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Abstract

The Cesàro operator Cp : Lp([0, 1]) → Lp([0, 1]), a classical kernel opera-
tor, induces the vector measure mp : A 7→ Cp(χA

) which generates a factor-

ization of Cp through L1(mp) via the integration map Imp : f 7→
∫ 1

0 f dmp,

for f ∈ L1(mp). This provides a technique to investigate various operator
theoretic properties of Cp. Even though the variation measure |mp| of mp is
finite it turns out, atypically for a kernel operator, that the restriction of Imp

to L1(|mp|) ⊆ L1(mp) is not an extension of Cp, that is, Cp fails to factorize
through the more traditional space L1(|mp|).

1 Introduction and main results.

Let L be a Banach function space (briefly, B.f.s.) over some positive measure space
(Ω, Σ, µ), X be a Banach space and T : L → X be a continuous linear opera-
tor. Under favorable circumstances the set function mT : A 7→ T(χ

A
), provided

that each χ
A
∈ L, is a σ-additive, X-valued measure (i.e. a vector measure) and

so the associated B.f.s. L1(mT) consisting of all the mT-integrable functions is
available together with the X-valued integration map ImT : f 7→

∫
Ω

f dmT, for

f ∈ L1(mT). For a simple function s it is clear that ImT(s) = T(s) and so, if
L ⊆ L1(mT) continuously, then ImT is a continuous X-valued extension of T. That
is, one can factorize T as T = ImT ◦ J, where J : L → L1(mT) is the natural inclu-
sion. This particular factorization has the desirable feature that ImT is the optimal
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extension of T within the class of all B.f.s.’ on (Ω, Σ, µ) which have order contin-
uous norm and contain L continuously; see [13]. Typical operators T which are
susceptible to this approach are those generated by a measurable kernel (usually
with certain properties); see, for instance, [2], [3], [4], [5], [6], [13], [14] and the
references therein. For the variation measure |mT| : Σ → [0, ∞], [7, p.2], of mT we
always have that L1(|mT|) ⊆ L1(mT) continuously, [10, Theorem 4.1]. If |mT| is a
finite measure, then it is usually the case that also L ⊆ L1(|mT|). Then the restric-
tion of ImT to the intermediatory space L1(|mT|) provides another factorization of
T. An advantage of this factorization, if available, is that L1(|mT|) is a classical
B.f.s., which may be preferable to the less wieldy space L1(mT).

The aim of this note is to invoke this approach to investigate a classical kernel
operator of a different type; it is generated by a kernel that does not satisfy the
usual properties required in the above cited literature. More precisely, let λ be
Lebesgue measure on the σ-algebra B of all Borel subsets of Ω := [0, 1]. For each
1 ≤ p < ∞ let Lp denote the Banach space of all p-th power integrable functions
f on Ω equipped with the norm ‖ f‖p := (

∫
Ω
| f |p dλ)1/p . Of course, L∞ has its

essential sup-norm ‖ · ‖∞. A well known result of G.H. Hardy ensures that the
kernel operator

Cp f : x 7→
1

x

∫ x

0
f (y) dy, x ∈ (0, 1], (1.1)

is continuous from Lp into itself, [8, p.240]. The operator Cp : Lp → Lp is tradi-
tionally called the Cesàro operator. In order to formulate the main results concern-
ing Cp we require a few preliminaries.

Since Lp has order continuous norm (i.e., whenever a sequence { fn}∞

n=1 ⊆ Lp

decreases to 0 a.e. in [0, 1], then ‖ fn‖p → 0 for n → ∞), the finitely additive set
function mp : B → Lp defined by

mp(A) := Cpχ
A

, A ∈ B, (1.2)

is actually σ-additive, for each 1 < p < ∞. Clearly mp(A) ∈ L∞, for each

A ∈ B; see (1.1) and (1.2). Concerning the B.f.s. L1(mp), [13, Ch. 3], recall that a

measurable function f : Ω → C belongs to L1(mp) precisely when:

(I-1)
∫

Ω
| f | d|〈mp, ξ〉| < ∞ for every ξ ∈ Lp′ , and

(I-2) for each A ∈ B, there exists an element of Lp, denoted by
∫

A f dmp, satisfy-

ing 〈
∫

A f dmp, ξ〉 =
∫

A f d〈mp, ξ〉 for all ξ ∈ Lp′ .

Here 1
p + 1

p′ = 1 and 〈mp, ξ〉 is the C-valued measure defined on B via

A 7→ 〈mp(A), ξ〉. Since Lp is reflexive, condition (I-2) actually follows from

(I-1), [10, Theorem 5.1]. The (Banach lattice) norm in L1(mp) is given by

‖ f‖L1(mp)
:= sup

‖ξ‖p′≤1

∫

Ω

| f | d|〈mp, ξ〉|, f ∈ L1(mp). (1.3)

Theorem 1.1. Let 1 < p < ∞ and mp : B → Lp be given by (1.2).
(i) The vector measure mp has the same null sets as λ. Furthermore, mp has finite

variation given by

|mp|(A) = (p − 1)−1/p
∫

A
(y1−p − 1)1/p dy, A ∈ B, (1.4)
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and the natural inclusion
L1(|mp|) $ L1(mp) (1.5)

is continuous and proper. In addition, the range mp(B) of mp is a relatively compact
subset of Lp.

(ii) The Banach space Lp 6⊂ L1(|mp|) and so also L1 6⊂ L1(|mp|). In particular,

the restricted integration map I|mp| : L1(|mp|) → Lp, necessarily continuous, is not an

extension of Cp : Lp → Lp.

(iii) The Banach space L1(|mp|) 6⊂ L1. Hence, L1 and L1(|mp|) are not comparable.

(iv) The inclusion Lp $ L1(mp) is proper and Imp f ∈ Lp is the function

Imp f : x 7→
1

x

∫ x

0
f (y) dy, x ∈ (0, 1], (1.6)

for each f ∈ L1(mp).

(v) Neither of the two integration operators I|mp| : L1(|mp|) → Lp or

Imp : L1(mp) → Lp is compact.

As mentioned earlier, that L1(|mp|) is not intermediatory between Lp and

L1(mp) is unexpected. In this regard we note that L1(|mp|) is equipped with its

classical L1-norm
∫

Ω
| f | d|mp| and not the norm inherited from L1(mp).

Let L0 denote the space of (equivalence classes λ-a.e. of) all measurable func-
tions on Ω. The kernel K : (0, 1] × [0, 1] → [0, ∞) which induces the Cesàro
operator (1.1), namely

K(x, y) :=
1

x
χ
[0,x]

(y) =
1

x
χ
[y,1]

(x), (1.7)

satisfies both of the conditions (K1) and (K2) in Section 2 of [5]. Define the optimal
lattice domain of Cp as in [5] by

[Cp, Lp] := { f ∈ L0 : Cp| f | ∈ Lp}, (1.8)

where Cp| f | ∈ Lp means that
∫

Ω
K(x, y)| f (y)| dy < ∞ for a.e. x ∈ Ω and the

resulting function Cp| f | : x 7→
∫

Ω
K(x, y)| f (y)| dy belongs to Lp. Then the linear

space [Cp, Lp], equipped with the norm

‖ f‖[Cp,Lp] := ‖Cp| f | ‖p, f ∈ [Cp, Lp], (1.9)

is a B.f.s. (over (Ω,B, λ)) containing L∞ and the so defined linear map
Cp : [Cp, Lp] → Lp is a positive operator between Banach lattices with operator
norm 1, [5, Proposition 2.1]. Clearly, Lp ⊆ [Cp, Lp] continuously. What is the

connection between [Cp, Lp] and L1(mp) ?

Theorem 1.2. Let 1 < p < ∞. Then [Cp, Lp] = L1(mp) with

‖ f‖L1(mp)
= ‖ f‖[Cp,Lp] = ‖Cp| f | ‖p, f ∈ L1(mp). (1.10)

Moreover, ∫

Ω

f dmp = Imp f = Cp f , f ∈ L1(mp). (1.11)
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It is important to note that Theorem 1.2 does not follow from Proposition 5.2
of [2]. Indeed, in order to be able to apply that result it is required that the range
mp(B) of mp lies in the Banach space C(Ω). Unfortunately, this is not the case; see
Proposition 1.3 below. The results of Section 3 in [5] are also not applicable to mp.
Indeed, for each 0 < b < 1, direct calculation shows that mp((0, b]) is the function

x 7→ χ
(0,b]

(x) +
b

x
χ
[b,1]

(x), x ∈ (0, 1], (1.12)

and hence, ‖mp((0, b])‖∞ = 1. Accordingly, mp : B → L∞ is not σ-additive,
thereby violating a necessary condition assumed throughout Section 3 of [5].

Proposition 1.3. Let 1 < p < ∞.
(i) For each f ∈ L1, the function Cp f : x 7→ 1

x

∫ x
0 f (y) dy is continuous on (0, 1].

(ii) There exists a set A ∈ B such that the continuous function Cpχ
A
= mp(A) :

(0, 1] → [0, ∞) fails to be right-continuous at 0, i.e., mp(A) /∈ C(Ω).

2 Proofs and further results

Throughout this section we assume that 1 < p < ∞. Define the function
Fp : [0, 1] → Lp by Fp(y) := Ky, where Ky is the partial function x 7→ K(x, y),
for x ∈ (0, 1], and K is the kernel (1.7). That Fp really is Lp-valued is clear from

‖Fp(y)‖p =
( ∫ 1

0
x−pχ

[y,1]
(x) dx

)1/p
= (p − 1)−1/p(y1−p − 1)1/p, (2.1)

for y ∈ (0, 1]. Whenever 0 < t < s ≤ 1 we have Fp(t) − Fp(s) is the function

x 7→ 1
x χ

[t,s]
(x), for x ∈ (0, 1], from which it follows that

‖Fp(t)− Fp(s)‖p = (p − 1)−1/p(t1−p − s1−p)1/p. (2.2)

Since the function y 7→ y1−p is continuous on (0, 1], we can deduce from (2.2) that
Fp : (0, 1] → Lp in continuous. Then the separability of Lp and the Pettis mea-
surability theorem, [7, p.42], ensure that Fp is strongly λ-measurable. According
to [7, p.45, Theorem 2] the function Fp is then Bochner λ-integrable because (2.1)
implies that

∫ 1

0
‖Fp(y)‖p dy = (p − 1)−1/p

∫ 1

0
(y1−p − 1)1/p dy (2.3)

≤ (p − 1)−1/p
∫ 1

0
(y1−p)1/p dy = (p − 1)−1/p

∫ 1

0
y−1/p′ dy < ∞.

Hence, the Lp-valued vector measure A 7→
∫

A Fp dλ, for A ∈ B, has finite variation
given by

A 7→
∫

A
‖Fp(y)‖p dy = (p − 1)−1/p

∫

A
(y1−p − 1)1/p dy, A ∈ B, (2.4)
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[7, p.46, Theorem 4(iv)]. For each 0 ≤ ξ ∈ Lp′ , an application of Fubini’s theorem
reveals that

〈 ∫

A
Fp dλ, ξ

〉
=

∫ 1

0

∫ 1

0
χ

A
(y)χ

[0,x]
(y)ξ(x)/x dx dy = 〈Cpχ

A
, ξ〉,

for each A ∈ B, which implies that

mp(A) := Cpχ
A
=

∫

A
Fp dλ, A ∈ B. (2.5)

This establishes that mp has finite variation with |mp| given by (1.4); see (2.4) and
(2.5). Since Fp is Bochner λ-integrable, it also a consequence of (2.5) that mp(B) is
a relatively compact subset of Lp, [7, p.56, Corollary 9(c)].

Recall that a set A ∈ B is mp-null if mp(B) = 0 for every B ∈ B with B ⊆ A, [13,
pp.106-107]. It is then clear from (1.1) and (1.2) that mp and λ have the same null
sets. In this case, one also says that the operator Cp is λ-determined, [13, p.187].

As already noted in Section 1, the inclusion (1.5) always holds and is continu-
ous, [10, Theorem 4.1]. Moreover, with X(µ) = E := Lp and T := Cp, it follows
from Theorem 4.14 of [13] that

Lp ⊆ L1(mp), (2.6)

with a continuous inclusion. In view of (2.6) and L1(|mp|) ⊆ L1(mp), to show
that the inclusion (1.5) is proper it suffices to establish the following

Lemma 2.1. For each 1 < p < ∞, it is the case that Lp 6⊂ L1(|mp|).

Proof. Fix 1 < p < ∞. Suppose, on the contrary, that Lp ⊆ L1(|mp|).

Then (1.4) implies that
∫ 1

0 | f (y)|ϕ(y) dy < ∞, for all f ∈ Lp, where ϕ(y) :=

(y1−p(1− yp−1))1/p on (0, 1] satisfies 0 ≤ ϕ ∈ Lp′ . Note that δ := (1− 2−p)1/(p−1)

belongs to (0, 1) and that (1− yp−1)1/p ≥ 1
2 for all y ∈ [0, δ]. It follows that ϕ(y) ≥

1
2y−1/p′ , for y ∈ [0, δ]. Since ϕχ

[0,δ]
∈ Lp′ , we can conclude that y 7→ y−1/p′χ

[0,δ]
(y)

belongs to Lp′ , which is however, not the case. So, Lp 6⊂ L1(|mp|).

Up to this stage we observe that parts (i), (ii) of Theorem 1.1 have been com-
pletely verified.

To establish Theorem 1.1(iii), define h by h(y) := (1 − yp−1)−1 for y ∈ [ 1
2 , 1]

and 0 otherwise on [0, 1]. It follows from (1.4) that

∫ 1

0
h d|mp| =

∫ 1

1/2
(1 − yp−1)−1/p′y−1/p′ dy ≤ 21/p′

∫ 1

1/2
(1 − yp−1)−1/p′ dy. (2.7)

Set u := 21−p, so that 0 < u < 1, and substitute y = t1/(p−1) yields

∫ 1

1/2
(1 − yp−1)−1/p′ dy = (p − 1)−1

∫ 1

u
(1 − t)−1/p′ t(2−p)/(p−1) dt. (2.8)

Since t 7→ t(2−p)/(p−1) is bounded on [u, 1], it follows that (2.8) is finite and hence,
via (2.7), that h ∈ L1(|mp|).
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On the other hand, for the same substitution y = t1/(p−1), we have
∫ 1

0
h(y) dy =

∫ 1

1/2
(1 − yp−1)−1 dy =

∫ 1

u
(1 − t)−1t(2−p)/(p−1) dt

≥ Kp

∫ 1

u
(1 − t)−1 dt

with Kp := inf{t(2−p)/(p−1) : t ∈ [u, 1]} > 0. It it then clear that h /∈ L1. This
completes the proof of Theorem 1.1(iii).

If it were the case that L1(|mp|) = L1(mp), then (2.6) yields Lp ⊆ L1(|mp|).

This is a contradiction to Lemma 2.1. So, the inclusion L1(|mp|) $ L1(mp) must
be proper. Granted the validity of Theorem 1.2 for the moment, it is then clear that
(1.6) is valid. This completes the proof of part (iv) of Theorem 1.1.

In order to avoid any `̀ circular logic´́ let us immediately provide the

Proof of Theorem 1.2. Let f ≥ 0 belong to L1(mp). Choose B-simple func-
tions 0 ≤ fn ↑ f a.e. on Ω. It is clear from (1.2) that Cp fn =

∫
Ω

fn dmp ∈ Lp,
for each n ∈ N, i.e., { fn}∞

n=1 ⊆ [Cp, Lp]. For n ≥ m we have, via (1.9), that
‖ fn − fm‖[Cp,Lp] = ‖Cp| fn − fm| ‖p. Since mp(A) ≥ 0 on Ω for all A ∈ B, we also

have that

‖Cp| fn − fm| ‖p =
∥∥∥
∫

Ω

| fn − fm| dmp

∥∥∥
p
= ‖ fn − fm‖L1(mp)

,

[13, Lemma 3.13]. Accordingly, { fn}∞

n=1 is a Cauchy sequence in [Cp, Lp] and so
there exists g ∈ [Cp, Lp] with fn → g in [Cp, Lp] for n → ∞. Since [Cp, Lp] is a B.f.s.
(over (Ω,B, λ)) which contains all B-simple functions, there exists a subsequence
fn(k) → g (λ-a.e.) for k → ∞, [13, Proposition 2.2(ii)]. But, fn ↑ f and so f = g,

i.e., f ∈ [Cp, Lp]. Since every function in L1(mp) is a linear combination of at most

four non-negative functions from L1(mp), it follows that L1(mp) ⊆ [Cp, Lp].
Conversely, suppose that f ∈ [Cp, Lp], i.e., Cp| f | ∈ Lp. Let {hn}∞

n=1 be a
sequence of non-negative B-simple functions increasing to | f | pointwise on Ω.
Fix any A ∈ B. Since the kernel K ≥ 0 (cf. (1.7)), by the monotone conver-
gence theorem the sequence {Cphnχ

A
}∞

n=1 increases pointwise on Ω to the func-

tion Cp| f |χA
≤ Cp| f | ∈ Lp. So, via order continuity of the norm in Lp, the

sequence {
∫

A hn dmp}∞

n=1 = {Cphnχ
A
}∞

n=1 is convergent in Lp. By the arbitrari-

ness of A ∈ B it follows that | f | hence, also f , belongs to L1(mp), [13, Theorem

3.5]. This implies that [Cp, Lp] ⊆ L1(mp). Accordingly, [Cp, Lp] = L1(mp).

The identities in (1.10) now follow from the equality [Cp, Lp] = L1(mp), defi-
nition (1.9) and Lemma 3.13 of [13]. Clearly (1.11) is satisfied for every B-simple
function f . Since such functions are dense in L1(mp), [13, Theorem 3.7(ii)], it fol-

lows from (1.10) that (1.11) actually holds for all f ∈ L1(mp). This completes the
proof of Theorem 1.2.

To establish part (v) of Theorem 1.1 it suffices to show that I|mp| : L1(|mp|) →

Lp is not compact, because then I|mp| = Imp ◦ J̃, with J̃ : L1(|mp|) → L1(mp) denot-

ing the (continuous) identity inclusion, implies that also Imp fails to be compact.
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To this effect, observe if we replace the function gp in Lemma 5.1 of [14] with Fp,
then the proof of the equivalences (i) ⇔ (ii) ⇔ (iii) in that lemma also applies
to the vector measure (1.2) induced by the Cesàro operator Cp. Accordingly, if
Hp : (0, 1] → Lp is the function given by

Hp(y) := (p − 1)1/p(y1−p − 1)−1/pFp(y) = (p − 1)1/py1/p′(1 − yp−1)−1/pFp(y),

for y ∈ (0, 1], then for each f ∈ L1(|mp|) we have

I|mp| f =
∫

Ω

f dmp =
∫

Ω

f‖Fp(·)‖
−1
p Fp d|mp| =

∫

Ω

f Hp d|mp|.

Note that ‖Hp(y)‖p = 1, for y ∈ (0, 1], and that Hp is continuous on (0, 1] because

both Fp and y 7→ y1/p′(1 − yp−1)−1/p are continuous on (0, 1]. Arguing as in the

proof of Proposition 5.2(ii) in [14] it suffices to show that the closure Hp((0, 1]) is
not compact in Lp.

Assume, on the contrary, that Hp((0, 1]) is compact in Lp. Let yn → 0+ in (0, 1].
By compactness there exists ϕ ∈ Lp and a subsequence {yn(k)}

∞

k=1 of {yn}∞

n=1 such
that

lim
k→∞

Hp(yn(k)) = ϕ, in Lp. (2.9)

Passing to a further subsequence, if necessary, we may also suppose that
Hp(yn(k)) → ϕ pointwise a.e. as k → ∞. Since the function Hp(yn(k)) ≥ 0 on

(0, 1], for each k ∈ N, it is clear that ϕ ≥ 0 a.e. Define ξ ∈ Lp′ by ξ(x) := x, for
x ∈ Ω. Then

lim
k→∞

〈Hp(yn(k)), ξ〉 = 〈ϕ, ξ〉 = ‖ϕξ‖1 . (2.10)

On the other hand, for each y ∈ (0, 1], we have

〈Hp(y), ξ〉 = (p − 1)1/py1/p′(1 − yp−1)−1/p〈Fp(y), ξ〉

= (p − 1)1/py1/p′(1 − yp−1)−1/p(1 − y)

from which it follows that limk→∞〈Hp(yn(k)), ξ〉 = 0. Then (2.10) yields that

ϕ = 0. But, (2.9) together with ‖Hp(yn(k))‖p = 1, for each k ∈ N, implies that

‖ϕ‖p = 1; contradiction! This ends the proof of part (v) of Theorem 1.1 and
thereby the entire proof of Theorem 1.1.

It is known, [9], that the spectrum of Cp is the closed disc

σ(Cp) = {z ∈ C : |z −
p′

2
| ≤

p′

2
}, 1 < p < ∞,

and hence, Cp cannot be a compact operator. Since Cp = Imp ◦ J, with

J : Lp → L1(mp) the natural inclusion, this gives an alternate proof of the fact
that Imp cannot be compact.

Proof of Proposition 1.3. (i) Fix f ∈ L1. Let x ∈ (0, 1] and suppose that the
sequence xn → x in (0, 1]. Then the dominated convergence theorem yields that
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limn→∞(Cp f )(xn) = (Cp f )(x). This establishes the continuity of Cp f at the point
x.

(ii) For k ∈ N, choose 0 < ak+1 < bk+1 < ak/2k+1 < ak < bk ≤ 1 such

that ak = bk
2 for k even and ak = 2bk

3 for k odd. Consider the disjoint union
A :=

⋃
∞

k=1(ak , bk). For each k ∈ N we have

bk − ak

bk
=

1

bk

∫ bk

ak

χ
A

dλ ≤
1

bk

∫ bk

0
χ

A
dλ = (Cpχ

A
)(bk)

and also that

(Cpχ
A
)(bk) =

1

bk

∫ bk

ak

χ
A

dλ +
1

bk

∫ bk+1

0
χ

A
dλ ≤

bk − ak

bk
+

bk+1

bk
.

Since
bk+1

bk
≤

bk+1
ak

≤ ak/2k+1

ak
= 1

2k+1 , it follows that

bk − ak

bk
≤ (Cpχ

A
)(bk) ≤

bk − ak

bk
+

1

2k+1
, k ∈ N,

with bk−ak
bk

= 1
2 for k even and bk−ak

bk
= 1

3 for k odd. Accordingly, when k → ∞ with

k even we have (Cpχ
A
)(bk) → 1

2 whereas (Cpχ
A
)(bk) → 1

3 when k → ∞ with k

odd. Since bk ↓ 0, we can conclude that Cpχ
A

is right discontinuous at 0.

Remark 2.2. There surely exist some sets A ∈ B such that Cpχ
A
= mp(A) is right

continuous at 0; see (1.12), for example.

We conclude with two further results concerning L1(mp) and Imp . A contin-
uous linear operator between Banach spaces is completely continuous if it maps
every weakly convergent sequence to a norm convergent sequence. Compact
operators are always completely continuous. The converse is not valid, in gen-
eral, unless the domain space of the operator is reflexive. Clearly the domain
L1(|mp|) of I|mp| is not reflexive; what about the domain L1(mp) of Imp?

Proposition 2.3. For each 1 < p < ∞, the Banach space L1(mp) is not reflexive.

Proof. Fix p ∈ (1, ∞). According to Theorem 1.1(i) above the vector measure
mp : B → Lp is non-atomic. So, if L1(mp) was reflexive, then necessarily

L1(|mp|) = {0}, [13, Corollary 3.23(ii)] (for real Banach spaces, see [1, Remark,
pp. 3804-3805]), which is clearly not the case; see (1.4).

Proposition 2.4. Let 1 < p < ∞.

(i) The map I|mp| : L1(|mp|) → Lp is completely continuous.

(ii) The map Imp : L1(mp) → Lp is not completely continuous.

Proof. (i) Since mp has finite variation and its range mp(B) is a relatively compact
subset of Lp (cf. Theorem 1.1(i)), the desired conclusion follows from
[13, Proposition 3.56(II)(v)].

(ii) According to [11, Theorem 2.c.5] the Banach space Lp has an unconditional
basis. Moreover, being reflexive, Lp cannot contain an isomorphic copy of the
Banach sequence space ℓ1. So, if Imp was completely continuous, then L1(mp) =

L1(|mp|) would follow, [12, Theorem 1.2], which contradicts (1.5) above.
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