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Abstract

We prove the existence of an additive semigroup of cardinality 2c

contained in the intersection of the classes of Hamel functions (HF) and
Sierpiński-Zygmund functions (SZ). In addition, we show that under certain
set-theoretic assumptions the lineability of the class of Sierpiński-Zygmund
functions (SZ) is equal to the lineability of the class of almost continuous
Sierpiński-Zygmund functions (AC ∩ SZ).

1 Introduction

The symbols N, Q, and R denote the sets of positive integers, rational and real
numbers, respectively. The cardinality of a set X is denoted by the symbol |X|. In
particular, |N| is denoted by ω and |R| is denoted by c. We consider only real-
valued functions. No distinction is made between a function and its graph. For
any two partial real functions f , g we write f + g, f − g for the sum and difference
functions defined on dom( f ) ∩ dom(g). We write f |A for the restriction of f to
the set A ⊆ R. For any subset Y of a vector space V over the field E, any v ∈ V,
and any e ∈ E we define v + Y = {v + y : y ∈ Y} and eY = {ey : y ∈ Y}.

Recently, there have been lots of attention devoted to finding "large" struc-
tures (e.g., vector spaces, algebras) contained in various families of real functions
(see [1, 3-6, 8-10, 12, 16, 18]). In this article we also consider “less restrictive”
structures like groups and even semigroups. In case of many classes of func-
tions the problem is trivially solved by using already known results about vector
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spaces contained in those classes (as these vector spaces have maximal possible
dimensions). However, in certain situations looking for the "largest" group or
semigroup may be of interest.

We will recall here some of the most recent definitions related to the theory of
lineability (see [3, 5, 6]). Let V be a vector space over the field E, F ⊆ V, and κ be
a cardinal number. We say that F is star-like (with respect to E) if eF ⊆ F for all
e ∈ E \ {0}. In addition, F is defined to be κ-lineable (over E) if F ∪ {0} contains
a subspace of V of dimension κ. The (coefficient of) lineability of the subset F over
the field E is denoted by LE(F ) and defined as follows

LE(F ) = min{κ : F is not κ-lineable over E}.

In the case E = R we simply write L(F ).

Proposition 1.1. Let V be a vector space over the field E2 and E1 be a subfield of
E2. If F ⊆ V is star-like with respect to E2, then the following holds.

(1)

LE1
(F ) ≥

{

((LE2
(F )− 1) · dimE1

(E2))
+ , if LE2

(F ) < ω

LE2
(F ) · (dimE1

(E2))
+ , otherwise.

(2) If E1 is the smallest subfield of E2 and G is an additive group contained in
F ∪ {0}, then E1G =

⋃

e∈E1
eG is a vector subspace of V over E1 contained

in F ∪ {0}.

Proof. (1) Choose any κ < LE2
(F ) and let W ⊆ V be a subspace over E2 contained

in F ∪ {0} such that dimE2
(W) = κ. Obviously, W is also a subspace when

considered over E1 and it can be verified that

dimE1
(W) = κ · dimE1

(E2).

Indeed, if { fξ : ξ < κ} is a basis of W over E2, then {qλ fξ : ξ < κ, λ < dimE1
(E2)}

is a basis of W over E1, where {qλ : λ < dimE1
(E2)} is a basis of E2 over E1.

Now, if LE2
(F ) < ω then the largest possible κ is LE2

(F )− 1 and in this case
dimE1

(W) = (LE2
(F ) − 1) · dimE1

(E2) and consequently LE1
(F ) ≥

((LE2
(F )− 1) · dimE1

(E2))
+.

If LE2
(F ) ≥ ω, then LE1

(F ) ≥ max{LE2
(F ), (dimE1

(E2))
+} = LE2

(F ) ·
(dimE1

(E2))
+.

(2) Since G ⊆ F ∪ {0} and F is star-like obviously E1G ⊆ F ∪ {0}. Additionally,
observe that

E1 =

{

±
en

ek
: k, n ∈ Z+ and ek 6= 0, where ei is the sum of i 1’s

}

∪ {0}.

Therefore, for all g1, g2 ∈ G and q1, q2 ∈ E1 \ {0} we have

q1g1 + q2g2 = ±
en1

ek1

g1 ±
en2

ek2

g2 =
1

ek1
ek2

(±en1
ek2

g1 ± en2ek1
g2) ∈ E1G.

Hence, E1G is a vector subspace of V over E1 contained in F ∪ {0}.



Algebraic structures within subsets of Hamel ... 449

Observe that in general, the weak inequality in part (1) cannot be replaced by
equality neither strict inequality. Indeed, if F is a vector space over E2, then there
is equality in part (1). On the other hand if we pick V = RR, E1 = Q, E2 = R,
B to be a basis of V over E2, and define F = spanQ(B) ∪

⋃

e∈R eB then we have

LE1
(F ) = (2c)+ and LE2

(F ) = 2. Hence in that case there is strict inequality >

in part (1).
As a consequence of the above proposition, let us note here that if E1 = Q

and E2 = R then for any star-like F we have that LQ(F ) ≥ (dimQ(R))+ = c
+.

Additionally, every additive group contained in F ∪ {0} has cardinality less than
LQ(F ).

In this article we consider the following classes of functions. A function
f : R → R is:

• an extendability function provided there exists a connectivity function
F : R × [0, 1] → R such that f (x) = F(x, 0) for every x ∈ R ( f ∈ Ext);

• almost continuous (in sense of Stallings) if each open subset of R2 containing
the graph of f contains also the graph of a continuous function from R to R

( f ∈ AC);

• Hamel function if the graph of f is a Hamel basis for R2 ( f ∈ HF);

• Sierpiński-Zygmund if for every set Y ⊆ R of cardinality continuum c, f |Y is
discontinuous ( f ∈ SZ).

Recall here that the class of all continuous functions is contained in Ext, Ext ⊆
AC, Ext ∩ SZ = ∅, AC ∩ SZ 6= ∅ under additional set-theoretical assumptions
(e.g., CH, Martin’s Axiom), Ext ∩ HF 6= ∅, AC ∩ HF 6= ∅, and HF ∩ SZ 6= ∅

(see [17]). In addition, a function f : R → R is almost continuous if and only
if it intersects every blocking set, i.e., a closed set K ⊆ R2 which meets every
continuous function and is disjoint with at least one function from R to R. The
domain of every blocking set contains a non-degenerate connected set. (See [11].)
For f ∈ F ⊆ RR we say that a set A ⊆ R is f -negligible with respect to F if for
every function g such that f |(R \ A) ≡ g|(R \ A) we have that g ∈ F .

It is known that L(SZ) > c
+ (see [9]) and that 2c-lineability of SZ is unde-

cidable in ZFC (see [10]). In [10] the authors also proved (Theorem 2.2) that for
any c < κ ≤ 2c, L(SZ) > κ is equivalent to the existence of an additive group in
SZ ∪ {0} of cardinality κ. This immediately implies the following property.

Remark 1.2. LQ(SZ) = L(SZ).

In the case of Hamel functions we have the following: L(HF) = 2 and
LQ(HF) = c

+ (see [18]).
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2 Semigroup in HF ∩ SZ and lineability of AC ∩ SZ

We will be using the following two lemmas to prove the existence of "large" semi-
groups in HF ∩ SZ, Ext ∩ HF, and AC ∩ HF ∩ SZ (under the assumption of CH).

Lemma 2.1. [17, Lemma 7] Let V ⊆ Rn be a Hamel basis and v′ ∈ V. For each
v ∈ V fix qv ∈ Q such that qv′ 6= −1. Then the set V ′ = {v + qvv′ : v ∈ V} is also
a Hamel basis.

Lemma 2.2. There exists a function h ∈ HF ∩ Ext and a set X ⊆ R of cardinality
c which is h-negligible with respect to Ext. Assuming CH, there exists a function
h ∈ AC ∩ HF ∩ SZ and a set X ⊆ R of cardinality c which is h-negligible with
respect to AC.

Proof. Let F ⊆ R be a linearly independent c-dense Fσ set (see [14, Theorem
11.7.2]). Then there exists a function f ∈ Ext such that R \ F is f -negligible
(see [7]). Using [17, Fact 6] we obtain the existence of a function h ∈ HF such
that h|F ≡ f |F. Obviously, h ∈ Ext and X = R \ F is h-negligible with respect to
Ext.

In the proof of Theorem 2 in [17] (page 123) a function h is constructed which
belongs to AC ∩ HF ∩ SZ (under CH). One can easily see that this function h has
a dense graph. It is known that for an almost continuous function f with a dense
graph, every nowhere dense set is f -negligible with respect to AC (see [13]).

Theorem 2.3. Both HF ∩ Ext and HF ∩ SZ contain an additive semigroup of size
2c. In addition, assuming CH, the same holds for AC ∩ HF ∩ SZ.

Proof. We will prove the statement for the family AC ∩ HF ∩ SZ. By the previous
lemma, under the assumption of CH there exists a function h ∈ AC ∩ HF ∩ SZ
and a set X ⊆ R of cardinality c which is h-negligible with respect to AC. Define
H = {qh + h(0)g : q ∈ Q+, g ∈ Q+(X)} where Q+ is the set of positive ratio-
nals and Q+(X) = { f ∈ RR : f |(R \ X) ≡ 0 and f (x) ∈ Q+ for x ∈ X}. Since
h(0) 6= 0 (for every f ∈ HF, f (0) 6= 0) we conclude that |H| = 2c. Next observe
that H is closed under addition as both Q+ and Q+(X) are closed under addition.

Finally we will justify that H ⊆ AC ∩ HF ∩ SZ. Obviously H ⊆ AC as AC is
star-like and X is h-negligible with respect to AC. To see H ⊆ HF recall that HF

is star-like and then use Lemma 2.1 with V = h, v′ = (0, h(0)), and qv = g(x)
q for

v = (x, h(x)), q ∈ Q+, g ∈ Q+(X) to conclude that h + h(0) g
q is a Hamel function

(h + h(0) g
q is V ′ from Lemma 2.1). Consequently, qh + h(0)g = q(h + h(0) g

q ) ∈

HF.
To see H ⊆ SZ recall that SZ is star-like and observe that h(0)g is a countably

continuous function (e.g., union of countably many partial continuous functions)
for all g ∈ Q+(X). This implies qh + h(0)g ∈ SZ.

The existence of semigroups of cardinality 2c in HF ∩ Ext and HF ∩ SZ can be
justified in a very similar way (in the case of HF ∩ SZ use X = R).
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Theorem 2.4. Assume CH. Then L(AC ∩ SZ) > c
+.

Proof. Let F = { fγ : γ < c} ⊆ (AC∩ SZ)∪ {0} be a vector space of dimension ≤
c. We will show that there exists an h ∈ AC ∩ SZ \ F such that h +F ⊆ AC ∩ SZ.
Since AC ∩ SZ is star-like the latter will imply that {ah : a ∈ R}+ F is a vector
space in (AC ∩ SZ) ∪ {0} such that F ( {ah : a ∈ R} + F . Next using Zorn’s
lemma we will be able to conclude that (AC ∩ SZ) ∪ {0} contains a vector space
of dimension c

+.
Let G = {gα : α < c} be the set of all continuous functions defined on Gδ

subsets of R = {xα : α < c}. For every α < c define Uα to be the maximal open
set such that dom(gα \

⋃

ξ<α gξ) is residual in Uα. We will construct by induction
a sequence of partial functions hα (α < c) such that:

(i) hξ ⊆ hα for ξ < α;

(ii) |dom(hα)| ≤ ω and xα ∈ dom(hα);

(iii) (gζ ∩ ( fγ + hα)) ⊆ ( fγ + hξ) for ζ, γ ≤ ξ < α;

(iv) fγ + hα is dense subset of (gζ \
⋃

ξ<ζ gξ)|Uζ for ζ, γ ≤ α.

We start the construction of the sequence hα (α < c) by defining h0(x0) arbi-
trarily. Next choose a countable dense subset D0 ⊆ (dom(g0) ∩ U0) \ {x0} and
put ( f0 + h0)|D0 ≡ g0|D0 (or equivalently h0|D0 ≡ (g0 − f0)|D0). It is easy to see
that h0 satisfies all the conditions (i)-(iv).

Now fix α < c and assume that the sequence hβ has been defined for all β < α
satisfying the conditions (i)-(iv). Put hα =

⋃

β<α hβ. If xα /∈ dom(hα), then choose

hα(xα) ∈ R \
⋃

γ,β<α

{gβ(xα)− fγ(xα)}).

Next notice that since the conditions (i)-(iv) are satisfied for all β < α to have that

fγ + hα is dense in (gζ \
⋃

ξ<ζ

gξ)|Uζ for ζ, γ ≤ α

it suffices to assure the above condition for ζ = α or γ = α. Choose a collection of
pairwise disjoint countable sets Dγ,ξ ((γ < α and ξ = α) or (γ = α and ξ ≤ α))
contained in

R \



dom(hα) ∪
⋃

ξ1,ξ2,γ1,γ2≤α,γ1 6=γ2

dom((gξ1
− gξ2

) ∩ ( fγ1
− fγ2))



 ,

such that Dγ,α is dense subset of dom(gα \
⋃

β<α gβ) ∩ Uα (γ < α) and Dα,ξ is

dense subset of dom(gξ \
⋃

β<ξ gβ) ∩Uξ (ξ ≤ α). Note here that the above choice

is possible as |dom((gξ1
− gξ2

) ∩ ( fγ1
− fγ2))| ≤ ω for ξ1, ξ2, γ1, γ2 ≤ α, γ1 6= γ2

because gξ1
− gξ2

is a continuous function, fγ1
− fγ2 ∈ SZ, and we work under

the assumption of CH. Now we define fγ + hα|Dγ,α ≡ gα|Dγ,α for γ < α and
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fα + hα|Dα,ξ ≡ gξ |Dα,ξ for ξ ≤ α. This finishes the construction of hα. It is clear
that hα satisfies the conditions (i), (ii), and (iv).

To see that the condition (iii) is also satisfied let us pick ξ < α and
ζ, γ ≤ ξ. By the inductive assumption we obtain that (gζ ∩ ( fγ +

⋃

β<α hβ)) ⊆

( fγ + hξ). Therefore to conclude that (gζ ∩ ( fγ + hα)) ⊆ ( fγ + hξ) we need to
justify that gζ ∩ ( fγ + hα|{xα}) = ∅, gζ ∩ ( fγ + hα|Dγ1,α) = ∅ (γ1 < α), and
gζ ∩ ( fγ + hα|Dα,ξ) = ∅ (ξ ≤ α). The equality gζ ∩ ( fγ + hα|{xα}) = ∅ easily fol-
lows from the definition of hα(xα). To see gζ ∩ ( fγ + hα|Dγ1,α) = ∅ (γ1 < α)
note that gζ ∩ ( fγ + hα|Dγ1,α) = gζ ∩ ( fγ − fγ1

+ gα)|Dγ1,α. If γ = γ1, then
gζ ∩ ( fγ + hα|Dγ1,α) = gζ ∩ gα|Dγ1,α = ∅ as Dγ1,α ⊆ dom(gα \

⋃

β<α gβ). If γ 6= γ1,

then gζ ∩ ( fγ + hα|Dγ1,α) = (gζ − gα) ∩ ( fγ − fγ1
)|Dγ1,α = ∅ as

Dγ1,α ∩
⋃

ξ1,ξ2,γ1,γ2≤α,γ1 6=γ2

dom((gξ1
− gξ2

) ∩ ( fγ1
− fγ2)) = ∅.

Very similarly we can justify that gζ ∩ ( fγ + hα|Dα,ξ) = ∅ (ξ ≤ α). Hence the
condition (iii) holds for hα. This finishes the inductive definition of the sequence
hα (α < c) satisfying the conditions (i)-(iv).

Define h =
⋃

α<c
hα. Obviously dom(h) = R. The conditions (ii)-(iii) imply

that h + fγ ∈ SZ for all γ < c as any partial continuous function can be extended
to a continuous function on a Gδ subset of R (see [15]) and (gζ ∩ ( fγ + h)) ⊆
( fγ + hmax(ζ,γ)) for all ζ < c.

Next we will argue that h + fγ is almost continuous for every γ < c. Let
B ⊆ R2 be any blocking set. There exists a non-empty open interval I ⊆ dom(B)
and a continuous function g such that dom(g) is Gδ dense subset of I and
g ⊆ B. Let ζ0 be the smallest ordinal number with the property that gζ0

|I ⊆ B
and dom(gζ0

) ∩ I is residual in I for some non-empty open interval I ⊆ dom(B).
Then dom(gζ0

\
⋃

ξ<ζ0
gξ) is also residual in I (since we assume CH). Therefore,

I ⊆ Uζ0
and since fγ + h is dense subset of (gζ0

\
⋃

ξ<ζ0
gξ)|Uζ0

(condition (iv) for
α = max(γ, ζ0)) we obtain that

∅ 6= (h + fγ) ∩ (gζ0
\

⋃

ξ<ζ0

gξ)|I ⊆ (h + fγ) ∩ gζ0
|I ⊆ (h + fγ) ∩ B.

This implies that h + fγ ∈ AC.
Let us mention here that assuming GHC the above theorem implies that

AC ∩ SZ is 2c-lineable and consequently L(AC ∩ SZ) = L(SZ). On the other
hand, there is a model of ZFC (see [2]) in which AC ∩ SZ = ∅. These two obser-
vations imply the following.

Corollary 2.5.

(1) It is consistent with ZFC that L(AC ∩ SZ) = L(SZ).

(2) It is consistent with ZFC that L(AC ∩ SZ) < L(SZ).

It would be interesting to know if it is possible to have AC ∩ SZ 6= ∅ and
L(AC ∩ SZ) < L(SZ). We state that as an open problem.

Problem 2.6. Is it consistent with ZFC that AC ∩ SZ 6= ∅ and L(AC ∩ SZ) <

L(SZ)?
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