q-convexity properties of locally semi-proper morphisms of complex spaces

George-Ionuț Ioniță*

Abstract

We prove that if $\pi : Z \to X$ is a locally semi-proper morphism between two complex spaces and *X* is *q*-complete, then *Z* is (q + r)-complete, where *r* is the dimension of the fiber.

1 Introduction

According to Grauert [11] and Narasimhan [14], [15] and their solution to the Levi problem, a complex space is Stein if and only if it admits a continuous strongly plurisubharmonic exhaustion function (see Definitions 3 and 4).

In [18], Stein showed that if *X* and *Z* are two complex spaces and if $\pi : Z \to X$ is an unramified covering such that *X* is Stein, then *Z* is Stein. This result was generalized to ramified coverings by Le Barz in [13].

The notion of a Stein space was generalized by Andreotti and Grauert in [1], where they defined *q*-convex and *q*-complete complex spaces. They extended Cartan's Theorem B and proved finiteness and vanishing theorems for the cohomology of a *q*-convex and of a *q*-complete space with values in a coherent analytic sheaf.

Also, in [3], Ballico generalized Stein's result to arbitrary *q*-complete spaces instead of Stein spaces and in [2], he proved the same type of result for finite morphisms of complex spaces.

Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 251–262

^{*}The author was supported by CNCS grant PN-II-ID-PCE-2011-3-0269. Received by the editors in October 2013 - In revised form in September 2014.

Communicated by H. De Schepper.

²⁰¹⁰ Mathematics Subject Classification : 32F10, 32C15.

Key words and phrases : *q*-complete space, covering space.

In [5], Colţoiu and Vâjâitu considered locally trivial analytic fibrations $\pi : E \to B$ such that the fiber is a Stein curve and *B* is *q*-complete. In this way they improved the result of [3].

Further generalizations of the results of Ballico in [2] were obtained by Vâjâitu in [19].

The purpose of this paper is to generalize the results in [2], [3], [13], [18] and [19]. This is contained in Theorem 7.

Acknowledgments: I am very grateful to Professor Mihnea Colţoiu for suggesting me this problem and for his helpful advice.

2 Preliminaries

All complex spaces are assumed to be reduced, finite dimensional and with countable topology.

2.1

Definition 1. A complex space X is said to be a Stein space if the following hold:

(a) X is holomorphically convex, i.e., for every compact set $K \subset X$ the holomorphically convex hull

$$\widehat{K}_X = \{x \in X : |f(x)| \le \|f\|_K, \forall f \in \mathcal{O}(X)\}$$

is also compact;

- (b) For every $x \in X$ there are global functions $f_1, \ldots, f_N \in \mathcal{O}(X)$ which give a local holomorphic embedding of a neighbourhood of x into \mathbb{C}^N ;
- (c) For every pair of distinct points $x \neq y$ in X there is a holomorphic function $f \in \mathcal{O}(X)$ such that $f(x) \neq f(y)$.

Definition 2. Let D be an open neighbourhood of a point $z_0 \in \mathbb{C}^n$ and $f \in C^{\infty}(D, \mathbb{R})$. We define the Levi form $L(f, z_0)$ of f at z_0 as follows: for arbitrary $\xi, \eta \in \mathbb{C}^n$ set

$$L(f,z_0)(\xi,\eta) := \sum_{i,j=1}^n \frac{\partial^2 f}{\partial z_i \partial \bar{z}_j}(z_0)\xi_i \bar{\eta}_j$$

Also we set $L(f, z_0)\xi = L(f, z_0)(\xi, \xi), \xi \in \mathbb{C}^n$.

Definition 3. 1) A real valued C^2 -function $\varphi : D \to \mathbb{R}$, where D is an open set in \mathbb{C}^n , is said to be plurisubharmonic (respectively strongly plurisubharmonic) if and only if its Levi form is positive-semidefinite (respectively positive definite), that is for each $z_0 \in D$ and for every $\xi \in \mathbb{C}^n$ the inequality $L(f, z_0)\xi \ge 0$ (respectively > 0 on $\mathbb{C}^n \setminus \{0\}$) holds.

2) Let X be a complex space. A function $\varphi : X \to \mathbb{R}$ is said to be (strongly) plurisubharmonic at a point $x \in X$ if there is a local chart $\iota : U \hookrightarrow \widetilde{U} \subset \mathbb{C}^n$ of X, $U \ni x$ and $\widetilde{\varphi} \in C^{\infty}(\widetilde{U}, \mathbb{R})$ such that:

1.
$$\widetilde{\varphi} \circ \iota = \varphi|_{U}$$
;

2. The function $\tilde{\varphi}$ is (strongly) plurisubharmonic on \tilde{U} .

The function φ is said to be (strongly) plurisubharmonic on a subset $W \subset X$ if it is (strongly) plurisubharmonic at every point of W.

Definition 4. Let X be a complex space. An upper semi-continuous function $\varphi : X \to \mathbb{R}$ is said to be an exhaustion function on X if the sublevel sets $\{x \in X : \varphi(x) < c\}$ are relatively compact in X for any $c \in \mathbb{R}$.

We have the following result (see [11] and [14], [15]):

Theorem 1. A complex space X is Stein if and only if there exists $\varphi : X \to \mathbb{R}$ a continuous strongly plurisubharmonic exhaustion function on X.

Definition 5. Let X and Z be two complex spaces. A morphism $\pi : Z \to X$ is said to be proper if for every compact set K in X the preimage $\pi^{-1}(K)$ is compact. A morphism $\pi : Z \to X$ is said to be finite if it is proper and it has finite fibers.

Remark 1. Let $\pi : Z \to X$ be a finite morphism of complex spaces. Then Z is Stein if and only if X is Stein.

We recall the following theorem of Stein [18]:

Theorem 2. Let $\pi : Z \to X$ be an unramified covering of complex spaces. If X is Stein, then Z is Stein

Le Barz [13] extended Stein's result to locally semi-finite morphisms of complex spaces (see Definition 6 and Theorem 3).

Definition 6. *Let X and Z be two complex spaces. We say that a morphism* $\pi : Z \to X$ *is*

- (a) semi-finite if Z is the disjoint union of some open spaces $(W^m)_{m \in \mathbb{N}}$ such that $\pi|_{W^m} : W^m \to X$ is a finite morphism;
- (b) locally semi-finite if for all $x \in X$, there exists a neighbourhood $U \ni x$ such that $\pi|_{\pi^{-1}(U)} : \pi^{-1}(U) \to U$ is a semi-finite morphism.

Theorem 3. Let $\pi : Z \to X$ a locally semi-finite morphism of complex spaces. If X is *Stein, then Z is Stein.*

2.2 As we mentioned in the introduction, the notions of a *q*-convex and of a *q*-complete complex space were introduced in [1].

Definition 7. 1) A function $\varphi \in C^{\infty}(D, \mathbb{R})$, where D is an open subset of \mathbb{C}^n is said to be q-convex $(q \in \mathbb{N}, 1 \le q \le n)$ if its Levi form has at least n - q + 1 positive (> 0) eigenvalues at every point of U.

2) Let X be a complex space. A function $\varphi : X \to \mathbb{R}$ is said to be q-convex at a point $x \in X$ if there is a local chart $\iota : U \hookrightarrow \widetilde{U} \subset \mathbb{C}^n$ of X, $U \ni x$ and $\widetilde{\varphi} \in C^{\infty}(\widetilde{U}, \mathbb{R})$ such that:

- 1. $\widetilde{\varphi} \circ \iota = \varphi|_{U}$;
- 2. The function $\tilde{\varphi}$ is q-convex on \tilde{U} .

The second condition can be replaced by the following:

2'. There exists a complex linear space $E \subset \mathbb{C}^n$, dim $E \ge n - q + 1$ such that the Levi form $L(\tilde{\varphi}, \iota(x))$ is positive definite when restricted to *E*.

The function φ is said to be *q*-convex on a subset $W \subset X$ if it is *q*-convex at every point of *W*.

Definition 8. A complex space X is said to be q-convex, if there exists a compact subset K of X and a smooth exhaustion function $\varphi : X \to \mathbb{R}$, which is q-convex on X\K. If we can choose $K = \emptyset$, then X is said to be q-complete.

Remark 2. *From* [14] *and* [15] *we have that a complex space* X *is Stein if and only if is* 1-complete.

Ballico [3] improved Theorem 2 in another direction.

Theorem 4. Let $\pi : Z \to X$ be an unramified covering. If X is q-complete, then Z is *q*-complete.

Also, in [2], Ballico showed that if $\pi : Z \to X$ is a finite morphism between complex spaces and *X* is *q*-complete or *q*-convex, then *Z* is *q*-complete or *q*-convex, respectively.

Colţoiu and Vâjâitu [5] proved that if $\pi : E \to B$ is a locally analytic fibration of complex spaces such that the fiber is a Stein curve and *B* is *q*-complete, then *E* is *q*-complete. The case when *E* is a topological covering of *B* was already done in [3].

Vâjâitu [19] generalized Ballico's results from [2] and showed the following:

Theorem 5. Let $\pi : Z \to X$ be a proper holomorphic map between finite dimensional complex spaces. If X is q-complete, then Z is (q + r)-complete, where r is the dimension of the fiber.

Let *X* be a complex space of complex dimension *n* and *q* an integer with $1 \le q \le n$. For q > 1 the sum and the maximum of two *q*-convex functions on *X* is not *q*-convex as they might have different directions of positivity. It was proved in [7] and [8] that every *q*-convex function with corners (i.e., a function which locally is equal to the maximum of a finite family of *q*-convex functions) can be approximated by a \tilde{q} -convex function, where $\tilde{q} = n - \left[\frac{n}{q}\right] + 1$ (here $\left[\frac{n}{q}\right]$ denotes as usual the largest integer $\le \frac{n}{q}$). Diederich and Fornaess also showed that this \tilde{q} is optimal. As a consequence, a finite intersection of *q*-convex open sets is \tilde{q} -convex. The optimality of this \tilde{q} is proved by Chiriacescu, Colţoiu and Joiţa in [4] in the case of quasi-projective varieties in a cohomological context.

To overcome this type of problem, M. Peternell [16] introduced the notion of convexity with respect to a linear set \mathcal{M} .

As before *X* is a reduced, finite dimensional and with countable topology complex space. For any $x \in X$ we denote by T_xX the Zariski tangent space of *X* to *x*. Set $TX = \bigcup_{x \in X} T_xX$. Consider an arbitrary subset $\mathcal{M} \subset TX$ and for any point $x \in X$ put $\mathcal{M}_x = \mathcal{M} \cap T_xX$. Then \mathcal{M} is said to be a linear set over *X* if \mathcal{M}_x is a complex vector subspace of T_xX for any $x \in X$.

Let now $\Omega \subset X$ be an open subset. We define:

- (i) $\operatorname{codim}_{\Omega} \mathcal{M} = \sup_{x \in \Omega} \operatorname{codim} \mathcal{M}_x$;
- (ii) $\mathcal{M}|_{\Omega}$ as $(\mathcal{M}|_{\Omega})_x = \mathcal{M}_x$ for every $x \in \Omega$.

Let $\pi : Y \to X$ be an analytic morphism of complex spaces and \mathcal{M} a linear set over X. For every $y \in Y$ we have the tangent map which is a \mathbb{C} -linear map of complex vector spaces $\pi_{*,y} : T_y Y \to T_x X$, where $x = \pi(y)$. We set

$$\pi^*\mathcal{M}:=igcup_{y\in Y}(\pi_{*,y})^{-1}(\mathcal{M}_x).$$

We have that $\pi^* \mathcal{M}$ is a linear set over *Y*. Moreover, if codim $\mathcal{M} \leq q - 1$, then codim $\pi^* \mathcal{M} \leq q - 1$.

The following are due to M. Peternell (see [16]).

Definition 9. Let X be a complex space, $W \subset X$ an open subset, \mathcal{M} a linear set over W and $\varphi : W \to \mathbb{R}$ a smooth function.

(a) Let $x \in W$. Then φ is said to be weakly 1-convex with respect to \mathcal{M}_x if there are a local chart $\iota : U \hookrightarrow \widetilde{U}$ of X with $x \in U \subset W$ and $\widetilde{\varphi} \in \mathcal{C}^{\infty}(\widetilde{U}, \mathbb{R})$ such that

$$\widetilde{\varphi} \circ \iota = \varphi|_{U}$$
 and $L(\widetilde{\varphi}, \iota(x))\iota_* \xi \geq 0$ for any $\xi \in \mathcal{M}_x$.

Furthermore, φ *is said to be weakly* 1*-convex with respect to* \mathcal{M} *if* φ *is weakly* 1*-convex with respect to* \mathcal{M}_x *for every* $x \in W$.

(b) We say that φ is 1-convex with respect to M, if for any x ∈ W there exist an open neighbourhood U ⊂ W of x and a 1-convex function ψ ∈ C[∞](U, ℝ) such that φ|_U − ψ is weakly 1-convex with respect to M|_U.

Definition 10. Let X be a complex space and \mathcal{M} a linear set over X. We denote by $\mathcal{B}(X, \mathcal{M})$ the set of all continuous functions $\varphi : X \to \mathbb{R}$ such that every point of X admits an open neighbourhood D on which there are functions $f_1, \ldots, f_k \in C^{\infty}(D, \mathbb{R})$ which are 1-convex with respect to $\mathcal{M}|_D$ and

$$\varphi|_D = \max(f_1,\ldots,f_k).$$

We need also the following results of M. Peternell (see [16]):

Lemma 1. Suppose that φ is a q-convex function on a complex space X. Then there exists a linear set \mathcal{M} over X of codimension $\leq q - 1$ such that φ is 1-convex with respect to \mathcal{M} .

Lemma 2. Let $\iota : U \hookrightarrow \tilde{U}$ be a local chart of the complex space X and $\varphi : U \to \mathbb{R}$ a smooth function. Then φ is 1-convex with respect to some linear set \mathcal{M} if and only if for every compact subset $K \subset U$ there exists $\delta > 0$ and for each $x \in K$ there exist $\tilde{\varphi} \in C^{\infty}(\tilde{U}, \mathbb{R})$ such that $\tilde{\varphi} \circ \iota = \varphi$ and

$$L(\widetilde{\varphi},\iota(x))\iota_*(\xi) \ge \delta \|\iota_*(\xi)\|^2$$

for all $\xi \in \mathcal{M}_x$.

In general, an increasing union of Stein open subsets $\{X_i\}_{i \in \mathbb{N}}$ of a complex space *X* is not Stein, even if *X* is smooth (see [9] and [10]). However, if (X_{i+1}, X_i) is Runge, then $\bigcup_{i \in \mathbb{N}} X_i$ is Stein. We recall that if *Y* is a Stein open subset of a Stein space *X*, then (X, Y) is said to be a Runge pair if for any compact subset *K* of *Y*, the set $\widehat{K}_X \cap Y$ is compact. Using the approximation theorem of Oka-Weil, (X, Y) is a Purge pair if and only if *Y* is a Stein space and every holomorphic function

is a Runge pair if and only if Y is a Stein space and every holomorphic function on Y can be approximated uniformly on compact subset of Y by holomorphic functions on X.

The following result follows from Theorem 3 proved by Colţoiu and Vâjâ-itu in [6]; it gives us a criterion for testing the *q*-completeness of a complex space. The same kind of result as Theorem 3 in [6] was obtained in the *q*-concave case in [12].

Theorem 6. Let X be a complex space and \mathcal{M} a linear set over X. Let $\{X_i\}_{i \in \mathbb{N}}$ be an increasing sequence of open subsets of X such that $X = \bigcup_{i \in \mathbb{N}} X_i$ and there are functions $u_i : X_i \to \mathbb{R}, u_i \in \mathcal{B}(X_i, \mathcal{M}|_{X_i})$ and constants $C_i, D_i \in \mathbb{R}, C_i < D_i, i \in \mathbb{N}$ with the following properties:

- (a) $\{x \in X_i : u_i(x) < D_i\} \subset X_i \text{ for every } i \in \mathbb{N}$
- (b) $\{x \in X_{i+1} : u_{i+1}(x) < C_i\} \subset \{x \in X_i : u_i(x) < D_i\}$ for every $i \in \mathbb{N}$;
- (c) for every compact set $K \subset X$ there is $j = j(K) \in \mathbb{N}$ such that

$$K \subset \{x \in X_{i+1} : u_{i+1}(x) < C_i\}$$
 for every $i \ge j$.

Then there exists an exhaustion function $v \in \mathcal{B}(X, \mathcal{M})$. In particular, if codim $\mathcal{M} \leq q-1$, then X is q-complete.

2.3 Let *X* be a complex space and *A* an analytic subset of *X*. The Andreotti function will help us to get some positive eigenvalues in the "normal direction" at the

regular points of *A*. Denote by \mathfrak{I}_A the coherent ideal sheaf of germs of holomorphic functions vanishing along *A*.

Choose a locally finite covering $\{U_j\}_j$ of X by relatively compact open subsets of X such that on each U_j there are functions $h_1^{(j)}, \ldots, h_{q(j)}^{(j)} \in \mathcal{O}(U_j)$ with $\mathfrak{I}_A|_{U_j} = (h_1^{(j)}, \ldots, h_{q(j)}^{(j)})$. Let $\{\rho_j\}_j$ be a partition of unity subordinated to the covering $\{U_j\}_j$ of X. We define the Andreotti function $f_A : X \to \mathbb{R}$ by setting:

$$f_A(x) = \sum_j \rho_j(x) \left\| h^{(j)}(x) \right\|^2$$
, $x \in X$,

where

$$\left\|h^{(j)}\right\|^2 = \sum_{i=1}^{q(j)} |h_i^{(j)}|^2.$$

We remark that $f_A \ge 0$, $f_A \in C^{\infty}(X)$ and $A = \{f_A = 0\}$.

Suppose that $x_0 \in A$ and let $\iota : U \hookrightarrow \widetilde{U}$ be a local chart around x_0 . Extend ρ_j by $\widetilde{\rho}_j \in C_0^{\infty}(\widetilde{U})$ and $h_i^{(j)}|_U$ by $\widetilde{h}_i^{(j)} \in \mathcal{O}(\widetilde{U})$. Locally, f_A has an extension \widetilde{f}_A defined on \widetilde{U} such that

- 1. the Levi form $L(f_A, \iota(x))$ is positive semidefinite for all $x \in U \cap A$;
- 2. for $x \in U \cap \text{Reg}(A)$ we have that the Levi form $L(\tilde{f}_A, \iota(x))(v) = 0$ iff $v \in \iota_{*,x}(T_xA)$.

The Andreotti function is used in the next result which follows from Lemma 3 and Lemma 4 in [19]:

Lemma 3. Let $\pi : Z \to X$ be a holomorphic map between finite dimensional reduced complex spaces and A an analytic subset of Z. Put $r = \max\{\dim \pi^{-1}(x) : x \in X\}$ and let $B \subset A$ be an analytic subset such that Sing $(A) \subseteq B$ and suppose that the restriction map $\pi|_{A \setminus B} : A \setminus B \to X$ has locally constant rank.

Assume also that there exists a locally finite covering $\{V'_l\}_l$ of X by relatively compact open subsets and 1-convex functions $\varphi_l : V'_l \to \mathbb{R}_+$. Let $V_l \subset V'_l$ be open subsets, $\overline{V}_l \subset V'_l$ and $\bigcup V_l = X$. Denote $U_l := \pi^{-1}(V_l)$, $U'_l := \pi^{-1}(V'_l)$ and put

$$\psi_l = f_A + \varphi_l \circ \pi : U'_l \to \mathbb{R}_+,$$

where f_A is the Andreotti function of the analytic subset A of Z.

Then there is an open neighbourhood Ω of $A \setminus B$ in Z and a linear set \mathcal{M} over Ω , codim $\mathcal{M} \leq r$ such that $\psi_l|_{U_l \cap \Omega}$ is 1-convex with respect to $\mathcal{M}|_{U_l \cap \Omega}$ for any l.

3 The main result

Following the ideas of Le Barz [13] we give the next definition.

Definition 11. *Let X and Z be two complex spaces. We say that a morphism* $\pi : Z \to X$ *is*

- (a) semi-proper if Z is the disjoint union of some open spaces $(W^m)_{m \in \mathbb{N}}$ such that $\pi|_{W^m} : W^m \longrightarrow X$ is proper;
- (b) locally semi-proper if for all $x \in X$, there exists a neighbourhood $U \ni x$ such that $\pi|_{\pi^{-1}(U)} : \pi^{-1}(U) \longrightarrow U$ is a semi-proper morphism.

Now we are ready to state the main result.

Theorem 7. Let X and Z be two complex spaces and $\pi : Z \to X$ a locally semiproper morphism and $r = \max\{\dim \pi^{-1}(x) : x \in X\}$. If X is q-complete, then Z is (q + r)-complete.

Proof. Since *X* is *q*-complete there exists a smooth *q*-convex exhaustion function $\varphi : X \to \mathbb{R}$ on *X*. Due to Lemma 1 there exists a linear set \mathcal{M} over *X* of codimension $\leq q - 1$ such that φ is 1-convex with respect to \mathcal{M} . The idea is to use the *q*-completeness criterion provided by Theorem 6.

Now we need the following result from [19]:

Proposition 1. Let $\pi : Z \to X$ be a holomorphic map. Then there exists a decreasing chain of p + 1 analytic subsets A_k of Z, where $p \leq \dim Z$, $Z = A_p \supset A_{p-1} \supset \cdots \supset A_1 \supset A_0 = \emptyset$ such that for every $k \in \{1, 2, \dots, p\}$ we have $\dim A_{k-1} < \dim A_k$, Sing $(A_k) \subset A_{k-1}$ and

$$\pi|_{A_k \setminus A_{k-1}} : A_k \setminus A_{k-1} \to X$$

has locally constant rank.

The above decomposition of *Z* with respect to π is called the singular filtration of π (see also [17]).

So, consider $A_1 \supset A_2 \supset \cdots \supset A_p$ the analytic subsets of *Z* given by Proposition 1 and the corresponding Andreotti functions f_{A_k} , $k = \overline{1, p}$.

The next ingredient that we need is a lemma. This lemma was proved by Le Barz [13] in the case of 0-dimensional fibers, but the proof in the general case (the dimension of the fiber is > 0) goes exactly the same way.

Lemma 4. Let X and Z be two complex spaces and $\pi : Z \to X$ a locally semi-proper morphism. Then there exists a locally finite covering $\{U_j\}_j$ of Z and a locally finite covering $\{V_l\}_l$ of X such that the following conditions hold:

- 1. for all *j*, there exists a positive integer m_j and a local chart $\iota_j : U_j \hookrightarrow \tilde{U}_j$, where \tilde{U}_j is an open subset of \mathbb{C}^{m_j} ;
- 2. for all *l*, there exists a positive integer n_l and a local chart $\tau_l : V_l \hookrightarrow \widetilde{V}_l$, where \widetilde{V}_l is an open subset of \mathbb{C}^{n_l} ;
- 3. for all *j*, there exists l(j) such that we have $\pi(U_j) \subset V_{l(j)}$ and $\pi|_{U_j}$ extends to a holomorphic map $\tilde{\pi} : \tilde{U}_j \to \tilde{V}_{l(j)}$;

Also there exists a C^{∞} function $f : Z \to \mathbb{R}$ such that:

- $\{z \in Z : f(z) < c_1\} \cap \{z \in Z : (\varphi \circ \pi)(z) < c_2\} \subset \mathbb{Z}, \forall c_1, c_2 \in \mathbb{R};$
- for all *j*, there exists a map $g_j : V_{l(j)} \to \mathbb{R}$ such that $f|_{U_j} = g_j \circ \pi|_{U_j}$;
- g_j has a C^{∞} extension, $\tilde{g}_j : \tilde{V}_{l(j)} \to \mathbb{R}$;

• for all compact sets $K \subset X$,

$$\sup_{j\in\mathbb{N}}\left\{\left|\frac{\partial^2 \widetilde{g}_j}{\partial z_r^{(l(j))}\partial \overline{z}_s^{(l(j))}}\right|_{|_{\tau_{l(j)}(V_{l(j)}\cap K)}}: V_{l(j)}\cap K\neq\emptyset, r,s=\overline{1,n_{l(j)}}\right\}<\infty.$$

We choose $\{W_j^1\}_j$ a locally finite covering of Z and $\{W_k^2\}_k$ a locally finite covering of X such that the conditions in Lemma 4 hold. We denote by $\tilde{\varphi} : \tilde{W}_{k(j)}^2 \to \mathbb{R}$ a q-convex extension of $\varphi|_{W_{k(j)}^2}$. Also consider the function $f : Z \to \mathbb{R}$, the function $g_j : W_{k(j)}^2 \to \mathbb{R}$ and its extension \tilde{g}_j given by Lemma 4.

Using the boundedness condition for the second derivatives of the function f, on every compact set, there exists a convex and strictly increasing function χ so that $(\chi \circ \tilde{\varphi} + \tilde{g}_j)|_{\widetilde{W}^2_{k(j)}}$ is *q*-convex for all *j*.

Because $\{z \in Z : f(z) < c_1\} \cap \{z \in Z : (\varphi \circ \pi)(z) < c_2\} \subset \mathbb{Z}, \forall c_1, c_2 \in \mathbb{R} \text{ we get that } \chi \circ \varphi \circ \pi + f \text{ is an exhaustion function. We denote by } Z_i \text{ the sublevel sets } \{\chi \circ \varphi \circ \pi + f < i\} \text{ which are relatively compact in } Z. This increasing sequence of open sets that cover } Z \text{ will be the one that is needed in Theorem 6.}$

Now we have to build the functions u_i in Theorem 6. For this we will make use of a lemma which is based upon Lemma 3. For details one should consult the Main Lemma of [19] and the Remark that follows.

Lemma 5. Let $\pi : Z \to X$ be a holomorphic map between reduced complex spaces with $r = \max\{\dim \pi^{-1}(x) : x \in X\}$. Then there exists \mathcal{N} a linear set of codimension $\leq r$ over Z such that for any relatively compact open subset U of Z, there exists a finite covering $\{V_l\}_l$ of $\overline{\pi(U)}$ by relatively compact open subsets and smooth functions $\psi_l : U_l \to \mathbb{R}_+$ such that ψ_l is 1-convex with respect to \mathcal{N} over $U_l \cap U$, where $U_l = \pi^{-1}(V_l)$.

Now we go back to the proof. Since $Z_i \subset \mathbb{C}$, there exists a linear set \mathcal{N} of codimension $\leq r$ over Z, a finite covering $\{V_l^i\}_l$ of $\overline{\pi(Z_i)}$ by relatively compact open subsets and smooth functions $\psi_l^i : U_l^i \to \mathbb{R}_+$ such that ψ_l^i is 1-convex with respect to \mathcal{N} over $U_l^i \cap Z_i$, where $U_l^i = \pi^{-1}(V_l^i)$. The functions ψ_l^i may be taken > 0.

Let $\{\rho_l^i\}_l$ be a partition of unity subordinated to the covering $\{V_l^i\}_l$ and we define a smooth function u_i on Z_i as follows:

$$u_i = \chi \circ \varphi \circ \pi + f + \sum_l \epsilon_l^i \cdot (\rho_l^i \circ \pi)^2 \cdot \psi_l^i,$$

where $\epsilon_l^i > 0$ are sufficiently small constants to be chosen later in the proof. Since the above sum is > 0, there exists $\delta_i > 0$ such that for all $z \in Z_i$ we have $\sum \epsilon_l^i \cdot (\rho_l^i \circ \pi)^2 \cdot \psi_l^i \ge \delta_i$. By choosing the constants ϵ_l^i to be sufficiently small we may assume that $\sum \epsilon_l^i \cdot (\rho_l^i \circ \pi)^2 \cdot \psi_l^i < 1$.

First we show that the functions u_i satisfy the conditions (a), (b) and (c) from Theorem 6. We define $C_i := i - 1$ and $D_i := i$. For simplicity we denote $\sum \epsilon_l^i \cdot (\rho_l^i \circ \pi)^2 \cdot \psi_l^i$ by \sum^i . Since $\sum^i \ge \delta_i$, we have that $\{u_i < i\} \subset \{\chi \circ \varphi \circ \pi + f < i\}$ *i*}, so this proves (a). For the second condition, let $z \in Z_{i+1}$ such that $u_{i+1}(z) < i-1$. We get that $\chi \circ \varphi \circ \pi + f + \sum^{i+1} < i-1$, thus $\chi \circ \varphi \circ \pi + f < i-1$ and $z \in Z_i$. Adding \sum^i to the last inequality, we obtain $\chi \circ \varphi \circ \pi + f + \sum^i < i-1 + \sum^i < i$, since $\sum^i < 1$. Now for condition (c), since $\bigcup \{\chi \circ \varphi \circ \pi + f < i-2\} = Z$, it is enough to prove that $\{z \in Z_{i+1} : \chi \circ \varphi \circ \pi + f < i-2\} \subset \{z \in Z_{i+1} : u_{i+1} < i-1\}$. Adding \sum^i to $\chi \circ \varphi \circ \pi + f$ and using the fact that $\sum^i < 1$, we easily get the claim.

Now we prove that $u_i \in \mathcal{B}(Z_i, \mathcal{P}|_{Z_i})$, where $\mathcal{P} := \pi^* \mathcal{M} \cap \mathcal{N}$. We have that \mathcal{P} is a linear set over Z and codim $\mathcal{P} \leq q + r - 1$. It is enough to show that every point $z \in Z_i$ admits an open neighbourhood D such that u_i is 1-convex with respect to $\mathcal{P}|_D$. Using Lemma 2, this is equivalent to proving that for every compact $K \subset Z_i$ there exists $\delta > 0$ and for all $z \in K$ there exists an extension \tilde{u}_i of u_i such that

$$L(\widetilde{u}_i,\iota(z))\iota_*(\xi) \ge \delta \|\iota_*(\xi)\|^2$$

for all $\xi \in \mathcal{P}_z$.

This is a local statement. So, without any loss of generality, we may suppose that there are local charts $\iota : U \hookrightarrow \widetilde{U} \subset \mathbb{C}^m$, $z \in U \subset Z_i$, $K \subset U$ and $\tau : V \hookrightarrow \widetilde{V} \subset \mathbb{C}^n$, $x := \pi(z) \in V \subset X$, $\pi(K) \subset V$ such that:

- (i) $\pi(U) \subset V$ and there exists an extension $\tilde{\pi} : \tilde{U} \to \tilde{V}, \, \tilde{\pi} \circ \iota = \tau \circ (\pi|_U);$
- (ii) there exists A > 0 and smooth extensions $\tilde{\varphi} : \tilde{V} \to \mathbb{R}_+$ and $\tilde{g} : \tilde{V} \to \mathbb{R}_+$ such that

$$L(\chi \circ \widetilde{\varphi} + \widetilde{g}, \tau(x))\tau_*(\zeta) \ge A \|\tau_*(\zeta)\|^2$$

for all $\zeta \in \mathcal{M}_x$ and $x \in \pi(K)$ (this is true due to Lemma 4);

(iii) there are constants $a_l > 0$ and smooth extensions $\tilde{\psi}_l : \tilde{U} \to \mathbb{R}_+$ of ψ_l such that

$$L(\widetilde{\psi}_l,\iota(z))\iota_*(\xi) \ge a_l \|\iota_*(\xi)\|^2$$

for all $\xi \in \mathcal{N}_z$ and $z \in K$ (this is true due to Lemma 5).

Let $\tilde{\rho}_l$ be smooth extensions of ρ_l to \tilde{V} . So we get an extension $\tilde{u}_i : \tilde{U} \to \mathbb{R}_+$ of $u_i|_U$ given as follows:

$$\widetilde{u}_i = \chi \circ \widetilde{\varphi} \circ \widetilde{\pi} + \widetilde{g} \circ \widetilde{\pi} + \sum_l \epsilon_l \cdot (\widetilde{\rho}_l \circ \widetilde{\pi})^2 \cdot \widetilde{\psi}_l.$$

Now, using the same computations as in [19] (see Theorem A, pages 231-232), we get, for a sufficiently small positive ϵ , that for any choice of the constants ϵ_l , with $0 < \epsilon_l \leq \epsilon$, the Levi form of \tilde{u}_i at $\iota(z)$ in direction $\iota_*(\xi)$ is strictly positive for $\xi \in \mathcal{P}_z$. This means that there exists $\delta > 0$ such that $L(\tilde{u}_i, \iota(z))\iota_*(\xi) \geq \delta ||\iota_*(\xi)||^2$ for all $\xi \in \mathcal{P}_z$.

References

- [1] Andreotti, A., Grauert, H.: *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bulletin de la S.M.F. **90** (1962), 193-259.
- [2] Ballico, E.: *Morfismi finiti tra spazi complessi e q-convessità*, Ann. Univ. Ferrara, sez. VII Sc. Mat. **26** (1980), 29-31.
- [3] Ballico, E.: *Rivestimenti di spazi complessi e q-completezza*, Riv. Mat. Univ. Parma 7 (1981), 443-452.
- [4] Chiriacescu, G., Colţoiu, M., Joiţa, C.: Analytic cohomology groups in top degrees of Zariski open sets in Pⁿ, Math. Z. 264 (2010), 671-677.
- [5] Colţoiu, M., Vâjâitu, V.: *Locally trivial fibrations with singular 1-dimensional Stein fiber over q-complete spaces*, Nagoya Math. J. **157** (2000), 1-13.
- [6] Colţoiu, M., Vâjâitu, V.: *On the n-completeness of covering spaces with parameters*, Math. Z. **237** (2001), 815-831.
- [7] Diederich, K., Fornaess, J. E.: *Smoothing q-convex functions and vanishing theorems*, Invent. Math. **82** (1985), 291-305.
- [8] Diederich, K., Fornaess, J. E.: *Smoothing q-Convex Functions in the Singular Case*, Math. Ann. **273** (1986), 665-671.
- [9] Fornaess, J. E.: An Increasing Sequence of Stein Manifolds whose Limit is not Stein, Math. Ann. 223 (1976), 275-277.
- [10] Fornaess, J. E.: 2 Dimensional Counterexamples to Generalizations of the Levi Problem, Math. Ann. 230 (1977), 169-173.
- [11] Grauert, H.: On Levi's Problem and the Imbedding of Real Analytic Manifolds, Ann. Math. 68 (1958), 460-472.
- [12] Joiţa, C.: On the n-concavity of covering spaces with parameters, Math. Z. 245 (2003), 221-231.
- [13] Le Barz, P.: A propos des revêtements ramifiés d'espaces de Stein, Math. Ann. 222 (1976), 63-69.
- [14] Narasimhan, R.: *The Levi Problem for Complex Spaces*, Math. Ann. **129** (1961), 355-365.
- [15] Narasimhan, R.: The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216.
- [16] Peternell, M.: *Algebraische Varietäten und q-vollständige komplexe Räume*, Math. Z. **200** (1989), 547-581.
- [17] Sommese, A. J.: A convexity theorem, Proc. Symp. Pure Math. 40 Part 2 (1983), 497-505.

- [18] Stein, K.: Überlagerung holomorph vollständiger komplexer Räume, Arch. Mat. 7 (1956), 354-361.
- [19] Vâjâitu, V.: Some convexity properties of morphisms of complex spaces, Math. Z. 217 (1994), 215-245.

Simion Stoilow Institute of Mathematics of the Romanian Academy Research group of the project ID-3-0269 P.O. Box 1-764, Bucharest 014700, Romania and Department of Mathematics and Computer Science, "Politehnica" University of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania. *E-mail address*: georgeionutionita@yahoo.com