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Abstract

In this note the integrality and the reducedness for the symmetric algebra
of the edge ideals of simple graphs are analyzed. More precisely, we will ex-
tend a result on the integrality of the symmetric algebra given for connected
graphs, stating a characterization for any simple graph. Moreover, through
the Gröbner bases theory, we investigate simple graphs for which the sym-
metric algebra is reduced, in particular we prove its reducedness for graphs
with n vertices consisting of a cycle of length n.

Introduction

Let G be a simple graph, V(G) = {v1, . . . , vn} be the set of the vertices of G,
and E(G) be the sets of its edges.

Let R = k[X1, . . . , Xn] be the polynomial ring in n variables, k a field, such that
the indeterminate Xi of R is associated to the vertex vi of G. The edge ideal I(G) of
G is a monomial ideal of R generated by squarefree monomials of degree 2 which
correspond to the edges of G, namely I(G) =

(
XiXj | {vi, vj} is an edge of G

)
.

In [12], fundamental results about monomial ideals of R that can arise from
the edges of a simple graph G can be found.

In the present paper we are interested to study some important algebraic
properties of the symmetric algebra SR(I(G)) of the edge ideal of G.
The symmetric algebra of I(G) over R is defined to be

SR(I(G)) = R [Yij | {vi, vj} ∈ E(G)]
/
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where J is the ideal of relations of SR(I(G)), namely the binomial ideal

J =
(
XiYjk − XjYik | {vj, vk}, {vi, vk} ∈ E(G)

)
+

+
(
XiXjYℓ k − XℓXkYij | {vℓ , vk} ∩ {vi, vj} =∅

)
.

In [5] it is examined the projective dimension of the edge ideals of simple
graphs with respect to the number of the edges of such graphs and consequences
of it. The symmetric algebra of the edge ideals of simple graphs is also studied in
order to give conditions for which it is a integrity domain. More precisely, results
about the integrality of the symmetric algebra are obtained for simple graphs
with at most three edges and for Cohen-Macaulay graphs without cycles of even
length and vertex covering number 3.

Classes of edge ideals of linear type, i.e. ideals whose symmetric algebra is a
integrity domain, are described in [7]. Computations of standard algebraic invari-
ants for the symmetric algebras of significative edge ideals which are generated
by s-sequences are made in [1, 6].

Here we give a complete characterization about the integrality of the symmet-
ric algebra of the edge ideal of simple graphs and investigate the reducedness of
such an algebra.

The paper is structured as follows.

In section 1 some useful definitions and properties involving algebra, graph the-
ory and combinatorics are introduced.

In section 2 we examine general simple graphs and study the integrality of the
symmetric algebra of their edge ideal. In [13], it is proved a result that examines
the connected simple graphs whose edge ideals are of linear type. The main the-
orem of this section extends to all simple graphs the foregoing characterization.
Its terms are the following

Let G be any graph, I(G) be its edge ideal. The symmetric algebra SR(I(G)) is a
integrity domain if and only if every connected subgraph of G has either at most a cycle
of odd length or no cycle of even length.

In section 3, using the Gröbner bases theory, we intend to investigate the reduced-
ness of the symmetric algebra of the edge ideal of simple graphs G. We prove a
necessary condition, involving the S-polynomials, in order that the symmetric
algebra of I(G) is reduced. However, for the graphs Cn consisting of a cycle of
length n, we show that the elements of a Gröbner basis of the ideal of relations J
of SR(I(Cn)) have squarefree initial terms, then the initial ideal of J is squarefree,
and consequently the symmetric algebra is reduced. This seems to bring forward
good reasons for conjecturing that SR(I(G)) is reduced when G is any graph with
at least a cycle of even length.

1 Preliminaries and notations

Let G be a graph, V(G) and E(G) be the sets of its vertices and edges, respec-
tively. G is said to be simple or loopless if, for all {vi, vj} ∈ E(G), i 6= j, it is vi 6= vj .

A walk of length r in G is an alternating sequence of vertices and edges
{v0, l1, v1, l2, . . . , vr−1, lr, vr}, where li = {vi−1, vi} ∈ E(G). A walk is said closed
if v0 = vr. A walk may also be denoted by {v0, . . . , vr}, the edges being clear by
context.
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A cycle of length r is a closed walk in which the vertices v1, . . . , vr are distinct. We
denote by Cn the graph with n vertices consisting of a cycle of length n. A cycle
of even length will be called a monomial walk.
A tree is a connected graph without cycles.
The degree of a vertex vh ∈ V(G), indicated by deg(vh), is the number of edges
incident with vh , i.e. deg(vh) = max{s | ∃ v1, . . . , vs ∈ V(G) with {vi, vh} ∈ E(G),
i = 1, . . . , s}. When deg(vh) = 0, the vertex vh is said isolated .
A subset C of V(G) is said a minimal vertex cover for G if every edge of G is incident
with one vertex in C and there is no proper subset of C having such a property. If
C satisfies the incident condition only, it is called a vertex cover for G.
The smallest number of vertices in any minimal vertex cover for G is called vertex
covering number of G and denoted by α0(G).
If V(G) = {v1, . . . , vn} and R = k[X1, . . . , Xn] such that each variable Xi of R cor-
responds to the vertex vi of G, the edge ideal I(G) of G is the ideal

(
XiXj | {vi, vj} ∈

E(G)
)
⊂ R .

Note that the non-zero edge ideals are those generated by squarefree monomials
of degree 2. This implies that I(G) is a graded ideal of R of initial degree 2, that
is I(G) = ⊕i>2 (I(G)i) .
I(G) = (0) if and only if G has isolated vertices only.
So I(G) has a graded free resolution of length at most n . The length of the
(unique) minimal resolution of I(G) is equal to pdR(I(G)), the projective dimen-
sion of I(G) .
An ideal ℘ ⊂ R generated by C = {Xi1 , ..., Xis

} is a minimal prime ideal of I(G)
if and only if C is a minimal vertex cover for G.
From this, it descends α0(G) = ht(I(G)) ([12], Corollary 6.1.18).
G is said a Cohen-Macaulay graph over k if depth(R/I(G)) = dim(R/I(G)), where
dim is the Krull dimension.
If G is a Cohen-Macaulay graph, the Auslander-Buchsbaum theorem ([3], Corol-
lary 3.3) gives pdR(I(G)) = α0(G)−1.

Definition 1.1. Let I be an ideal of R = k[X1, . . . , Xn]. The symmetric algebra of I
over R is the graded algebra SR(I) =

⊕

t>0 St(I) , where St(I) are the symmetric
powers.

Let Rp ϕ−→ R q ψ−→ I → 0 be a presentation of I, where ϕ = (aij) is a q × p
matrix with entries in R . Then SR(I) ≃ R[Y1, . . . , Yq]/J , where J = (g1, . . . , gp )

denotes the ideal of relations of SR(I) , and gj=∑
i,j

aijYi .

For further notions and basic properties of such an algebra, see [9].

Now, let I(G) ⊂ R = k[X1, . . . , Xn] be the edge ideal of the graph G.
The symmetric algebra of I(G) can be written

SR(I(G)) = R [Yij | {vi, vj} ∈ E(G)]
/

J ,

where the ideal of relations J of SR(I(G)) is defined by J =
(
XiYjk − XjYik |

{vj, vk}, {vi, vk} ∈ E(G)
)
+

(
XiXjYℓ k − XℓXkYij | {vℓ, vk} ∩ {vi, vj} =∅

)
.

Definition 1.2. Let R be any ring. The set of all nilpotent elements of R is called
nilradical of R and it is denoted by Nil(R).
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Remark 1.1. (See [8])
The set Nil(R) =

√

(0), where
√

(0) = {x ∈ R | xn ∈ (0) for some n > 0} is the
radical of the ideal (0). For every ideal I of R one has that the radical of I is the
intersection of all prime ideals containing I. Hence Nil(R) is the intersection of
all prime ideals of R.

Recall that an algebra is said to be reduced if its nilradical is (0).

2 Integrality of the symmetric algebra of edge ideals

In this section we examine simple graphs and study the integrality of the sym-
metric algebra of their edge ideal.

In [4] it is shown that the symmetric algebra for meaningful classes of simple
graphs is a integrity domain. In particular, for simple graphs with at most three
edges, the following are established.

Proposition 2.1. Let I(G) be the edge ideal of a simple graph G such that |E(G)| < 4 .
Then the symmetric algebra SR(I(G)) is a integrity domain.

Proof. See [4], Proposition 3.1 .

Corollary 2.2. Let G be a simple graph such that pdR(I(G)) 6 1 . Then the symmetric
algebra SR(I(G)) is a integrity domain.

In the same work, further results for Cohen-Macaulay graphs without mono-
mial walks and vertex covering number 3 are given.

Proposition 2.3. Let G be a Cohen-Macaulay graph without monomial walks and
pdR(I(G)) = 2 . Then the symmetric algebra SR(I(G)) is a integrity domain.

Proof. See [4], Proposition 3.3 .

Remark 2.4. If the symmetric algebra of I(G) in R is a integrity domain, then the
canonical morphism of graded algebras

S(I(G)) −→ R(I(G))

is an isomorphism, where R(I(G)) = ⊕

k>0 I(G)k = R[I(G), t] ⊂ R[t] is the Rees
algebra of I(G) in R.
In this case I(G) is said to be of linear type.

Corollary 2.5. Let G be a Cohen-Macaulay graph without monomial walks and
α0(G) = 3. Then the edge ideal I(G) is of linear type.

Corollary 2.6. Let G be a Cohen-Macaulay graph with |E(G)| 6 6 without monomial
walks. Then I(G) is of linear type.
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An important result about the integrality of the symmetric algebra is

Proposition 2.7. (See [10])
Let R be a domain, M be a finitely generated R-module. Then the symmetric algebra
SR(M) is a domain if and only if every symmetric power St(M) is torsion free, for all
t > 0.

For an ideal I of a domain R it is known

Proposition 2.8. (See [10])
Let R be a domain and I be an ideal of R. TFAE:
1) SR(I) is a integrity domain;
2) SR(I) is torsion free;
3) SR(I) ∼= ℜ(I), where ℜ(I) is the Rees algebra of I.

Note that the above condition 3) is equivalent to say that I is of linear type.

In [13], for a connected graph, the following fact is stated.

Proposition 2.9. Let G be a connected graph and I(G) be its edge ideal. Then I(G) is an
ideal of linear type if and only if G is a tree or G has a unique cycle of odd length.

Now we will extend last result by establishing a characterization for any sim-
ple graph. First introduce some notions.

Definition 2.1. Let R = k[X1, . . . , Xn]. If m = Xa1
1 · · · Xan

n is a monomial in R we
set:
1) supp(m) = {Xi | ai > 0};
2) ∗supp(m) = {X1, . . . , X1

︸ ︷︷ ︸

a1−times

, . . . , Xn, . . . , Xn
︸ ︷︷ ︸

an−times

}.

Remark 2.10. Let m, m′ be monomials in R. One has: ∗supp(m) = ∗supp(m′) ⇔
m = m′. Indeed, supp(m) = supp(m′) ; m = m′.

Let Ei be a subset of E(G). We set Ei =
⋃

{vi, vj}∈Ei
{Xi, Xj}.

Example 2.11. Let G be the graph C4. Let E1 = {X1X2, X3X4} and E2 = {X2X3,
X1X4}. Then E1 = E2 = {X1, X2, X3, X4}.

Proposition 2.12. Let G be any graph such that every connected subgraph of G has
either at most a cycle of odd length or no monomial walk. If E1, E2 ⊂ E(G) and m, m′ are
monomials in R such that

(1) ∗supp(m) ∪ E1 = ∗supp(m′) ∪ E2

(2) |E1| = |E2|,
then

m ∏
{vi,vj}∈E1

Yij − m′ ∏
{vi ′ ,vj ′}∈E2

Yi ′ j ′ ∈ J .
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Proof. We work by induction on t = |E1| = |E2| .
Let t = 0. One has ∗supp(m) = ∗supp(m′), then m − m′ = 0 ∈ J.
Suppose t > 0.
We may assume ∗supp(m′′) = ∗supp(m) ∩ ∗supp(m′) =∅, where m′′ is a mono-
mial in R that divides m and m′. If

m

m′′ ∏
{vi, vj}∈E1

Yij −
m′

m′′ ∏
{vi ′ ,vj ′}∈E2

Yi ′ j ′ ∈ J ,

then

m ∏
{vi, vj}∈E1

Yij − m′ ∏
{vi ′ , vj ′}∈E2

Yi ′ j ′ = m′′
( m

m′′ ∏
{vi, vj}∈E1

Yij −
m′

m′′ ∏
{vi ′ , vj ′}∈E2

Yi ′ j ′
)

belongs to J, where ∗supp
( m

m′′

)

∩ ∗supp
( m′

m′′

)

=∅ .

Hence we may assume E1 ∩ E2 = ∅ . Moreover it results m, m′ 6= 1 . In fact, if
m = m′ = 1, which implies ∗supp(m) = ∗supp(m′) =∅, then by (1) it is E1 = E2 .
By hypothesis, every connected subgraph of G has either at most a cycle of odd
length or no monomial walk, hence a contradiction follows.

Suppose Xi | m . ∃ j such that {vi, vj} ∈ E2 , being m ∏ Yij − m′ ∏ Yi ′ j ′ ∈ J .

Then, (i) ∃ vk such that {vj, vk} ∈ E1 , or
(ii) ∄ vk such that {vj, vk} ∈ E1 .

• •

•
∈E1

∈E2Case (i)

vi vj

vk

It is
XkYij − XiYj k ∈ J . (2.1)

By induction hypothesis,

m

Xi
Xk ∏

{vp, vq}∈E1r{{vj,vk}}
Ypq − m′ ∏

{vp, vq}∈E2r{{vi,vj}}
Ypq ∈ J ,

and multiplying by Yij, it is

m

Xi
XkYij ∏

{vp, vq}∈E1r{{vj,vk}}
Ypq − m′ Yij ∏

{vp, vq}∈E2r{{vi,vj}}
Ypq ∈ J . (2.2)

By (2.1), (2.2),
m ∏

{vp, vq}∈E1

Ypq − m′ ∏
{vp, vq}∈E2

Ypq ∈ J .

Case (ii)
If ∄ vk such that {vj, vk} ∈ E1 , then Xj | m . So,

(α) ∃ vℓ such that {vi, vℓ} ∈ E1 , or
(β) ∃ {vr, vs} ∈ E1 such that {vr, vs} ∩ {vi, vj} =∅ .
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• •

•
∈E1

∈E2For (α)

vi vj

vℓ

it is
Xℓ Yij − XjYiℓ ∈ J ; (2.3)

by induction hypothesis and multiplying by Yij, it is

m

Xj
Xℓ Yij ∏

{vp, vq}∈E1r{{vi,vℓ }}
Ypq − m′ Yij ∏

{vp, vq}∈E2r{{vi,vj}}
Ypq ∈ J . (2.4)

By (2.3), (2.4),
m ∏

{vp, vq}∈E1

Ypq − m′ ∏
{vp, vq}∈E2

Ypq ∈ J .

• •

• •∈E1

∈E2For (β)

vi vj

vr vs

if {vr, vs} and {vi, vj} are disconnected in G, then by definition of J, it is

XrXsYij − XiXjYrs ∈ J ; (2.5)

if {vr, vs} and {vi, vj} are connected in G, say {vi, vr} ∈ E(G), then again

XrXsYij − XiXjYrs = Xs(XrYij − XjYir) + Xj(XsYir − XiYrs) ∈ J .

With the same argument

m

XiXj
XrXs Yij ∏

{vp, vq}∈E1r{{vr,vs}}
Ypq − m′ Yij ∏

{vp, vq}∈E2r{{vi,vj}}
Ypq ∈ J . (2.6)

By (2.5), (2.6),
m ∏

{vp, vq}∈E1

Ypq − m′ ∏
{vp, vq}∈E2

Ypq ∈ J .

Theorem 2.13. Let G be any graph, I(G) be its edge ideal. The symmetric algebra
SR(I(G)) is a integrity domain if and only if every connected subgraph of G has either at
most a cycle of odd length or no monomial walk.

Proof. =⇒) First let’s show that if G possesses at least a monomial walk, then
SR(I(G)) is not a integrity domain.
Without loss of generality, let’s reduce to examine the case of a subgraph H of G
consisting of a cycle of even length 2k .
Among the binomials that generate the ideal of relations J of SR(I(H)), let’s take
the 2k ones having degree 2 and order them with respect to the indices of the
vertices of H .
Sum up the 1st, the 3rd, . . . , the (2k−1)-th binomials, after multiplying each of
them by convenient k−1 factors Yi,i+1 , i = 1, . . . , 2k−1, or Y1,2k .
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In such a way we can able to get Xi(Y23Y45Y67 · · ·Y1,2k − Y12Y34 · · ·Y2k−1,2k) , for
all odd i, which belongs to J, thus J is not a prime ideal.

Now let’s show that if G has at least two connected cycles of odd length, then
SR(I(G)) is still not a integrity domain.
Observe that subgraphs, which consist at least of two cycles of odd length with a
common edge, contain a cycle of even length.
It remains to examine the case of a subgraph K of G on vertex set [m] = {v1, . . . ,
vh, . . . , vm} consisting of two cycles of odd lengths h and m−h+1 that have vh in
common.
Let’s consider only the binomials of degree 2 that generate the ideal of rela-

tions J of SR(I(K)) and choose the
m−1

2
ones XiYi+1,i+2 − Xi+2Yi,i+1, for odd

i = 1, . . . , m−2 , together with X1Yh,m − XmY1,h .

Subtract the last binomial from the sum of the others
m−1

2
, after multiplying each

of such
m+1

2
binomials by suitable

m−1

2
factors Yj,j+1 , j = 1, . . . , m−1, or Y1,h,

or Yh,m .
In such a way we get Xi(Y1,hY23Y45 · · ·Ym−1,m − Y12Y34 · · ·Ym−2,m−1Yh,m), for all
odd i, which belongs to J, thus J is not a prime ideal.

⇐=) By Proposition 2.7, it is enough to prove that the symmetric powers
St(I(G)) = R [Yij | {vi, vj} ∈ E(G) ]t/Jt are torsion free, ∀ t > 0 .

Set B = R [Yij | {vi, vj} ∈ E(G) ]. Take a ∈ R, a 6=0, and f = ∑i
ci fi ∈ Bt, where

ci ∈ k and the fi are monomials of the same degree in Bt, such that a f ∈ J .

We want to show that f ∈ J, namely St(I(G)) has no torsion element. If we con-

sider ∑i
ci = 0, then we can write f = ∑i

ci ( fi − f ), where f is a monomial in Bt

of the same degree of the fi . Using the notation of Proposition 2.12 one has

fi − f = m ∏
{vi, vj}∈E1

Yij − m′ ∏
{vi′ , vj′}∈E2

Yi′ j′ ∈ J ,

where E1, E2 ⊂ E(G), |E1| = |E2|, and m, m′ are monomials in R such that
∗supp(m) ∪ E1 = ∗supp(m′) ∪ E2. It follows by Proposition 2.12 that fi − f ∈ J,
and so f ∈ J .

3 Reducedness of the symmetric algebra of edge ideals

In this section we investigate when the symmetric algebra of the edge ideal of
a simple graph is reduced.
Let’s give the following characterization for reduced symmetric algebras.

Proposition 3.1. Let G be a simple graph and I(G) be its edge ideal. The symmetric
algebra SR(I(G)) is reduced if and only if J is a radical ideal.

Proof. Let SR(I(G)) = R[Yij | {vi, vj} ∈ E(G) ]/J. According to Remark 1.1,

Nil(SR(I(G))) =
√

(0SR(I(G))) and
√

(0SR(I(G))) =
√

J. Then by definition
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SR(I(G)) is reduced if and only if Nil(SR(I(G))) = (0SR(I(G))), and this is equiv-

alent to say if and only if
√

J = J, that is J is a radical ideal.

Set B = R [Yij | {vi, vj} ∈ E(G) ]. Let SR(I(G)) = B/J be the symmetric algebra
of I(G). Because a domain is reduced, by Theorem 2.13 the symmetric algebra
SR(I(G)) is reduced if and only if all the connected subgraphs of G have either at
most a cycle of odd length or no monomial walk.
If SR(I(G)) is not a domain, we investigate its reducedness by using the Gröbner
bases theory .

Lemma 3.2. Let G be a simple graph, I(G) be its edge ideal and J = (g1, . . . , gz).
Then the S-polynomials S(gi , gj), for all i, j = 1, . . . , z and i 6= j, have the initial term
squarefree, for some monomial order ≺ on B.

Proof. Let J = (g1, . . . , gz) ⊂ B and ≺ be a monomial order on B. Set in≺(gi) the
initial term of gi for all i = 1, . . . , z. Then the S-polynomials of gi and gj, for all
i, j = 1, . . . , z and i 6= j, with respect to ≺ are

S(gi , gj) =
lcm(in≺(gi), in≺(gj))

in≺(gi)
gi −

lcm(in≺(gi), in≺(gj))

in≺(gj)
gj .

First observe that if GCD (in≺(gi), in≺(gj)) = 1, then S(gi , gj) reduces to 0 with
respect to gi, gj. Hence we consider all the S-polynomials S(gi , gj) such that GCD
(in≺(gi), in≺(gj)) 6= 1 and we show that they have the initial term squarefree, for
some monomial order ≺ on B.
By the structure of the generators of J the following cases occur:

- Let gi = XlYtk − XtYlk, gj = XlYtp − XtYl p, with in≺(gi) = XtYlk, in≺(gj) =
XtYl p. Then S(gi , gj) = XlYl pYtk − XlYlkYtp .

- Let gi = XlYtk − XtYlk, gj = XmYtp − XtYmp, with in≺(gi) = XtYlk, in≺(gj) =
XtYmp. Then S(gi, gj) = XlYmpYtk − XmYlkYtp .

- Let gi = XlYtk − XtYlk, gj = XlYmk − XmYlk, with in≺(gi) = XtYlk, in≺(gj) =
XmYlk. Then S(gi , gj) = XmXlYtk − XtXlYmk.

- Let gi = XlYtk −XtYlk, gj = XlXkYpq −XpXqYlk, with in≺(gi) = XtYlk, in≺(gj) =
XpXqYlk. Then S(gi , gj) = XpXqXlYlk − XtXlXkYpq.

- Let gi = XlYtk − XtYlk, gj = XlXtYtq − XtXqYlk, with in≺(gi) = XtYlk, in≺(gj) =
XtXqYlk. Then S(gi , gj) = XqXlYtk − XlXkYtq.

- Let gi = XlYtk −XtYlk, gj = XpXmYtq −XtXqYpm, with in≺(gi) = XtYlk, in≺(gj) =
XtXqYpm. Then S(gi , gj) = XqXlYtkYpm − XpXmYlkYtq.

- Let gi = XlXkYpk − XpXkYlt, gj = XqXmYpk − XpXkYqm, with in≺(gi) = XpXkYlt,
in≺(gj) = XpXkYqm. Then S(gi , gj) = XkXlYpkYqm − XqXmYpkYlt.
In all these cases the initial term of S(gi , gj) is squarefree.

Proposition 3.3. (See [2])
Let I ⊂ B be an ideal and assume that for some monomial order ≺ on B the initial ideal
in≺(I) is generated by squarefree monomials. Then I is a radical ideal.
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Proposition 3.4. Let G be a simple graph, I(G) be its edge ideal and J = (g1, . . . , gz).
If the S-polynomials S(S(gi , gj), gk) and S(S(gi , gj), S(gk , gl)), for all i, j, k = 1, . . . , z,
i 6= j, have a standard expression with respect to {g1, . . . , gz, S(gi , gj), i, j = 1, . . . , z, i 6=
j} with remainder 0, then SR(I(G)) is reduced.

Proof. Let J = (g1, . . . , gz) ⊂ B, ≺ be a monomial order on B and S(gi, gj) be the S-
polynomials of gi and gj, for all i, j = 1, . . . , z and i 6= j, with respect to ≺. Set G =
{g1, . . . , gz, S(gi, gj), i, j = 1, . . . , z, i 6= j}. If all the S-polynomials S(S(gi , gj), gk)
and S(S(gi , gj), S(gk , gl)) have a standard expression with respect G with remain-
der 0, for all i, j, k = 1, . . . , z and i 6= j, then G = {g1, . . . , gz, S(gi , gj), i, j = 1, . . . , z,
i 6= j} is a Gröbner basis of J. Thus by Lemma 3.2, all the elements of the Gröbner
basis of J have squarefree initial terms for some monomial order ≺ . Hence in≺(J)
is a squarefree monomial ideal. By Proposition 3.3 J is a radical ideal. The thesis
follows from Proposition 3.1 .

Example 3.5. Let R = k[X1, X2, X3, X4] and consider the graph C4 with edge ideal
I(C4) = (X1X2, X2X3, X3X4, X1X4). The ideal of relations of the symmetric al-
gebra SR(I(C4)) is J = (X1Y23 − X3Y12, X2Y14 − X4Y12, X2Y34 − X4Y23, X3Y14 −
X1Y34) ⊂ R[Y12, Y23, Y34, Y14].
Set g1 = X1Y23 − X3Y12, g2 = X2Y14 − X4Y12, g3 = X2Y34 − X4Y23, g4 = X3Y14 −
X1Y34. The S-polynomials S(g1, g2), S(g1, g3), S(g1, g4), S(g2, g4), S(g3, g4) have a
standard expression with respect to {g1, g2, g3, g4} with remainder 0, but
S(g2, g3) = X2Y23Y14 −X2Y12Y34 does not reduce to 0 with respect to {g1, g2, g3, g4}.
Let’s denote g5 = S(g2, g3).
Set G = {g1, g2, g3, g4, g5}. All the S-polynomials S(gi , g5), for i = 1, 2, 3, 4 , have
a standard expression with respect to G with remainder 0. In fact: S(g1, g5) =
−X2Y23g4, S(g2, g5) = X2Y14g3, S(g3, g5) reduces to 0 with respect to G because
in≺(g3), in≺(g5) are relatively prime, S(g4, g5) = X2Y14g1. Hence G is a Gröbner
basis of J and in≺(J) is a squarefree monomial ideal. It follows that J is radical,
then SR(I(G)) is reduced.

Remark 3.6. The converse of the Proposition 3.4 is not true in general.
There exist simple graphs for which the symmetric algebra of their edge ideal is
reduced, but some S-polynomials S(S(gi , gj), gk) and S(S(gi , gj), S(gk, gl)) have
not a standard expression with respect to G with remainder 0, for some i, j, k =
1, . . . , z and i 6= j. For instance, this occurs to the graph C6 .

Next result settles the reducedness of the symmetric algebra of the edge ideals
of graphs Cn .

Theorem 3.7. Let Cn be the graph with n vertices consisting of a cycle of length n.
Then the symmetric algebra SR(I(Cn)) is reduced.

Proof. Note that, by Theorem 2.13, the symmetric algebra SR(I(Cn)), for n odd, is
a integrity domain, and this implies it is reduced.
So it is sufficient to examine the graphs Cn, for n even.
Computation is made by using software CoCoA [11] .
Let I(Cn) = (X1X2, X2X3, . . . Xn−1Xn, X1Xn) ⊂ R = k[X1, . . . , Xn] be the edge
ideal of Cn . The ideal of relations J of the symmetric algebra SR(I(Cn)) is gener-
ated by n binomials of degree 2 ,
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X2Y1,n−XnY12, XiYi+1,i+2−Xi+2Yi,i+1, for i=1, . . . , n−2 , Xn−1Y1,n−X1Yn−1,n

and, when n > 6, by
n(n−5)

2
binomials of degree 3 ,

X3X4Y1,n − X1XnY34, . . . , Xn−3Xn−2Y1,n − X1XnYn−3,n−2,
X2X3Yn−1,n − Xn−1XnY23, . . . , Xn−4Xn−3Yn−1,n − Xn−1XnYn−4,n−3,
X1X2Yn−2,n−1 − Xn−2Xn−1Y12, . . . , Xn−5Xn−4Yn−2,n−1 − Xn−2Xn−1Yn−5,n−4,
X1X2Yn−3,n−2 − Xn−3Xn−2Y12, . . . , Xn−6Xn−5Yn−3,n−2 − Xn−3Xn−2Yn−6,n−5,
. . . . . . . . . . . . . . . ,

X1X2Y56 − X5X6Y12, X2X3Y56 − X5X6Y23,
X1X2Y45 − X4X5Y12 .

A reduced Gröbner basis G of J is a set of binomials including the n+
n(n−5)

2
generators of J together with:

- for n = 4, the binomial X4Y23Y14 − X4Y12Y34 ;
- for n > 4 and even, the n/2 binomials
X1X2Yn−1,n − Xn−1XnY12, X4Y23Y1,n − XnY12Y34, X6Y23Y45Y1,n − XnY12Y34Y56,
X8Y23Y45Y67Y1,n − XnY12 · · ·Y78, . . . , XnY23 · · ·Yn−2,n−1Y1,n − XnY12 · · ·Yn−1,n .

It can be seen that all the binomials of G have squarefree initial terms, hence
the initial ideal of J is a squarefree monomial ideal. Thus the symmetric algebra
SR(I(Cn)) is reduced by Propositions 3.3 and 3.1 .

According to the last theorem, we can bring forwards good reasons for assum-
ing

Conjecture 3.8. Let G be any graph having at least a monomial walk. The sym-
metric algebra SR(I(G)) is reduced.
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