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Abstract

We prove that if π : Z → X is a locally semi-proper morphism between
two complex spaces and X is q-complete, then Z is (q + r)-complete, where
r is the dimension of the fiber.

1 Introduction

According to Grauert [11] and Narasimhan [14], [15] and their solution to the Levi
problem, a complex space is Stein if and only if it admits a continuous strongly
plurisubharmonic exhaustion function (see Definitions 3 and 4).

In [18], Stein showed that if X and Z are two complex spaces and if π : Z → X
is an unramified covering such that X is Stein, then Z is Stein. This result was
generalized to ramified coverings by Le Barz in [13].

The notion of a Stein space was generalized by Andreotti and Grauert in [1],
where they defined q-convex and q-complete complex spaces. They extended
Cartan’s Theorem B and proved finiteness and vanishing theorems for the coho-
mology of a q-convex and of a q-complete space with values in a coherent analytic
sheaf.

Also, in [3], Ballico generalized Stein’s result to arbitrary q-complete spaces
instead of Stein spaces and in [2], he proved the same type of result for finite
morphisms of complex spaces.
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In [5], Colţoiu and Vâjâitu considered locally trivial analytic fibrations
π : E → B such that the fiber is a Stein curve and B is q-complete. In this way
they improved the result of [3].

Further generalizations of the results of Ballico in [2] were obtained by Vâjâitu
in [19].

The purpose of this paper is to generalize the results in [2], [3], [13], [18]
and [19]. This is contained in Theorem 7.

Acknowledgments: I am very grateful to Professor Mihnea Colţoiu for sug-
gesting me this problem and for his helpful advice.

2 Preliminaries

All complex spaces are assumed to be reduced, finite dimensional and with count-
able topology.

2.1

Definition 1. A complex space X is said to be a Stein space if the following hold:

(a) X is holomorphically convex, i.e., for every compact set K ⊂ X the holomorphically
convex hull

K̂X = {x ∈ X : | f (x)| ≤ ‖ f‖K , ∀ f ∈ O(X)}

is also compact;

(b) For every x ∈ X there are global functions f1, . . . , fN ∈ O(X) which give a local
holomorphic embedding of a neighbourhood of x into CN ;

(c) For every pair of distinct points x 6= y in X there is a holomorphic function
f ∈ O(X) such that f (x) 6= f (y).

Definition 2. Let D be an open neighbourhood of a point z0 ∈ Cn and f ∈ C∞(D, R).
We define the Levi form L( f , z0) of f at z0 as follows: for arbitrary ξ, η ∈ Cn set

L( f , z0)(ξ, η) :=
n

∑
i,j=1

∂2 f

∂zi∂z̄j
(z0)ξi η̄j.

Also we set L( f , z0)ξ = L( f , z0)(ξ, ξ), ξ ∈ Cn.

Definition 3. 1) A real valued C2-function ϕ : D → R, where D is an open set in Cn,
is said to be plurisubharmonic (respectively strongly plurisubharmonic) if and only if its
Levi form is positive-semidefinite (respectively positive definite), that is for each z0 ∈ D
and for every ξ ∈ Cn the inequality L( f , z0)ξ ≥ 0 (respectively > 0 on Cn\{0}) holds.

2) Let X be a complex space. A function ϕ : X → R is said to be (strongly) plurisub-

harmonic at a point x ∈ X if there is a local chart ι : U →֒ Ũ ⊂ C
n of X, U ∋ x and

ϕ̃ ∈ C∞(Ũ, R) such that:

1. ϕ̃ ◦ ι = ϕ|U;
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2. The function ϕ̃ is (strongly) plurisubharmonic on Ũ.

The function ϕ is said to be (strongly) plurisubharmonic on a subset W ⊂ X if
it is (strongly) plurisubharmonic at every point of W.

Definition 4. Let X be a complex space. An upper semi-continuous function ϕ : X → R

is said to be an exhaustion function on X if the sublevel sets {x ∈ X : ϕ(x) < c} are
relatively compact in X for any c ∈ R.

We have the following result (see [11] and [14], [15]):

Theorem 1. A complex space X is Stein if and only if there exists ϕ : X → R a
continuous strongly plurisubharmonic exhaustion function on X.

Definition 5. Let X and Z be two complex spaces. A morphism π : Z → X is said to
be proper if for every compact set K in X the preimage π−1(K) is compact. A morphism
π : Z → X is said to be finite if it is proper and it has finite fibers.

Remark 1. Let π : Z → X be a finite morphism of complex spaces. Then Z is Stein if
and only if X is Stein.

We recall the following theorem of Stein [18]:

Theorem 2. Let π : Z → X be an unramified covering of complex spaces. If X is Stein,
then Z is Stein

Le Barz [13] extended Stein’s result to locally semi-finite morphisms of com-
plex spaces (see Definition 6 and Theorem 3).

Definition 6. Let X and Z be two complex spaces. We say that a morphism π : Z → X
is

(a) semi-finite if Z is the disjoint union of some open spaces (Wm)m∈N such that
π|Wm : Wm → X is a finite morphism;

(b) locally semi-finite if for all x ∈ X, there exists a neighbourhood U ∋ x such that
π|π−1(U) : π−1(U) → U is a semi-finite morphism.

Theorem 3. Let π : Z → X a locally semi-finite morphism of complex spaces. If X is
Stein, then Z is Stein.

2.2 As we mentioned in the introduction, the notions of a q-convex and of a
q-complete complex space were introduced in [1].

Definition 7. 1) A function ϕ ∈ C∞(D, R), where D is an open subset of Cn is said to
be q-convex (q ∈ N, 1 ≤ q ≤ n) if its Levi form has at least n − q + 1 positive (> 0)
eigenvalues at every point of U.

2) Let X be a complex space. A function ϕ : X → R is said to be q-convex at a point

x ∈ X if there is a local chart ι : U →֒ Ũ ⊂ Cn of X, U ∋ x and ϕ̃ ∈ C∞(Ũ, R) such
that:
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1. ϕ̃ ◦ ι = ϕ|U;

2. The function ϕ̃ is q-convex on Ũ.

The second condition can be replaced by the following:

2’. There exists a complex linear space E ⊂ Cn, dim E ≥ n − q + 1 such that the
Levi form L(ϕ̃, ι(x)) is positive definite when restricted to E.

The function ϕ is said to be q-convex on a subset W ⊂ X if it is q-convex at
every point of W.

Definition 8. A complex space X is said to be q-convex, if there exists a compact subset
K of X and a smooth exhaustion function ϕ : X → R, which is q-convex on X\K. If we
can choose K = ∅, then X is said to be q-complete.

Remark 2. From [14] and [15] we have that a complex space X is Stein if and only if is
1-complete.

Ballico [3] improved Theorem 2 in another direction.

Theorem 4. Let π : Z → X be an unramified covering. If X is q-complete, then Z is
q-complete.

Also, in [2], Ballico showed that if π : Z → X is a finite morphism be-
tween complex spaces and X is q-complete or q-convex, then Z is q-complete
or q-convex, respectively.

Colţoiu and Vâjâitu [5] proved that if π : E → B is a locally analytic fibration
of complex spaces such that the fiber is a Stein curve and B is q-complete, then E
is q-complete. The case when E is a topological covering of B was already done
in [3].

Vâjâitu [19] generalized Ballico’s results from [2] and showed the following:

Theorem 5. Let π : Z → X be a proper holomorphic map between finite dimensional
complex spaces. If X is q-complete, then Z is (q + r)-complete, where r is the dimension
of the fiber.

Let X be a complex space of complex dimension n and q an integer with
1 ≤ q ≤ n. For q > 1 the sum and the maximum of two q-convex functions on X
is not q-convex as they might have different directions of positivity. It was proved
in [7] and [8] that every q-convex function with corners (i.e., a function which lo-
cally is equal to the maximum of a finite family of q-convex functions) can be

approximated by a q̃-convex function, where q̃ = n −

[
n

q

]
+ 1 (here

[
n

q

]
de-

notes as usual the largest integer ≤
n

q
). Diederich and Fornaess also showed that

this q̃ is optimal. As a consequence, a finite intersection of q-convex open sets is
q̃-convex. The optimality of this q̃ is proved by Chiriacescu, Colţoiu and Joiţa
in [4] in the case of quasi-projective varieties in a cohomological context.

To overcome this type of problem, M. Peternell [16] introduced the notion of
convexity with respect to a linear set M.
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As before X is a reduced, finite dimensional and with countable topology
complex space. For any x ∈ X we denote by TxX the Zariski tangent space of

X to x. Set TX =
⋃

x∈X

TxX. Consider an arbitrary subset M ⊂ TX and for any

point x ∈ X put Mx = M∩ TxX. Then M is said to be a linear set over X if Mx

is a complex vector subspace of TxX for any x ∈ X.
Let now Ω ⊂ X be an open subset. We define:

(i) codimΩ M = supx∈Ω codim Mx;

(ii) M|Ω as (M|Ω)x = Mx for every x ∈ Ω.

Let π : Y → X be an analytic morphism of complex spaces and M a linear
set over X. For every y ∈ Y we have the tangent map which is a C-linear map of
complex vector spaces π∗,y : TyY → TxX, where x = π(y). We set

π∗M :=
⋃

y∈Y

(π∗,y)
−1(Mx).

We have that π∗M is a linear set over Y. Moreover, if codim M ≤ q − 1, then
codim π∗M ≤ q − 1.

The following are due to M. Peternell (see [16]).

Definition 9. Let X be a complex space, W ⊂ X an open subset, M a linear set over W
and ϕ : W → R a smooth function.

(a) Let x ∈ W. Then ϕ is said to be weakly 1-convex with respect to Mx if there are a

local chart ι : U →֒ Ũ of X with x ∈ U ⊂ W and ϕ̃ ∈ C∞(Ũ, R) such that

ϕ̃ ◦ ι = ϕ|U and L(ϕ̃, ι(x))ι∗ξ ≥ 0 for any ξ ∈ Mx.

Furthermore, ϕ is said to be weakly 1-convex with respect to M if ϕ is weakly
1-convex with respect to Mx for every x ∈ W.

(b) We say that ϕ is 1-convex with respect to M, if for any x ∈ W there exist an open
neighbourhood U ⊂ W of x and a 1-convex function ψ ∈ C∞(U, R) such that
ϕ|U − ψ is weakly 1-convex with respect to M|U .

Definition 10. Let X be a complex space and M a linear set over X. We denote by
B(X,M) the set of all continuous functions ϕ : X → R such that every point of X
admits an open neighbourhood D on which there are functions f1, . . . , fk ∈ C∞(D, R)
which are 1-convex with respect to M|D and

ϕ|D = max( f1, . . . , fk).

We need also the following results of M. Peternell (see [16]):

Lemma 1. Suppose that ϕ is a q-convex function on a complex space X. Then there
exists a linear set M over X of codimension ≤ q− 1 such that ϕ is 1-convex with respect
to M.
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Lemma 2. Let ι : U →֒ Ũ be a local chart of the complex space X and ϕ : U → R

a smooth function. Then ϕ is 1-convex with respect to some linear set M if and only
if for every compact subset K ⊂ U there exists δ > 0 and for each x ∈ K there exist

ϕ̃ ∈ C∞(Ũ, R) such that ϕ̃ ◦ ι = ϕ and

L(ϕ̃, ι(x))ι∗(ξ) ≥ δ ‖ι∗(ξ)‖
2

for all ξ ∈ Mx.

In general, an increasing union of Stein open subsets {Xi}i∈N of a complex
space X is not Stein, even if X is smooth (see [9] and [10]). However, if (Xi+1, Xi)

is Runge, then
⋃

i∈N

Xi is Stein. We recall that if Y is a Stein open subset of a Stein

space X, then (X, Y) is said to be a Runge pair if for any compact subset K of Y,

the set K̂X ∩ Y is compact. Using the approximation theorem of Oka-Weil, (X, Y)
is a Runge pair if and only if Y is a Stein space and every holomorphic function
on Y can be approximated uniformly on compact subset of Y by holomorphic
functions on X.

The following result follows from Theorem 3 proved by Colţoiu and Vâjâ-itu
in [6]; it gives us a criterion for testing the q-completeness of a complex space.
The same kind of result as Theorem 3 in [6] was obtained in the q-concave case
in [12].

Theorem 6. Let X be a complex space and M a linear set over X. Let {Xi}i∈N be an

increasing sequence of open subsets of X such that X =
⋃

i∈N

Xi and there are functions

ui : Xi → R, ui ∈ B(Xi ,M|Xi
) and constants Ci, Di ∈ R, Ci < Di, i ∈ N with the

following properties:

(a) {x ∈ Xi : ui(x) < Di} ⊂⊂ Xi for every i ∈ N

(b) {x ∈ Xi+1 : ui+1(x) < Ci} ⊂ {x ∈ Xi : ui(x) < Di} for every i ∈ N;

(c) for every compact set K ⊂ X there is j = j(K) ∈ N such that

K ⊂ {x ∈ Xi+1 : ui+1(x) < Ci} for every i ≥ j.

Then there exists an exhaustion function v ∈ B(X,M). In particular, if codim M ≤
q − 1, then X is q-complete.

2.3 Let X be a complex space and A an analytic subset of X. The Andreotti
function will help us to get some positive eigenvalues in the ”normal direction” at
the
regular points of A. Denote by IA the coherent ideal sheaf of germs of holo-
morphic functions vanishing along A.

Choose a locally finite covering {Uj}j of X by relatively compact open subsets

of X such that on each Uj there are functions h
(j)
1 , . . . , h

(j)
q(j)

∈ O(Uj) with IA|Uj
=

(h
(j)
1 , . . . , h

(j)
q(j)

).
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Let {ρj}j be a partition of unity subordinated to the covering {Uj}j of X.
We define the Andreotti function fA : X → R by setting:

fA(x) = ∑
j

ρj(x)
∥∥∥h(j)(x)

∥∥∥
2

, x ∈ X,

where
∥∥∥h(j)

∥∥∥
2
=

q(j)

∑
i=1

|h
(j)
i |2.

We remark that fA ≥ 0, fA ∈ C∞(X) and A = { fA = 0}.

Suppose that x0 ∈ A and let ι : U →֒ Ũ be a local chart around x0. Extend ρj

by ρ̃j ∈ C∞
0 (Ũ) and h

(j)
i |U by h̃

(j)
i ∈ O(Ũ). Locally, fA has an extension f̃A defined

on Ũ such that

1. the Levi form L( f̃A, ι(x)) is positive semidefinite for all x ∈ U ∩ A;

2. for x ∈ U ∩ Reg(A) we have that the Levi form L( f̃A, ι(x))(v) = 0 iff v ∈
ι∗,x(Tx A).

The Andreotti function is used in the next result which follows from Lemma
3 and Lemma 4 in [19]:

Lemma 3. Let π : Z → X be a holomorphic map between finite dimensional reduced
complex spaces and A an analytic subset of Z. Put r = max{dim π−1(x) : x ∈ X} and
let B ⊂ A be an analytic subset such that Sing (A) ⊆ B and suppose that the restriction
map π|A\B : A\B → X has locally constant rank.

Assume also that there exists a locally finite covering {V ′
l }l of X by relatively compact

open subsets and 1-convex functions ϕl : V ′
l → R+. Let Vl ⊂ V ′

l be open subsets,

Vl ⊂ V ′
l and

⋃
Vl = X. Denote Ul := π−1(Vl), U′

l := π−1(V ′
l ) and put

ψl = fA + ϕl ◦ π : U′
l → R+,

where fA is the Andreotti function of the analytic subset A of Z.
Then there is an open neighbourhood Ω of A\B in Z and a linear set M over Ω,

codim M ≤ r such that ψl|Ul∩Ω is 1-convex with respect to M|Ul∩Ω for any l.

3 The main result

Following the ideas of Le Barz [13] we give the next definition.

Definition 11. Let X and Z be two complex spaces. We say that a morphism π : Z → X
is

(a) semi-proper if Z is the disjoint union of some open spaces (Wm)m∈N such that
π|Wm : Wm −→ X is proper;

(b) locally semi-proper if for all x ∈ X, there exists a neighbourhood U ∋ x such that
π|π−1(U) : π−1(U) −→ U is a semi-proper morphism.
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Now we are ready to state the main result.

Theorem 7. Let X and Z be two complex spaces and π : Z → X a locally semi-
proper morphism and r = max{dim π−1(x) : x ∈ X}. If X is q-complete, then Z is
(q + r)-complete.

Proof. Since X is q-complete there exists a smooth q-convex exhaustion function
ϕ : X → R on X. Due to Lemma 1 there exists a linear set M over X of codimen-
sion ≤ q − 1 such that ϕ is 1-convex with respect to M. The idea is to use the
q-completeness criterion provided by Theorem 6.

Now we need the following result from [19]:

Proposition 1. Let π : Z → X be a holomorphic map. Then there exists a decreasing
chain of p + 1 analytic subsets Ak of Z, where p ≤ dim Z, Z = Ap ⊃ Ap−1 ⊃ · · · ⊃
A1 ⊃ A0 = ∅ such that for every k ∈ {1, 2, . . . , p} we have dim Ak−1 < dim Ak,
Sing (Ak) ⊂ Ak−1 and

π|Ak\Ak−1
: Ak\Ak−1 → X

has locally constant rank.

The above decomposition of Z with respect to π is called the singular filtration
of π (see also [17]).

So, consider A1 ⊃ A2 ⊃ · · · ⊃ Ap the analytic subsets of Z given by Proposi-

tion 1 and the corresponding Andreotti functions fAk
, k = 1, p.

The next ingredient that we need is a lemma. This lemma was proved by Le
Barz [13] in the case of 0-dimensional fibers, but the proof in the general case (the
dimension of the fiber is > 0) goes exactly the same way.

Lemma 4. Let X and Z be two complex spaces and π : Z → X a locally semi-proper
morphism. Then there exists a locally finite covering {Uj}j of Z and a locally finite
covering {Vl}l of X such that the following conditions hold:

1. for all j, there exists a positive integer mj and a local chart ιj : Uj →֒ Ũj, where Ũj

is an open subset of C
mj ;

2. for all l, there exists a positive integer nl and a local chart τl : Vl →֒ Ṽl, where Ṽl

is an open subset of C
nl ;

3. for all j, there exists l(j) such that we have π(Uj) ⊂ Vl(j) and π|Uj
extends to a

holomorphic map π̃ : Ũj → Ṽl(j);

Also there exists a C∞ function f : Z → R such that:

• {z ∈ Z : f (z) < c1} ∩ {z ∈ Z : (ϕ ◦ π)(z) < c2} ⊂⊂ Z, ∀c1, c2 ∈ R;

• for all j, there exists a map gj : Vl(j) → R such that f |Uj
= gj ◦ π|Uj

;

• gj has a C∞ extension, g̃j : Ṽl(j) → R;
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• for all compact sets K ⊂ X,

sup
j∈N





∣∣∣∣∣
∂2g̃j

∂z
(l(j))
r ∂z̄

(l(j))
s

∣∣∣∣∣
|τl(j)(Vl(j)∩K)

: Vl(j) ∩ K 6= ∅, r, s = 1, nl(j)





< ∞.

We choose {W1
j }j a locally finite covering of Z and {W2

k }k a locally finite cov-

ering of X such that the conditions in Lemma 4 hold. We denote by ϕ̃ : W̃2
k(j)

→ R

a q-convex extension of ϕ|W2
k(j)

. Also consider the function f : Z → R, the function

gj : W2
k(j)

→ R and its extension g̃j given by Lemma 4.

Using the boundedness condition for the second derivatives of the function f ,
on every compact set, there exists a convex and strictly increasing function χ so
that (χ ◦ ϕ̃ + g̃j)|W̃2

k(j)
is q-convex for all j.

Because {z ∈ Z : f (z) < c1}∩ {z ∈ Z : (ϕ ◦π)(z) < c2} ⊂⊂ Z, ∀c1, c2 ∈ R we
get that χ ◦ ϕ ◦ π + f is an exhaustion function. We denote by Zi the sublevel sets
{χ ◦ ϕ ◦ π + f < i} which are relatively compact in Z. This increasing sequence
of open sets that cover Z will be the one that is needed in Theorem 6.

Now we have to build the functions ui in Theorem 6. For this we will make
use of a lemma which is based upon Lemma 3. For details one should consult the
Main Lemma of [19] and the Remark that follows.

Lemma 5. Let π : Z → X be a holomorphic map between reduced complex spaces
with r = max{dim π−1(x) : x ∈ X}. Then there exists N a linear set of codimen-
sion ≤ r over Z such that for any relatively compact open subset U of Z, there exists a

finite covering {Vl}l of π(U) by relatively compact open subsets and smooth functions
ψl : Ul → R+ such that ψl is 1-convex with respect to N over Ul ∩ U, where
Ul = π−1(Vl).

Now we go back to the proof. Since Zi ⊂⊂ Z, there exists a linear set N of

codimension ≤ r over Z, a finite covering {Vi
l }l of π(Zi) by relatively compact

open subsets and smooth functions ψi
l : Ui

l → R+ such that ψi
l is 1-convex with

respect to N over Ui
l ∩ Zi, where Ui

l = π−1(Vi
l ). The functions ψi

l may be taken
> 0.

Let {ρi
l}l be a partition of unity subordinated to the covering {Vi

l }l and we
define a smooth function ui on Zi as follows:

ui = χ ◦ ϕ ◦ π + f + ∑
l

ǫi
l · (ρ

i
l ◦ π)2 · ψi

l,

where ǫi
l > 0 are sufficiently small constants to be chosen later in the proof. Since

the above sum is > 0, there exists δi > 0 such that for all z ∈ Zi we have ∑ ǫi
l ·

(ρi
l ◦ π)2 · ψi

l ≥ δi. By choosing the constants ǫi
l to be sufficiently small we may

assume that ∑ ǫi
l · (ρ

i
l ◦ π)2 · ψi

l < 1.
First we show that the functions ui satisfy the conditions (a), (b) and (c) from

Theorem 6. We define Ci := i − 1 and Di := i. For simplicity we denote

∑ ǫi
l · (ρ

i
l ◦π)2 ·ψi

l by ∑
i. Since ∑

i ≥ δi, we have that {ui < i} ⊂⊂ {χ ◦ ϕ ◦π + f <
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i}, so this proves (a). For the second condition, let z ∈ Zi+1 such that ui+1(z) <

i − 1. We get that χ ◦ ϕ ◦ π + f + ∑
i+1

< i − 1, thus χ ◦ ϕ ◦ π + f < i − 1 and

z ∈ Zi. Adding ∑
i to the last inequality, we obtain χ ◦ ϕ ◦ π + f + ∑

i
< i − 1 +

∑
i
< i, since ∑

i
< 1. Now for condition (c), since

⋃
{χ ◦ ϕ ◦ π + f < i − 2} = Z,

it is enough to prove that {z ∈ Zi+1 : χ ◦ ϕ ◦ π + f < i − 2} ⊂ {z ∈ Zi+1 : ui+1 <

i − 1}. Adding ∑
i to χ ◦ ϕ ◦ π + f and using the fact that ∑

i
< 1, we easily get

the claim.
Now we prove that ui ∈ B(Zi ,P|Zi

), where P := π∗M∩N . We have that
P is a linear set over Z and codim P ≤ q + r − 1. It is enough to show that
every point z ∈ Zi admits an open neighbourhood D such that ui is 1-convex
with respect to P|D. Using Lemma 2, this is equivalent to proving that for every
compact K ⊂ Zi there exists δ > 0 and for all z ∈ K there exists an extension ũi of
ui such that

L(ũi , ι(z))ι∗(ξ) ≥ δ ‖ι∗(ξ)‖
2

for all ξ ∈ Pz.
This is a local statement. So, without any loss of generality, we may suppose

that there are local charts ι : U →֒ Ũ ⊂ Cm, z ∈ U ⊂ Zi, K ⊂ U and τ : V →֒ Ṽ ⊂
Cn, x := π(z) ∈ V ⊂ X, π(K) ⊂ V such that:

(i) π(U) ⊂ V and there exists an extension π̃ : Ũ → Ṽ, π̃ ◦ ι = τ ◦ (π|U);

(ii) there exists A > 0 and smooth extensions ϕ̃ : Ṽ → R+ and g̃ : Ṽ → R+

such that
L(χ ◦ ϕ̃ + g̃, τ(x))τ∗(ζ) ≥ A ‖τ∗(ζ)‖

2

for all ζ ∈ Mx and x ∈ π(K) (this is true due to Lemma 4);

(iii) there are constants al > 0 and smooth extensions ψ̃l : Ũ → R+ of ψl such
that

L(ψ̃l , ι(z))ι∗(ξ) ≥ al ‖ι∗(ξ)‖
2

for all ξ ∈ Nz and z ∈ K (this is true due to Lemma 5).

Let ρ̃l be smooth extensions of ρl to Ṽ.

So we get an extension ũi : Ũ → R+ of ui|U given as follows:

ũi = χ ◦ ϕ̃ ◦ π̃ + g̃ ◦ π̃ +∑
l

ǫl · (ρ̃l ◦ π̃)2 · ψ̃l.

Now, using the same computations as in [19] (see Theorem A, pages 231-232),
we get, for a sufficiently small positive ǫ, that for any choice of the constants ǫl ,
with 0 < ǫl ≤ ǫ, the Levi form of ũi at ι(z) in direction ι∗(ξ) is strictly positive for

ξ ∈ Pz. This means that there exists δ > 0 such that L(ũi , ι(z))ι∗(ξ) ≥ δ ‖ι∗(ξ)‖
2

for all ξ ∈ Pz.
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