L_{p}-approximation via Abel convergence

İlknur Özgüç

Abstract

In the present paper, using the concept of the Abel convergence method, we give a Korovkin type approximation theorem for a sequence of positive linear operators acting from $L_{p}[a, b]$ into itself. We also study some quantitative estimates for L_{p} approximation via Abel convergence.

1 Introduction

The classical Korovkin theorem [1] yields the uniform convergence in $C[a, b]$, the space of continuous functions on a compact interval, of a sequence of positive linear operators by checking the convergence only on three test functions $\left\{1, x, x^{2}\right\}$. Some results concerning the Korovkin type approximation theorem in the space $L_{p}[a, b]$ of the Lebesgue integrable functions on a compact interval may be found in [2]. If the sequence of positive linear operators does not converge to the identity operator then it might be useful to use some matrix summability methods (see e.g. [3]). Recently the Abel method, a nonmatrix summability method, has been used in the Korovkin type approximation of functions in the weighted space (see [4], [5]).

In this paper, we develop the main aspects of the Korovkin type L_{p} approximation theory with the use of the Abel method which is a sequence-to-function transformation. Recall that the main point of using the Abel method has always been to make a non-convergent sequence to converge. On the other hand the Abel method is much more effective in approximating functions as we get a function after applying the Abel method to a sequence of positive linear operators. Using

[^0]modulus of smoothness and the K-functional of Peetre we also give a quantitative estimate for L_{p} approximation via Abel convergence in $L_{p}[a, b]$.

First of all, we recall some basic definitions and notations used in the paper.
Let $L_{p}[a, b], 1 \leq p<\infty$, denote the space of measurable real valued p th power Lebesgue integrable functions f on $[a, b]$ with $\|f\|_{p}:=\|f\|_{L_{p}[a, b]}:=\left(\int_{a}^{b}|f|^{p} d \mu\right)^{1 / p}$.

Let $T: L_{p} \rightarrow L_{p}$ be a linear operator. If $T f \geq 0$ whenever $f \geq 0$, then T is called positive. If T is a positive linear operator then $f \leq g$ implies that $T f \leq T g$. The operator norm $\|T\|_{L_{p \rightarrow L_{p}}}$ is given by $\|T\|_{L_{p \rightarrow L_{p}}}=\sup _{\|f\|_{p}=1}\|T f\|_{p}$.

The following approximation theorem for a sequence of positive linear operators acting from $L_{p}[a, b]$ into itself may be found in [2].

Theorem A. Let $\left\{T_{n}\right\}$ be a uniformly bounded sequence of positive linear operators from $L_{p}[a, b]$ into itself, $1 \leq p<\infty$. Then the sequence $\left\{T_{n} f\right\}$ converges to f in L_{p} norm for any function $f \in L_{p}[a, b]$ if and only if

$$
\lim _{n}\left\|T_{n}\left(f_{i}\right)-f_{i}\right\|_{p}=0 \text { for } i=0,1,2
$$

where $f_{i}(t)=t^{i}$ for $i=0,1,2$.
Some extensions of this theorem may be found in [6], [7] and [8].
In the present paper, using the Abel convergence method we will give another variation of Theorem A. We also present an example of a sequence of positive linear operators acting from L_{p} into itself so that Theorem A does not hold but our result does hold. This shows that our result is stronger than Theorem A.

Let us recall the Abel convergence:
If the series

$$
\sum_{k} a_{k} y^{k}
$$

converges for all $y \in(0,1)$ and

$$
\begin{equation*}
\lim _{y \rightarrow 1^{-}}(1-y) \sum_{k} a_{k} y^{k}=L \tag{1.1}
\end{equation*}
$$

then we say that the sequence $a=\left(a_{k}\right)$ is Abel convergent to L.
Since $\frac{1}{1-y}=\sum_{k} y^{k}, 0<y<1,(1.1)$ is equivalent to the fact that

$$
\lim _{y \rightarrow 1^{-}}(1-y) \sum_{k}\left(a_{k}-L\right) y^{k}=0
$$

Note that any convergent sequence is Abel convergent to the same value but not conversely ([9], [10]).

Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b], 1 \leq p<\infty$, into itself such that

$$
\begin{equation*}
H:=\sup _{y \in(0,1)}(1-y) \sum_{n}\left\|T_{n}\right\|_{L_{p} \rightarrow L_{p}} y^{n}<\infty . \tag{1.2}
\end{equation*}
$$

Then for all $f \in L_{p}[a, b]$ and $y \in(0,1)$ the operator U_{y} defined by

$$
U_{y}(f):=U_{y}(f ; x):=(1-y) \sum_{n} T_{n}(f ; x) y^{n}
$$

is a positive linear operator from $L_{p}[a, b]$ into itself, since it follows from (1.2) that

$$
\begin{aligned}
\left\|U_{y}\right\|_{L_{p} \rightarrow L_{p}} & =\sup _{\|f\|_{p}=1}(1-y)\left\|\sum_{n} T_{n}(f) y^{n}\right\|_{p} \\
& \leq \sup _{y \in(0,1)}(1-y) \sum_{n}\left\|T_{n}\right\|_{L_{p} \rightarrow L_{p}} y^{n}<\infty .
\end{aligned}
$$

2 Abel convergence of the sequence of positive linear opera-

 tors in $L_{p}[a, b]$In this section using Abel convergence instead of ordinary convergence we give a Korovkin type L_{p} approximation theorem for the sequence of positive linear operators.

Theorem 1. Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b]$, $1 \leq p<\infty$ into itself such that (1.2) holds. Then for any function $f \in L_{p}[a, b]$

$$
\begin{equation*}
\lim _{y \rightarrow 1^{-}}\left\|U_{y}(f)-f\right\|_{p}=0 \tag{2.1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{y \rightarrow 1^{-}}\left\|U_{y}\left(f_{i}\right)-f_{i}\right\|_{p}=0 \text { for } i=0,1,2 \tag{2.2}
\end{equation*}
$$

where $f_{i}(t)=t^{i}$ for $i=0,1,2$.
Proof. It is obvious that (2.1) implies (2.2). Now assume that (2.2) holds. Let $f \in L_{p}[a, b]$. Following the Lusin theorem, for each given $\varepsilon>0$ there exists $\varphi \in C[a, b]$ such that

$$
\begin{equation*}
\|f-\varphi\|_{p}<\varepsilon . \tag{2.3}
\end{equation*}
$$

By the continuity of φ on $[a, b]$, for each given $\varepsilon>0$ there exists a number $\delta>0$ such that $|\varphi(t)-\varphi(x)|<\varepsilon$ for all $x, t \in[a, b]$ satisfying $|t-x|<\delta$. As it is proved in [[8], (2.7)-(2.9)] we have for any $x, t \in[a, b]$

$$
\begin{equation*}
|\varphi(t)-\varphi(x)|<\varepsilon+\frac{2 M}{\delta^{2}} \psi_{x}(t) \tag{2.4}
\end{equation*}
$$

where $\psi_{x}(t)=(t-x)^{2}$ and $M:=\|\varphi\|_{C[a, b]}$. Using the positivity and linearity of operators T_{n} and inequality (2.3), we obtain

$$
\begin{align*}
\left\|U_{y}(f)-f\right\|_{p} & \leq\left\|U_{y}(f-\varphi)\right\|_{p}+\left\|U_{y}(\varphi)-\varphi\right\|_{p}+\|f-\varphi\|_{p} \\
& <\varepsilon\left(1+(1-y) \sum_{n}\left\|T_{n}\right\|_{L_{p} \rightarrow L_{p}} y^{n}\right)+\left\|U_{y}(\varphi)-\varphi\right\|_{p} \tag{2.5}
\end{align*}
$$

Now considering the monotonicity of operators T_{n} and (2.4), the second term on the right hand side of above inequality may be written as follows:

$$
\begin{align*}
\left\|U_{y}(\varphi)-\varphi\right\|_{p} & \leq\left\|U_{y}(|\varphi(t)-\varphi(x)| ; x)\right\|_{p}+M\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p} \\
& <\left\|U_{y}\left(\varepsilon+\frac{2 M}{\delta^{2}} \psi_{x}(t) ; x\right)\right\|_{p}+M\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p} \\
& \leq \varepsilon+\left(\varepsilon+M+\frac{2 M \beta^{2}}{\delta^{2}}\right)\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p} \tag{2.6}\\
& +\frac{4 M \beta}{\delta^{2}}\left\|U_{y}\left(f_{1}\right)-f_{1}\right\|_{p}+\frac{2 M}{\delta^{2}}\left\|U_{y}\left(f_{2}\right)-f_{2}\right\|_{p}
\end{align*}
$$

where $\beta:=\max \{|a|,|b|\}$. It follows from (2.5) and (2.6), for all $y \in(0,1)$, that

$$
\begin{align*}
\left\|U_{y}(f)-f\right\|_{p} & <\varepsilon(2+H) \\
& +\left(\varepsilon+M+\frac{2 M \beta^{2}}{\delta^{2}}\right)\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p} \tag{2.7}\\
& +\frac{4 M \beta}{\delta^{2}}\left\|U_{y}\left(f_{1}\right)-f_{1}\right\|_{p}+\frac{2 M}{\delta^{2}}\left\|U_{y}\left(f_{2}\right)-f_{2}\right\|_{p}
\end{align*}
$$

Since $\varepsilon>0$ is arbitrary, letting $y \rightarrow 1^{-}$in both sides of (2.7) we get

$$
\lim _{y \rightarrow 1^{-}}\left\|U_{y}(f)-f\right\|_{p}=0
$$

which concludes the proof.

3 Quantitative estimate for L_{p} approximation via Abel convergence

In this section using Abel convergence we give a quantitative estimate for L_{p} approximation of positive linear operators considered in Theorem 1. Furthermore we obtain the rate of Abel convergence of these operators. We will need the following Lemma to prove our main Theorem 2.

First of all, we recall some basic definitions and notations used in this section.
Let

$$
L_{p}^{(2)}[a, b]=\left\{f \in L_{p}[a, b]: f^{\prime} \text { absolutely continuous and } f^{\prime \prime} \in L_{p}[a, b]\right\}
$$

where f^{\prime} and $f^{\prime \prime}$ denote the first and second derivatives of f, respectively.
For $f \in L_{p}[a, b], 1 \leq p<\infty$, and $t>0$, the K-functional of Peetre (see [11]) is defined by

$$
\begin{equation*}
K_{2, p}(f ; t)=\inf _{g \in L_{p}^{(2)}[a, b]}\left\{\|f-g\|_{p}+t\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right)\right\} \tag{3.1}
\end{equation*}
$$

Following [12] and [13], for $f \in L_{p}[a, b], 1 \leq p<\infty$, the second-order modulus of smoothness $w_{2, p}(f)$ is defined by

$$
w_{2, p}(f, h)=\sup _{0<t \leq h}\|f(x+t)-2 f(x)+f(x-t)\|_{L_{p}[a+t, b-t]},
$$

where $[a+t, b-t] \subset[a, b]$.
By a well known relation between modulus of smoothness and the K-functional of Peetre, [14], we have

$$
\begin{align*}
C_{1}\left\{\min \left(1, t^{2}\right)\|f\|_{p}+w_{2, p}(f ; t)\right\} & \leq K_{2, p}\left(f ; t^{2}\right) \\
& \leq C_{1}^{-1}\left\{\min \left(1, t^{2}\right)\|f\|_{p}+w_{2, p}(f ; t)\right\} . \tag{3.2}
\end{align*}
$$

where $C_{1}>0$ is independent of f and p.

$$
\text { Let } \mu_{y p}:=\left(\max _{i=0,1,2}\left\{\left\|U_{y}\left(f_{i}\right)-f_{i}\right\|_{p}\right\}\right)^{p / 2 p+1} \text { where } f_{i}(t)=t^{i} \text { for } i=0,1,2 \text { and }
$$ $\left\{T_{n}\right\}$ is a sequence of positive linear operators from $L_{p}[a, b]$ into itself.

Lemma 1. Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b], 1 \leq p<\infty$, into itself and assume that (1.2) holds. Then for all $x, t \in[a, b], g \in L_{p}^{(2)}[a, b]$ and for all y sufficiently close to 1 from the left hand side

$$
\left\|U_{y}(g)-g\right\|_{p} \leq\left\{\begin{array}{l}
C_{p}^{\prime}\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right) \mu_{y p}^{2}, \text { if } \mu_{y p}<1 \tag{3.3}\\
C_{p}^{\prime}\left(\|g\|_{p}+\left\|g^{\prime}\right\|_{p}\right) \mu_{y p}^{4}, \text { if } \mu_{y p} \geq 1
\end{array}\right.
$$

where $C_{p}^{\prime}>0$ is independent of g and y.
Proof. Let $g \in L_{p}^{(2)}[a, b]$ and assume, that g is extended outside of $[a, b]$ so that $g^{\prime \prime}(x)=0$ if $x \notin[a, b]$. For $x, t \in[a, b]$ we know that

$$
\begin{equation*}
g(t)-g(x)=g^{\prime}(x)(t-x)+\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u \tag{3.4}
\end{equation*}
$$

Using (3.4) we get

$$
\begin{align*}
\left\|U_{y}(g(t)-g(x) ; x)\right\|_{p} & \leq\left\|g^{\prime}\right\|_{\infty}\left\{\left\|U_{y}\left(f_{1}\right)-f_{1}\right\|_{p}+\beta\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p}\right\} \\
& +\left\|U_{y}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right)\right\|_{p} \tag{3.5}
\end{align*}
$$

where $\beta:=\max \{|a|,|b|\}$.
Fix $\delta>0$. For $x, t \in[a, b]$ we know that (see [15])

$$
\left|\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u\right| \leq \delta \int_{0}^{\delta}\left|g^{\prime \prime}(x+u)\right| d u+\frac{(t-x)^{2}}{\delta^{1 / p}}\left\|g^{\prime \prime}\right\|_{p} .
$$

Therefore by the monotonicity of the operators T_{n} we obtain

$$
\begin{align*}
& \left\|U_{y}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right)\right\|_{p} \\
& \leq\left\|\delta\left(\int_{0}^{\delta}\left|g^{\prime \prime}(x+u)\right| d u\right) U_{y}\left(f_{0} ; x\right)\right\|_{p}+\frac{\left\|g^{\prime \prime}\right\|_{p}}{\delta^{1 / p}}\left\|U_{y}\left((t-x)^{2} ; x\right)\right\|_{p} \tag{3.6}
\end{align*}
$$

By the Hölder inequality and the generalized Minkowski inequality, the first term on the right hand side of (3.6) may be written as

$$
\begin{aligned}
& \left\|\delta \int_{0}^{\delta}\left|g^{\prime \prime}(x+u)\right| d u\left(U_{y}\left(f_{0} ; x\right)-f_{0}(x)\right)+\delta \int_{0}^{\delta}\left|g^{\prime \prime}(x+u)\right| d u\right\|_{p} \\
& \leq \delta^{2-1 / p}\left\|g^{\prime \prime}\right\|_{p}\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p}+\delta \int_{0}^{\delta}\left\|g^{\prime \prime}(x+u)\right\|_{p} d u \\
& =\left\|g^{\prime \prime}\right\|_{p}\left\{\delta^{2-1 / p}\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p}+\delta^{2}\right\}
\end{aligned}
$$

Hence

$$
\left\|U_{y}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right)\right\|_{p} \leq\left\|g^{\prime \prime}\right\|_{p}\left\{\delta^{2}+\frac{1}{\delta^{1 / p}}\left[\left\|U_{y}\left(f_{2}\right)-f_{2}\right\|_{p} .\right.\right.
$$

For y sufficiently close to 1 from the left hand side, we can choose $\delta:=\mu_{y p}$ to obtain

$$
\begin{equation*}
\left\|U_{y}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u ; x\right)\right\|_{p} \leq C\left\|g^{\prime \prime}\right\|_{p} \mu_{y p}^{2} \tag{3.7}
\end{equation*}
$$

provided that $\mu_{y p}<1$ where $C>0$ is an absolute constant.
Using (3.5) and (3.7) and considering $\mu_{y p}<1$, we have

$$
\begin{array}{r}
\left\|U_{y}(g)-g\right\|_{p} \leq\left\|U_{y}(g(t)-g(x) ; x)\right\|_{p}+\|g\|_{\infty}\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p} \\
\leq\left\|g^{\prime}\right\|_{\infty}\left\{\left\|U_{y}\left(f_{1}\right)-f_{1}\right\|_{p}+\beta\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p}\right\} \\
+C\left\|g^{\prime \prime}\right\|_{p} \mu_{y p}^{2}+\|g\|_{\infty}\left\|U_{y}\left(f_{0}\right)-f_{0}\right\|_{p}
\end{array}
$$

By Theorem 3.1 in [16], we obtain from the above inequality that

$$
\left\|U_{y}(g)-g\right\|_{p} \leq C_{p}^{\prime}\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right) \mu_{y p}^{2}
$$

If $\mu_{y p} \geq 1$ we get (3.3) similarly. This completes the proof.
Now we present the following quantitative estimate for L_{p} approximation via Abel convergence.
Theorem 2. Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b]$, $1 \leq p<\infty$, into itself, and assume that (1.2) holds. Then for all $x, t \in[a, b], f \in L_{p}[a, b]$ and for all y sufficiently close to 1 from the left hand side

$$
\left\|U_{y}(f)-f\right\|_{p} \leq\left\{\begin{array}{l}
C_{p}\left\{\min \left(1, \mu_{y p}^{2}\right)\|f\|_{p}+w_{2, p}\left(f ; \mu_{y p}\right)\right\}, \text { if } \mu_{y p}<1 \tag{3.8}\\
C_{p}\left\{\min \left(1, \mu_{y p}^{4}\right)\|f\|_{p}+w_{2, p}\left(f ; \mu_{y p}^{2}\right)\right\}, \text { if } \mu_{y p} \geq 1
\end{array}\right.
$$

where $C_{p}>0$ is independent of f and y.
Proof. Let $f \in L_{p}[a, b]$ and $g \in L_{p}^{(2)}[a, b]$ and for all y sufficiently close to 1 from the left hand side, if $\mu_{y p}<1$ Lemma 1 yields that

$$
\begin{aligned}
& \left\|U_{y}(f)-f\right\|_{p} \\
& \leq\|f-g\|_{p} \sup _{y \in(0,1)}(1-y) \sum_{n}\left\|T_{n}\right\|_{L_{p} \rightarrow L_{p}} y^{n}+\left\|U_{y}(g)-g\right\|_{p}+\|f-g\|_{p} \\
& \leq(1+H)\|f-g\|_{p}+C_{p}^{\prime}\left(\|g\|_{p}+\left\|g^{\prime \prime}\right\|_{p}\right) \mu_{y p}^{2} .
\end{aligned}
$$

Taking infimum over all $g \in L_{p}^{(2)}[a, b]$ and using (3.1) and (3.2), we have

$$
\left\|U_{y}(f)-f\right\|_{p} \leq C_{p}\left\{\min \left(1, \mu_{y p}^{2}\right)\|f\|_{p}+w_{2, p}\left(f ; \mu_{y p}\right)\right\} .
$$

If $\mu_{y p} \geq 1$ we obtain similarly (3.8) which concludes the proof.
The following rate of Abel convergence in $L_{p}[a, b]$ follows from Theorem 2 immediately.
Corollary 1. Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b]$, $1 \leq p<\infty$, into itself. Assume that (1.2) holds and $\mu_{y p} \rightarrow 0$ (as $y \rightarrow 1^{-}$). Then for all $f \in L_{p}[a, b]$ we have

$$
\lim _{y \rightarrow 1^{-}}\left\|U_{y}(f)-f\right\|_{p}=0
$$

4 Remarks

Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators from $L_{p}[a, b]$ into itself satisfying the hypotheses of Theorem A. Consider the sequence $\alpha=\left(\alpha_{n}\right)$ given by $\alpha_{n}=1$ if n is a perfect square and $\alpha_{n}=0$ otherwise. Note that α is Abel convergent to zero but not convergent. Let $\left\{P_{n}\right\}$ be a sequence of positive linear operators acting from $L_{p}[a, b]$ into itself defined by

$$
P_{n}(f ; x)=\left(1+\alpha_{n}\right) T_{n}(f ; x)
$$

for $f \in L_{p}[a, b]$. Observe that the sequence $\left\{P_{n}\right\}$ satisfies the hypotheses of Theorem 1, but it does not satisfy Theorem A.

5 Acknowledgment

I would like to thank the referee for the helpful suggestions that have led to a much better version of the paper.

References

[1] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
[2] V.K. Dzyadyk, Approximation of functions by positive linear operators and singular integrals, Mat. Sb. 70 (112) (1966) 508-517.
[3] J.P. King, J. J. Swetits, Positive linear operators and summability, J. Aust. Math. Soc. 11 (1970) 281-290.
[4] M. Unver, Abel transforms of positive linear operators, AIP Conference Proceedings 1558 (2013) 1148-1151.
[5] M. Unver, Abel transforms of positive linear operators on weighted spaces, Bull. Belg. Math. Soc. 21 (5) (2014).
[6] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129-137.
[7] İ. Sakaoğlu, C. Orhan, Strong summation process in L_{p}-spaces, Nonlinear Analysis 86 (2013) 89-94.
[8] C. Orhan, İ. Sakaoğlu, Rate of convergence in L_{p} approximation, Period. Math. Hung. 68 (2014) 176-184.
[9] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, 2000.
[10] R.E. Powell and S.M. Shah, Summability Theory and Its Applications, Van Nostrand Reinhold Company, London, 1972.
[11] J. Peetre, A Theory of Interpolation of Normed Spaces, Lecture Notes, Brazilia, 1963.
[12] H. Berens, R.A. DeVore, Quantitative Korovkin theorems for positive linear operators on L_{p}-spaces, Trans. Amer. Math. Soc. 245 (1978) 349-361.
[13] H. Berens, R.A. DeVore, Quantitative Korovkin theorems for L_{p}-spaces, Approximation Theory II, Proc. Internat. Sympos., Univ. Texas, Austin, Tex., Academic Press, New York (1976) 289-298.
[14] H. Johnen, Inequalities connected with the moduli of smoothness, Math. Vesnik 9 (24) (1972) 289-303.
[15] J.J. Swetits, B. Wood, Quantitative estimates for L_{p} approximation with positive linear operators, J. Approx. Theory 38 (1983) 81-89.
[16] S. Goldberg, A. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. (3) 23 (1971) 1-15.

Department of Mathematics, Faculty of Science, Ankara University, Tandoğan
06100, Ankara, Turkey
email:i.ozguc@gmail.com

[^0]: Received by the editors in June 2014.
 Communicated by F. Bastin.
 2010 Mathematics Subject Classification : 41A25, 41A36, 40A05.
 Key words and phrases : Abel convergence, sequence of positive linear operators, Korovkin type theorem, modulus of smoothness, rate of Abel convergence.

