p
.
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To obtain the possible concentration of mass at infinity, similarly, we define a cut
off function φR ∈ C∞

0 (RN) such that φR(x) = 0 on |x| < R and φR(x) = 1 on
|x| > R + 1. Note that 〈J′(un), unφR〉 → 0, this fact imply that

g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

pφRdx +
∫

RN
λV(x)|un|

pφRdx

= −g
( ∫

RN
|∇Aun|

pdx
)

Re

(∫

RN
i|∇Aun|

p−2un∇Aun∇AφRdx

)

+ λ
∫

RN
h(x, |un|

p)|un|
pφRdx + λ

∫

RN
|un|

p∗φRdx + on(1). (20)

It is easy to prove that

− lim
R→∞

lim
n→∞

Re

(∫

RN
i|∇Aun|

p−2un∇Aun∇AφRdx

)
= 0

and

lim
R→∞

lim
n→∞

∫

RN
h(x, |un|

p)|un|
pφRdx = 0.

Letting R → ∞, we obtain α0µ∞ ≤ λν∞. By Lemma 3.2, we obtain ν∞ ≥

α0λ−1Sν
p

p∗

∞ . This result implies that

(III) ν∞ = 0 or (IV) ν∞ ≥
(

α0λ−1S
) N

p
.

Next, we claim that (I I) and (IV) cannot occur. If the case (IV) holds, for
some j ∈ I, then by using Lemma 3.2 and condition (h3), we have that

c = lim
n→∞

(
Jλ(un)−

1

µ
〈J′λ(un), un〉

)

≥

(
θ

p
−

1

µ

)
g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

pdx +

(
1

p
−

1

µ

) ∫

RN
λV(x)|un|

pdx

+ λ
∫

RN

[
1

µ
h(x, |un|

p)|un|
p −

1

p
H(x, |un|

p)

]
dx +

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗dx

≥

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗dx ≥

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗φRdx

=

(
1

µ
−

1

p∗

)
λν∞ ≥ σ0λ

1− N
p ,

where σ0 =
(

1
µ − 1

p∗

)
(α0S)

N
p . This is impossible. Consequently, νj = 0 for all

j ∈ I. Similarly, if the case (II) holds, for some j ∈ I, then by condition (H), we
have

c = lim
n→∞

(
Jλ(un)−

1

µ
〈J′λ(un), un〉

)

≥

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗dx ≥

(
1

µ
−

1

p∗

)
λ
∫

RN
|un|

p∗φdx

=

(
1

µ
−

1

p∗

)
λν ≥ α0λ

1− N
p as ε → 0,
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which leads to a contradiction. Thus, we must have (II) cannot occur for each j.
Thus

∫

RN
|un|

p∗dx →
∫

RN
|u|p

∗
dx. (21)

In order to prove un → u in Eλ, we adapt some arguments in [9] and [24]. Define
functions

τk(s) =

{
s, if |s| ≤ k,

k s
|s|

, if |s| > k.

Fix a compact set K ⊂ RN and take a cut-off function φK : RN → R satisfying:

φK ∈ C∞
0 (RN), 0 ≤ φK ≤ 1 and φK(x) = 1 on K.

Then φKτk(un − u) ∈ W1,p(RN). Since {un} is a (PS)c sequence, from the weak
lower semicontinuity of the norm and (G), we have

o(1) = 〈J′λ(un)− J′λ(u), φKτk(un − u)〉

= g
( ∫

RN
|∇Aun|

pdx
) ∫

RN
|∇Aun|

p−2∇un∇A [φKτk(un − u)]dx

− g
( ∫

RN
|∇Au|pdx

) ∫

RN
|∇Au|p−2∇Au∇A [φKτk(un − u)]dx

+
∫

RN
λV(x)

(
|un|

p−2un − |u|p−2u
)

φKτk(un − u)dx − I1 − I2

≥ α0

∫

RN

(
|∇Aun|

p−2∇Aun − |∇Au|p−2∇Au
)
∇A [φKτk(un − u)]dx

+
∫

RN
λV(x)

(
|un|

p−2un − |u|p−2u
)

φKτk(un − u)dx − I1 − I2, (22)

where

I1 = λ
∫

RN

(
h(x, |un|

p)|un|
p−2un − h(x, |u|p)|u|p−2u

)
φKτk(un − u)dx,

I2 = λ
∫

RN

(
|un|

p∗−2un − |u|p
∗−2u

)
φKτk(un − u)dx.

By (21), we have |I1| ≤ ck and |I2| ≤ ck. Thus, by (22), we conclude that |en| ≤ ck,
where

en := 〈|∇Aun|
p−2∇Aun − |∇Au|p−2∇Au, φKτk(un − u)〉.

It follows that en ≥ 0 by the following well-known inequality. (See also Ghous-
soub and Yuan [[24], Lemma 4.1])

〈
|s|p−2s − |t|p−2t, s − t

〉
≥





Cp|s − t|p, ∀ p ≥ 2,

Cp
|s−t|2

(|s|+|t|)2−p , ∀ p ≤ 2,
s, t ∈ R

N, (23)

where 〈· , ·〉 is the standard scalar product in RN.
Take 0 < θ < 1 and split K into

Sk
n = {x ∈ K : |un − u| ≤ k} , Gk

n = {x ∈ K : |un − u| ≥ k} .
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Then
∫

RN
eθ

ndx =
∫

Sk
n

eθ
ndx +

∫

Gk
n

eθ
ndx

≤

(∫

Sk
n

eθ
ndx

)θ

|Sθ
n|

1−θ +

(∫

Gk
n

eθ
ndx

)θ

|Gθ
n|

1−θ .

Now, fixed k, then |Gk
n| → 0 as n → ∞ and from the uniform boundedness in L1

we get

lim sup
n→∞

∫

RN
eθ

ndx ≤ (Ck)θ |K|1−θ .

Let k → 0 we get that eθ
n → 0 in L1. Finally, from the well-known inequality (23),

we have ∇Aun → ∇Au in Lτ(RN) for 1 < τ ≤ p. By passing to a subsequence,
we have ∇Aun → ∇Au in R

N. This fact together with (22) and (23) imply that
∇Aun → ∇Au in Eλ. This completes the proof of Lemma 3.4.

4 Proofs of Theorem 2.1

In the following, we always consider λ ≥ 1. By the assumptions (V), (A), (G)
and (H), one can see that Jλ(u) has mountain pass geometry.

Lemma 4.1. Assume (V), (A), (G) and (H) hold. There exist αλ, ρλ > 0 such that
Jλ(u) > 0 if u ∈ Bρλ

\ {0} and Jλ(u) ≥ αλ if u ∈ ∂Bρλ
, where Bρλ

= {u ∈ Eλ :
‖u‖λ ≤ ρλ}.

Proof. By (h1) - (h3), for δ ≤
(

2 min
{

θα0
p , 1

p

}
λc

p
p

)−1
there is Cδ > 0 such that

1

p∗

∫

RN
|u|p

∗
dx +

1

p

∫

RN
H(x, |u|p)dx ≤ δ|u|

p
p + Cδ|u|

p∗

p∗ .

Therefore, from condition (G) it follows that

Jλ(u) :=
1

p
G
( ∫

RN
|∇Au|pdx

)
+

1

p

∫

RN
λV(x)|u|pdx −

λ

p∗

∫

RN
|u|p

∗
dx

−
λ

p

∫

RN
H(x, |u|p)dx

≥ min

{
θα0

p
,

1

p

}
‖u‖

p
λ − λδ|u|

p
p − λCδ|u|

p∗

p∗

≥
1

2
min

{
θα0

p
,

1

p

}
‖u‖

p
λ − λCδc

p∗

p∗‖u‖
p∗

λ .

Since p∗ > p, we know that the conclusion of Lemma 4.1 holds. This completes
the proof of Lemma 4.1.

Lemma 4.2. Under the assumption of Lemma 4.1, for any finite dimensional subspace
F ⊂ Eλ,

Jλ(u) → −∞ as u ∈ F, ‖u‖λ → ∞.
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Proof. On the one hand, by integrating (g2), we obtain

G(t) ≤
G(t0)

t1/θ
0

t1/θ = C0t1/θ for all t ≥ t0 > 0. (24)

Using conditions (V) and (H), we can get

Jλ(u) ≤
C0

p
‖u‖

p
θ
λ +

1

p
‖u‖

p
λ −

λ

p∗
|u|

p∗

p∗ − λl0|u|
s
s

for all u ∈ F. Since all norms in a finite-dimensional space are equivalent and
p
θ < p∗, p < p∗. This completes the proof of Lemma 4.2.

Since Jλ(u) does not satisfy the (PS)c condition for all c > 0. Thus, in the fol-
lowing we will find a special finite-dimensional subspaces by which we construct
sufficiently small minimax levels.

Recall that assumption (V) implies that there is x0 ∈ RN such that
V(x0) = minx∈RN V(x) = 0. Without loss of generality we assume from now
on that x0 = 0.

Observe that, by (h3) we have

λ

p∗

∫

RN
|u|p

∗
dx + λ

∫

RN
H(x, |u|p)dx ≥ l0λ

∫

RN
|u|sdx.

Definite the function Iλ ∈ C1(Eλ, R) by

Iλ(u) :=
1

p
G
( ∫

RN
|∇Au|pdx

)
+
∫

RN
λV(x)|u|pdx − l0λ

∫

RN
|u|sdx.

Then Jλ(u) ≤ Iλ(u) for all u ∈ Eλ and it suffices to construct small minimax levels
for Iλ.

Note that

inf

{∫

RN
|∇φ|pdx : φ ∈ C∞

0 (RN, R), |φ|p = 1

}
= 0.

For any 1 > δ > 0 one can choose φδ ∈ C∞
0 (RN) with |φδ|p = 1 and

supp φδ ⊂ Brδ
(0) so that |∇φδ|

p
p < δ. Set

fλ = φδ(λ
1
p x), (25)

then

supp fλ ⊂ B
λ
− 1

p rδ

(0).
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Thus, for t ≥ 0,

Iλ(t fλ) ≤
C0

p
t

p
θ

(∫

RN
|∇A fλ|

pdx

)1/θ

+
tp

p

∫

RN
λV(x)| fλ |

pdx − tsl0λ
∫

RN
| fλ|

sdx

= λ
1− N

p

[
C0

p
t

p
θ

(
λ

1− N
p

) 1
θ−1

(∫

RN
|∇Aφδ|

pdx

)1/θ

+
tp

p

∫

RN
V
(

λ
− 1

p x
)
|φδ|

pdx −tsl0

∫

RN
|φδ|

sdx

]

≤ λ
1− N

p

[
C0

p
t

p
θ

(∫

RN
|∇Aφδ|

pdx

)1/θ

+
tp

p

∫

RN
V
(

λ
− 1

p x
)
|φδ|

pdx

−tsl0

∫

RN
|φδ|

sdx

]

= λ
1− N

p Ψλ(tφδ),

where Ψλ ∈ C1(Eλ, R) defined by

Ψλ(u) :=
C0

p

(∫

RN
|∇Au|pdx

)1/θ

+
1

p

∫

RN
V
(

λ
− 1

p x
)
|u|pdx − l0

∫

RN
|u|sdx.

Since s >
p
θ , thus there exists finite number t0 ∈ [0,+∞) such that

max
t≥0

Ψλ(tφδ) =
C0

p
t

p
θ
0

(∫

RN
|∇Aφδ|

pdx

)1/θ

+
t

p
0

p

∫

RN
V
(

λ
− 1

p x
)
|φδ|

pdx

−ts
0l0

∫

RN
|φδ|

sdx

≤
C0

p
t

p
θ
0

(∫

RN
|∇Aφδ|

pdx

)1/θ

+
t

p
0

p

∫

RN
V
(

λ
− 1

p x
)
|φδ|

pdx.

On the one hand, since V(0) = 0 and note that sup φδ ⊂ Brδ
(0), there is Λδ > 0

such that

V
(

λ
− 1

p x
)
≤

δ

|φδ|
p
p

for all |x| ≤ rδ and λ ≥ Λδ.

This implies that

max
t≥0

Ψλ(tφδ) ≤
C0

p
t

p
σ
0 δ1/σ +

t
p
0

p
δ ≤ T∗δ. (26)

where T∗ :=

(
C0
p t

p
σ
0 +

t
p
0
p

)
. Therefore, for all λ ≥ Λδ,

max
t≥0

Jλ(tφδ) ≤ T∗δλ
1− N

p . (27)

Thus we have the following lemma.
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Lemma 4.3. Under the assumption of Lemma 4.1, for any κ > 0 there exists Λκ > 0

such that for each λ ≥ Λκ, there is f̂λ ∈ Eλ with ‖ f̂λ‖ > ρλ, Jλ( f̂λ) ≤ 0 and

max
t∈[0,1]

Jλ(t f̂λ) ≤ κλ
1− N

p . (28)

Proof. Choose δ > 0 so small that T∗δ ≤ κ. Let fλ ∈ Eλ be the function defined
by (25). Taking Λκ = Λδ. Let t̂λ > 0 be such that t̂λ‖ fλ‖λ > ρλ and Jλ(t fλ) ≤ 0

for all t ≥ t̂λ. By (27), let f̂λ = t̂λ fλ we know that the conclusion of Lemma 4.3
holds.

For any m∗ ∈ N, one can choose m∗ functions φi
δ ∈ C∞

0 (RN) such that supp φi
δ

∩ supp φk
δ = ∅, i 6= k, |φi

δ|s = 1 and |∇φi
δ|

p
p < δ. Let rm∗

δ > 0 be such that

supp φi
δ ⊂ Bi

rδ
(0) for i = 1, 2, · · · , m∗. Set

f i
λ(x) = φi

δ(λ
1
p x), for i = 1, 2, · · · , m∗ (29)

and
Hm∗

λδ = span{ f 1
λ , f 2

λ, · · · , f m∗

λ }.

Observe that for each u =
m∗

∑
i=1

ci f i
λ ∈ Hm∗

λδ ,

∫

RN
|∇Au|pdx =

m∗

∑
i=1

|ci|
p
∫

RN
|∇A f i

λ|
pdx,

∫

RN
V(x)|u|pdx =

m∗

∑
i=1

|ci|
p
∫

RN
V(x)| f i

λ|
pdx,

1

p∗

∫

RN
|u|p

∗
dx =

1

p∗

m∗

∑
i=1

|ci|
p∗
∫

RN
| f i

λ|
p∗dx

and ∫

RN
H(x, |u|p)dx =

m∗

∑
i=1

∫

RN
H(x, ci f i

λ)dx.

Therefore

Jλ(u) =
m∗

∑
i=1

Jλ(ci f i
λ)

and as before

Jλ(ci f i
λ) ≤ λ

1− N
p Ψ(|ci| f

i
λ).

Set
βδ := max{|φi

δ|
p
p : j = 1, 2, · · · , m∗}

and choose Λm∗δ > 0 so that

V(λ
− 1

p x) ≤
δ

βδ
for all |x| ≤ rm∗

δ and λ ≥ Λm∗δ.
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As before, we can obtain the following

max
u∈Hm∗

λδ

Jλ(u) ≤ m∗T∗δλ
1− N

p (30)

for all λ ≥ Λm∗δ.
Using this estimate we have the following.

Lemma 4.4. Under the assumptions of Lemma 4.1, for any m∗ ∈ N and κ > 0 there
exists Λm∗κ > 0 such that for each λ ≥ Λm∗κ , there exists an m∗-dimensional subspace
Fλm∗ satisfying

max
u∈Fλm∗

Jλ(u) ≤ κλ
1− N

p .

Proof. Choose δ > 0 so small that m∗T∗δ ≤ κ. Taking Fλm∗ = Hm∗

λδ = span{ f 1
λ, f 2

λ,

· · · , f m∗

λ }, where f i
λ(x) = φi

δ(λ
1
p x), for i = 1, 2, · · · , m∗ are given by (29). From

(30), we know that the conclusion of Lemma 4.4 holds.

We now establish the existence and multiplicity results.
Proof of Theorem 2.1. Using Lemma 4.3, we choose Λσ > 0 and define for
λ ≥ Λσ, the minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(t f̂λ)

where
Γλ := {γ ∈ C([0, 1], Eλ) : γ(0) = 0 and γ(1) = f̂λ}.

By Lemma 4.1, we have αλ ≤ cλ ≤ σ0λ
1− N

p . In virtue of Lemma 3.4, we know
that Jλ satisfies the (PS)cλ

condition, there is uλ ∈ Eλ such that J′λ(uλ) = 0 and
Jλ(uλ) = cλ. Then uλ is a solution of (8). Moreover, it is well known that such a
Mountain-Pass solution is a least energy solution of (8).

Such uλ is a critical point of Jλ, for τ ∈
[ p

θ , p∗
]
,

σλ
1− N

p ≥ Jλ(uλ) = Jλ(uλ)−
1

τ
J′λ(uλ)uλ

=
1

p
G
( ∫

RN
|∇Auλ|

pdx
)
−

1

τ
g
( ∫

RN
|∇Auλ|

pdx
) ∫

RN
|∇Auλ|

pdx

+

(
1

p
−

1

τ

) ∫

RN
λV(x)|uλ |

pdx +

(
1

τ
−

1

p∗

)
λ
∫

RN
|uλ|

p∗dx

+ λ
∫

RN

[
1

τ
h(x, |uλ|

p)|uλ|
p −

1

p
H(x, |uλ|

p)

]
dx

≥

(
θ

p
−

1

τ

)
α0

∫

RN
|∇Auλ|

pdx +

(
1

p
−

1

τ

) ∫

RN
λV(x)|uλ |

pdx

+

(
1

τ
−

1

p∗

)
λ
∫

RN
|uλ|

p∗dx +

(
µ

τ
−

1

p

)
λ
∫

RN
H(x, |uλ|

p)dx, (31)

where µ is the constant in (H). Taking τ =
p
θ yields the estimate (9), and taking

τ = µ gives the estimate (10) hence the existence is proved.
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Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets
of E by Σ, for each Z ∈ Σ. Let gen(Z) be the Krasnoselski genus and

i(Z) := min
h∈Γm∗

gen(h(Z) ∩ ∂Bρλ
),

where Γm∗ is the set of all odd homeomorphisms h ∈ C(Eλ, Eλ) and ρλ is the
number from Lemma 4.1. Then i is a version of Benci’s pseudoindex [8]. Let

cλi := inf
i(Z)≥i

sup
u∈Z

Jλ(u), 1 ≤ i ≤ m∗.

Since Jλ(u) ≥ αλ for all u ∈ ∂B+
ρλ and since i(Fλm∗) = dim Fλm∗ = m∗,

αλ ≤ cλ1 ≤ · · · ≤ cλm∗ ≤ sup
u∈Hλm∗

Jλ(u) ≤ σλ
1− N

p .

It follows from Lemma 3.4 that Jλ satisfies the (PS)cλ
condition at all levels ci. By

the usual critical point theory, all ci are critical levels and Jλ has at least m∗ pairs
of nontrivial critical points.

5 A special case of problem (1)

We consider the following the special case of problem (1):




−εp
(

a + b
∫

RN |∇Au|pdx
)

∆pu + V(x)|u|p−2u = |u|p
∗−2u + h(x, u), x ∈ RN,

u(x) → 0, as |x| → ∞,
(32)

where 1 < p <
µ
2 , a and b are positive constants.

Set g(t) = a + bt. Then, g(t) ≥ a and

G(t) =
∫ 1

0
g(s)ds = at +

1

2
bt2 ≥

1

2
(a + bt)t = σg(t)t,

where σ = 1/2. Hence the conditions (g1) and (g2) are satisfied. In view of
Theorem 1.1, we have the following corollary.

Corollary 5.1. Let (V), (A) and (H) be satisfied. Thus

(I) For any κ > 0 there is Eκ > 0 such that if ε ≤ Eκ problem (32) has at least one
solution uε satisfying

θµ − 1

p

∫

RN
H(x, |uε|

p)dx +

(
θ

p
−

1

p∗

) ∫

RN
|uε|

p∗dx ≤ κεN , (33)

(
θ

p
−

1

µ

)
α0

∫

RN
|∇Auε|

pdx +

(
1

p
−

1

µ

) ∫

RN
λV(x)|uε |

pdx ≤ κεN . (34)

Moreover, uε → 0 in W1,p(RN) as ε → 0.

(II) Assume additionally that h(x, t) is odd in t, for any m ∈ N and κ > 0 there
is Emκ > 0 such that if ε ≤ Emκ, problem (1) has at least m pairs of solutions
uε,i, uε,−i, i = 1, 2, · · · , m which satisfy the estimates (33) and (34). Moreover,
uε,i → 0 in W1,p(RN) as ε → 0, i = 1, 2, · · · , m.
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