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Abstract

In the present paper, using the concept of the Abel convergence method,
we give a Korovkin type approximation theorem for a sequence of positive
linear operators acting from Lp [a, b] into itself. We also study some quanti-
tative estimates for Lp approximation via Abel convergence.

1 Introduction

The classical Korovkin theorem [1] yields the uniform convergence in C[a, b], the
space of continuous functions on a compact interval, of a sequence of positive lin-
ear operators by checking the convergence only on three test functions

{

1, x, x2
}

.
Some results concerning the Korovkin type approximation theorem in the space
Lp[a, b] of the Lebesgue integrable functions on a compact interval may be found
in [2]. If the sequence of positive linear operators does not converge to the iden-
tity operator then it might be useful to use some matrix summability methods
(see e.g. [3]). Recently the Abel method, a nonmatrix summability method, has
been used in the Korovkin type approximation of functions in the weighted space
(see [4], [5]).

In this paper, we develop the main aspects of the Korovkin type Lp approxi-
mation theory with the use of the Abel method which is a sequence-to-function
transformation. Recall that the main point of using the Abel method has always
been to make a non-convergent sequence to converge. On the other hand the Abel
method is much more effective in approximating functions as we get a function
after applying the Abel method to a sequence of positive linear operators. Using
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modulus of smoothness and the K-functional of Peetre we also give a quantitative
estimate for Lp approximation via Abel convergence in Lp[a, b].

First of all, we recall some basic definitions and notations used in the paper.
Let Lp[a, b], 1 ≤ p < ∞, denote the space of measurable real valued pth power

Lebesgue integrable functions f on [a, b] with ‖ f‖p := ‖ f‖Lp[a,b] :=

(

b
∫

a
| f |p dµ

)1/p

.

Let T : Lp → Lp be a linear operator. If T f ≥ 0 whenever f ≥ 0, then T is
called positive. If T is a positive linear operator then f ≤ g implies that T f ≤ Tg.
The operator norm ‖T‖Lp→Lp

is given by ‖T‖Lp→Lp
= sup

‖ f ‖p=1

‖T f‖p .

The following approximation theorem for a sequence of positive linear oper-
ators acting from Lp[a, b] into itself may be found in [2].

Theorem A. Let {Tn} be a uniformly bounded sequence of positive linear
operators from Lp[a, b] into itself, 1 ≤ p < ∞. Then the sequence {Tn f} converges
to f in Lp norm for any function f ∈ Lp[a, b] if and only if

lim
n

‖Tn( fi)− fi‖p = 0 f or i = 0, 1, 2

where fi(t) = ti for i = 0, 1, 2.
Some extensions of this theorem may be found in [6], [7] and [8].
In the present paper, using the Abel convergence method we will give another

variation of Theorem A. We also present an example of a sequence of positive
linear operators acting from Lp into itself so that Theorem A does not hold but
our result does hold. This shows that our result is stronger than Theorem A.

Let us recall the Abel convergence:
If the series

∑
k

akyk

converges for all y ∈ (0, 1) and

lim
y→1−

(1 − y)∑
k

akyk = L (1.1)

then we say that the sequence a = (ak) is Abel convergent to L.
Since 1

1−y = ∑
k

yk, 0 < y < 1, (1.1) is equivalent to the fact that

lim
y→1−

(1 − y)∑
k

(ak − L)yk = 0.

Note that any convergent sequence is Abel convergent to the same value but not
conversely ([9], [10]).

Let {Tn} be a sequence of positive linear operators from Lp[a, b], 1 ≤ p < ∞,
into itself such that

H := sup
y∈(0,1)

(1 − y)∑
n

‖Tn‖Lp→Lp
yn

< ∞. (1.2)
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Then for all f ∈ Lp[a, b] and y ∈ (0, 1) the operator Uy defined by

Uy( f ) := Uy( f ; x) := (1 − y)∑
n

Tn( f ; x)yn

is a positive linear operator from Lp[a, b] into itself, since it follows from (1.2) that

∥

∥Uy

∥

∥

Lp→Lp
= sup

‖ f ‖p=1

(1 − y)

∥

∥

∥

∥

∥

∑
n

Tn( f )yn

∥

∥

∥

∥

∥

p

≤ sup
y∈(0,1)

(1 − y)∑
n

‖Tn‖Lp→Lp
yn

< ∞.

2 Abel convergence of the sequence of positive linear opera-

tors in Lp [a, b]

In this section using Abel convergence instead of ordinary convergence we give
a Korovkin type Lp approximation theorem for the sequence of positive linear
operators.

Theorem 1. Let {Tn} be a sequence of positive linear operators from Lp[a, b],
1 ≤ p < ∞ into itself such that (1.2) holds. Then for any function f ∈ Lp[a, b]

lim
y→1−

∥

∥Uy( f )− f
∥

∥

p
= 0 (2.1)

if and only if
lim

y→1−

∥

∥Uy( fi)− fi

∥

∥

p
= 0 f or i = 0, 1, 2 (2.2)

where fi(t) = ti for i = 0, 1, 2.

Proof. It is obvious that (2.1) implies (2.2). Now assume that (2.2) holds. Let
f ∈ Lp[a, b]. Following the Lusin theorem, for each given ε > 0 there exists
ϕ ∈ C[a, b] such that

‖ f − ϕ‖p < ε. (2.3)

By the continuity of ϕ on [a, b], for each given ε > 0 there exists a number δ > 0
such that |ϕ(t)− ϕ(x)| < ε for all x, t ∈ [a, b] satisfying |t − x| < δ. As it is proved
in [[8], (2.7)-(2.9)] we have for any x, t ∈ [a, b]

|ϕ(t)− ϕ(x)| < ε +
2M

δ2
ψx(t), (2.4)

where ψx(t) = (t − x)2 and M := ‖ϕ‖C[a,b] . Using the positivity and linearity of

operators Tn and inequality (2.3), we obtain

∥

∥Uy( f )− f
∥

∥

p
≤
∥

∥Uy( f − ϕ)
∥

∥

p
+
∥

∥Uy(ϕ)− ϕ
∥

∥

p
+ ‖ f − ϕ‖p

< ε

(

1 + (1 − y)∑
n

‖Tn‖Lp→Lp
yn

)

+
∥

∥Uy(ϕ)− ϕ
∥

∥

p
. (2.5)
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Now considering the monotonicity of operators Tn and (2.4), the second term on
the right hand side of above inequality may be written as follows:

∥

∥Uy(ϕ)− ϕ
∥

∥

p
≤
∥

∥Uy(|ϕ(t)− ϕ(x)| ; x)
∥

∥

p
+ M

∥

∥Uy( f0)− f0

∥

∥

p

<

∥

∥

∥

∥

Uy(ε +
2M

δ2
ψx(t); x)

∥

∥

∥

∥

p

+ M
∥

∥Uy( f0)− f0

∥

∥

p

≤ ε + (ε + M +
2Mβ2

δ2
)
∥

∥Uy( f0)− f0

∥

∥

p

+
4Mβ

δ2

∥

∥Uy( f1)− f1

∥

∥

p
+

2M

δ2

∥

∥Uy( f2)− f2

∥

∥

p
,

(2.6)

where β := max{|a| , |b|}. It follows from (2.5) and (2.6), for all y ∈ (0, 1), that

∥

∥Uy( f )− f
∥

∥

p
< ε(2 + H)

+ (ε + M +
2Mβ2

δ2
)
∥

∥Uy( f0)− f0

∥

∥

p

+
4Mβ

δ2

∥

∥Uy( f1)− f1

∥

∥

p
+

2M

δ2

∥

∥Uy( f2)− f2

∥

∥

p
.

(2.7)

Since ε > 0 is arbitrary, letting y → 1− in both sides of (2.7) we get

lim
y→1−

∥

∥Uy( f )− f
∥

∥

p
= 0

which concludes the proof.

3 Quantitative estimate for Lp approximation via Abel conver-

gence

In this section using Abel convergence we give a quantitative estimate for Lp

approximation of positive linear operators considered in Theorem 1. Further-
more we obtain the rate of Abel convergence of these operators. We will need the
following Lemma to prove our main Theorem 2.

First of all, we recall some basic definitions and notations used in this section.

Let

L
(2)
p [a, b] =

{

f ∈ Lp[a, b] : f
′

absolutely continuous and f
′′
∈ Lp[a, b]

}

,

where f
′

and f
′′

denote the first and second derivatives of f , respectively.

For f ∈ Lp[a, b], 1 ≤ p < ∞, and t > 0, the K-functional of Peetre (see [11]) is
defined by

K2,p( f ; t) = inf
g∈L

(2)
p [a,b]

{‖ f − g‖p + t(‖g‖p +
∥

∥

∥
g
′′
∥

∥

∥

p
)}. (3.1)
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Following [12] and [13], for f ∈ Lp[a, b], 1 ≤ p < ∞, the second-order modulus
of smoothness w2,p( f ) is defined by

w2,p( f , h) = sup
0<t≤h

‖ f (x + t)− 2 f (x) + f (x − t)‖Lp[a+t,b−t] ,

where [a + t, b − t] ⊂ [a, b].
By a well known relation between modulus of smoothness and the K-functional

of Peetre, [14], we have

C1

{

min(1, t2) ‖ f‖p + w2,p( f ; t)
}

≤ K2,p( f ; t2)

≤ C−1
1

{

min(1, t2) ‖ f‖p + w2,p( f ; t)
}

. (3.2)

where C1 > 0 is independent of f and p.

Let µyp :=

(

max
i=0,1,2

{

∥

∥Uy( fi)− fi

∥

∥

p

}

)p/2p+1

where fi(t) = ti for i = 0, 1, 2 and

{Tn} is a sequence of positive linear operators from Lp[a, b] into itself.

Lemma 1. Let {Tn} be a sequence of positive linear operators from Lp[a, b], 1 ≤ p < ∞,

into itself and assume that (1.2) holds. Then for all x, t ∈ [a, b], g ∈ L
(2)
p [a, b] and for all

y sufficiently close to 1 from the left hand side

∥

∥Uy(g)− g
∥

∥

p
≤











C
′

p(‖g‖p +
∥

∥

∥
g
′′
∥

∥

∥

p
)µ2

yp , if µyp < 1,

C
′

p(‖g‖p +
∥

∥

∥
g
′′
∥

∥

∥

p
)µ4

yp, if µyp ≥ 1
(3.3)

where C
′

p > 0 is independent of g and y.

Proof. Let g ∈ L
(2)
p [a, b] and assume, that g is extended outside of [a, b] so that

g′′(x) = 0 if x /∈ [a, b]. For x, t ∈ [a, b] we know that

g(t)− g(x) = g
′
(x)(t − x) +

t
∫

x

(t − u)g
′′
(u)du. (3.4)

Using (3.4) we get

∥

∥Uy(g(t) − g(x); x)
∥

∥

p
≤
∥

∥

∥
g
′
∥

∥

∥

∞
{
∥

∥Uy( f1)− f1

∥

∥

p
+ β

∥

∥Uy( f0)− f0

∥

∥

p
}

+

∥

∥

∥

∥

∥

∥

Uy(

t
∫

x

(t − u)g
′′
(u)du; x)

∥

∥

∥

∥

∥

∥

p

,
(3.5)

where β := max{|a| , |b|}.
Fix δ > 0. For x, t ∈ [a, b] we know that (see [15])

∣

∣

∣

∣

∣

∣

t
∫

x

(t − u)g
′′
(u)du

∣

∣

∣

∣

∣

∣

≤ δ

δ
∫

0

∣

∣

∣
g
′′
(x + u)

∣

∣

∣
du +

(t − x)2

δ1/p

∥

∥

∥
g
′′
∥

∥

∥

p
.
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Therefore by the monotonicity of the operators Tn we obtain

∥

∥

∥

∥

∥

∥

Uy(

t
∫

x

(t − u)g
′′
(u)du; x)

∥

∥

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∥

∥

δ(

δ
∫

0

∣

∣

∣
g
′′
(x + u)

∣

∣

∣
du)Uy( f0; x)

∥

∥

∥

∥

∥

∥

p

+

∥

∥

∥
g
′′
∥

∥

∥

p

δ1/p

∥

∥

∥
Uy((t − x)2 ; x)

∥

∥

∥

p
.

(3.6)

By the Hölder inequality and the generalized Minkowski inequality, the first term
on the right hand side of (3.6) may be written as

∥

∥

∥

∥

∥

∥

δ

δ
∫

0

∣

∣

∣
g
′′
(x + u)

∣

∣

∣
du
(

Uy( f0; x)− f0(x)
)

+ δ

δ
∫

0

∣

∣

∣
g
′′
(x + u)

∣

∣

∣
du

∥

∥

∥

∥

∥

∥

p

≤ δ2−1/p
∥

∥

∥
g
′′
∥

∥

∥

p

∥

∥Uy( f0)− f0

∥

∥

p
+ δ

δ
∫

0

∥

∥

∥
g
′′
(x + u)

∥

∥

∥

p
du

=
∥

∥

∥
g
′′
∥

∥

∥

p
{δ2−1/p

∥

∥Uy( f0)− f0

∥

∥

p
+ δ2}.

Hence

∥

∥

∥

∥

∥

∥

Uy(

t
∫

x

(t − u)g
′′
(u)du; x)

∥

∥

∥

∥

∥

∥

p

≤
∥

∥

∥
g
′′
∥

∥

∥

p
{δ2 +

1

δ1/p
[
∥

∥Uy( f2)− f2

∥

∥

p

+ 2β
∥

∥Uy( f1)− f1

∥

∥

p

+ (δ2 + β2)
∥

∥Uy( f0)− f0

∥

∥

p
]}.

For y sufficiently close to 1 from the left hand side, we can choose δ := µyp to
obtain

∥

∥

∥

∥

∥

∥

Uy(

t
∫

x

(t − u)g
′′
(u)du; x)

∥

∥

∥

∥

∥

∥

p

≤ C
∥

∥

∥
g
′′
∥

∥

∥

p
µ2

yp, (3.7)

provided that µyp < 1 where C > 0 is an absolute constant.
Using (3.5) and (3.7) and considering µyp < 1, we have

∥

∥Uy(g)− g
∥

∥

p
≤
∥

∥Uy(g(t)− g(x); x)
∥

∥

p
+ ‖g‖∞

∥

∥Uy( f0)− f0

∥

∥

p

≤
∥

∥

∥
g
′
∥

∥

∥

∞
{
∥

∥Uy( f1)− f1

∥

∥

p
+ β

∥

∥Uy( f0)− f0

∥

∥

p
}

+C
∥

∥

∥
g
′′
∥

∥

∥

p
µ2

yp + ‖g‖∞

∥

∥Uy( f0)− f0

∥

∥

p
.
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By Theorem 3.1 in [16], we obtain from the above inequality that
∥

∥Uy(g)− g
∥

∥

p
≤ C

′

p(‖g‖p +
∥

∥

∥
g
′′
∥

∥

∥

p
)µ2

yp.

If µyp ≥ 1 we get (3.3) similarly. This completes the proof.

Now we present the following quantitative estimate for Lp approximation via
Abel convergence.

Theorem 2. Let {Tn} be a sequence of positive linear operators from Lp[a, b],
1 ≤ p < ∞, into itself, and assume that (1.2) holds. Then for all x, t ∈ [a, b], f ∈ Lp[a, b]
and for all y sufficiently close to 1 from the left hand side

∥

∥Uy( f )− f
∥

∥

p
≤







Cp

{

min(1, µ2
yp) ‖ f‖p + w2,p( f ; µyp)

}

, if µyp < 1,

Cp

{

min(1, µ4
yp) ‖ f‖p + w2,p( f ; µ2

yp)
}

, if µyp ≥ 1
(3.8)

where Cp > 0 is independent of f and y.

Proof. Let f ∈ Lp[a, b] and g ∈ L
(2)
p [a, b] and for all y sufficiently close to 1 from

the left hand side, if µyp < 1 Lemma 1 yields that
∥

∥Uy( f )− f
∥

∥

p

≤ ‖ f − g‖p sup
y∈(0,1)

(1 − y)∑
n

‖Tn‖Lp→Lp
yn +

∥

∥Uy(g)− g
∥

∥

p
+ ‖ f − g‖p

≤ (1 + H) ‖ f − g‖p + C
′

p(‖g‖p +
∥

∥

∥
g
′′
∥

∥

∥

p
)µ2

yp.

Taking infimum over all g ∈ L
(2)
p [a, b] and using (3.1) and (3.2), we have

∥

∥Uy( f )− f
∥

∥

p
≤ Cp

{

min(1, µ2
yp) ‖ f‖p + w2,p( f ; µyp)

}

.

If µyp ≥ 1 we obtain similarly (3.8) which concludes the proof.

The following rate of Abel convergence in Lp[a, b] follows from Theorem 2
immediately.

Corollary 1. Let {Tn} be a sequence of positive linear operators from Lp[a, b],
1 ≤ p < ∞, into itself. Assume that (1.2) holds and µyp → 0 (as y → 1−). Then
for all f ∈ Lp[a, b] we have

lim
y→1−

∥

∥Uy( f )− f
∥

∥

p
= 0.

4 Remarks

Let {Tn} be a sequence of positive linear operators from Lp[a, b] into itself satis-
fying the hypotheses of Theorem A. Consider the sequence α = (αn) given by
αn = 1 if n is a perfect square and αn = 0 otherwise. Note that α is Abel con-
vergent to zero but not convergent. Let {Pn} be a sequence of positive linear
operators acting from Lp[a, b] into itself defined by

Pn( f ; x) = (1 + αn)Tn( f ; x)

for f ∈ Lp[a, b]. Observe that the sequence {Pn} satisfies the hypotheses of Theo-
rem 1, but it does not satisfy Theorem A.
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