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Abstract

The goal of this paper is to develop some applications of the Lefschetz
fixed point theorem to digital images. We also deal with relative and reduced
Lefschetz fixed point theorem for digital complexes. We give some examples
related to the topic. We calculate the degree of the antipodal map for sphere-
like digital images using fixed point properties.

1 Introduction

Digital topology with algebraic properties is a growing area in computer vision,
image processing and fixed point theory. Many researchers, such as Rosenfeld,
Kong, Kopperman, Kovalevsky, Boxer, Karaca, Han and others, have studied the
properties of digital images using topology and algebraic topology.

The Lefschetz fixed point theorem counts fixed points of a continuous map-
ping from a compact topological space X to itself via traces of the induced map-
pings on the homology groups of X. The Lefschetz number has been used in
order to treat fixed point theory. Since the Lefschetz number is a homotopy in-
variant, it can be used to classify digital images. The main advantage is that this
number can be easily computed.

Arslan et al. [1] introduce the simplicial homology groups of n-dimensional
digital images. Boxer et al. [7] expanded knowledge of the simplicial homology
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groups of digital images. They study the simplicial homology groups of certain
minimal simple closed surfaces, extended an earlier definition of the Euler char-
acteristics of a digital image, and computed the Euler characteristic of several
digital surfaces.

Karaca and Ege [14] study some results related to the simplicial homology
groups of 2D digital images. They show that if a bounded digital image X ⊂ Z is
nonempty and κ-connected, then its homology groups at the first dimension are
trivial. They also prove that the homology groups of the operands of a wedge of
digital images are not necessarily additive. Ege and Karaca [11] give character-
istic properties of the simplicial homology groups of digital images and investi-
gate the Eilenberg-Steenrod axioms for the simplicial homology groups of digital
images. Ege and Karaca [10] construct Lefschetz fixed point theory for digital
images and get some nice results. Ege et al. [12] study relative homology groups
of digital images and compute relative homology groups of some digital images.

This paper is organized as follows. The second section provides the general
notions of digital images with κ-adjacency relations, digital homotopy and ho-
mology groups. In Section 3, we provide some important applications about the
Lefschetz number, relative and reduced versions of the Lefschetz number, and
we present some examples. In the final Section we draw some conclusions.

2 Preliminaries

Let Z be the set of integers. A digital image is a pair (X, κ), where X ⊂ Z
n

for some positive integer n and κ represents a certain adjacency relation for the
elements of X. There are various adjacency relations in the study of digital im-
ages but we give only one of them. Let l, n be positive integers, 1 ≤ l ≤ n and
two distinct points p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) in Z

n, p and q are
kl-adjacent [5], if there are at most l distinct coordinates j for which |pj − qj| = 1
and for all other coordinates j, pj = qj. The number of points q ∈ Z

n that are
adjacent to a given point p ∈ Z

n is represented by a kl-adjacency relation. From
this viewpoint, the k1-adjacency on Z is denoted by the number 2 and k1-adjacent
points are called 2-adjacent. In a similar way, we call 4-adjacent and 8-adjacent for
k1 and k2-adjacent points of Z

2; and in Z
3, 6-adjacent, 18-adjacent and 26-adjacent

for k1, k2 and k3-adjacent points, respectively.

A κ-neighbor of p ∈ Z
n is a point of Z

n which is κ-adjacent to p, where κ is an
adjacency relation defined on Z

n. A digital image X ⊂ Z
n is κ-connected [13] if

and only if for every pair of different points x, y ∈ X, there is a set {x0, x1, . . . , xr}
of points of a digital image X such that x = x0, y = xr and xi and xi+1 are
κ-neighbors where i = 0, 1, . . . , r − 1. A set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b},

is said to be a digital interval [2], where a, b ∈ Z with a < b.

Let (X, κ0) ⊂ Z
n0 and (Y, κ1) ⊂ Z

n1 be digital images. A function f : X −→ Y
is called (κ0, κ1)-continuous [3] if for every κ0-connected subset U of X, f (U) is a
κ1-connected subset of Y.
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In a digital image (X, κ), if there is a (2, κ)-continuous function f : [0, m]Z −→
X such that f (0) = x and f (m) = y, then we say that there exists a digital κ-path
[6] from x to y. If f (0) = f (m) then f is called digital κ-loop and the point f (0) is
the base point of the loop f . When a digital loop f is a constant function, it is said
to be a trivial loop. A simple closed κ-curve of m ≥ 4 points in a digital image X is a
sequence { f (0), f (1), . . . , f (m − 1)} of images of the κ-path f : [0, m − 1]Z −→ X
such that f (i) and f (j) are κ-adjacent if and only if j = i ± mod m.

Definition 2.1. Let (X, κ0) ⊂ Z
n0 and (Y, κ1) ⊂ Z

n1 be digital images. A function
f : X −→ Y is a (κ0, κ1)-isomorphism [1] if f is (κ0, κ1)-continuous and bijective
and f−1 : Y −→ X is (κ1, κ0)-continuous and it is denoted by X ≈(κ0,κ1)

Y.

For a digital image (X, κ) and its subset (A, κ), we call (X, A) a digital image
pair with κ-adjacency. If A is a singleton set {x0}, then (X, x0) is called a pointed
digital image.

Definition 2.2. [3]. Let (X, κ0) ⊂ Z
n0 and (Y, κ1) ⊂ Z

n1 be digital images.
Two (κ0, κ1)-continuous functions f , g : X −→ Y are said to be digitally (κ0, κ1)-
homotopic in Y if there is a positive integer m and a function H : X × [0, m]Z −→
Y such that

• for all x ∈ X, H(x, 0) = f (x) and H(x, m) = g(x);

• for all x ∈ X, the induced function Hx : [0, m]Z −→ Y defined by

Hx(t) = H(x, t) for all t ∈ [0, m]Z,

is (2, κ1)-continuous; and

• for all t ∈ [0, m]Z, the induced function Ht : X −→ Y defined by

Ht(x) = H(x, t) for all x ∈ X,

is (κ0, κ1)-continuous.

The function H is called a digital (κ0, κ1)-homotopy between f and g. If these
functions are digitally (κ0, κ1)-homotopic, this is denoted f ≃(κ0,κ1)

g. The digital

(κ0, κ1)-homotopy relation [3] is equivalence among digitally continuous func-
tions f : (X, κ0) −→ (Y, κ1).

Definition 2.3. [3]. Let f : X −→ Y and g : Y −→ X be (κ0, κ1) and (κ1, κ0)
continuous functions respectively such that

f ◦ g ≃(κ1,κ1)
1Y and g ◦ f ≃(κ0,κ0) 1X.

We say that X and Y have the same (κ0, κ1)-homotopy type and that X and Y are
(κ0, κ1)-homotopy equivalent.
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Definition 2.4. [3]. (i) Let (X, κ) and (Y, κ
′
) be digital images. A digitally contin-

uous function f : X −→ Y is digitally nullhomotopic if f is digitally homotopic
in Y to a constant function. A digital image (X, κ) is κ-contractible if its identity
map is digitally nullhomotopic.

(ii) Let (X, A) be a digital image pair with κ-adjacency. A is called a κ-retract
of X if and only if there is a κ-continuous function r : X −→ A such that r(a) = a
for all a ∈ A. Then the function r is called a κ-retraction of X onto A.

Definition 2.5. [15]. Let S be a set of nonempty subsets of a digital image (X, κ).
Then the members of S are called simplexes of (X, κ) if the following hold :

a) If p and q are distinct points of s ∈ S, then p and q are κ-adjacent.
b) If s ∈ S and ∅ 6= t ⊂ s, then t ∈ S.

An m-simplex is a simplex S such that |S| = m + 1.

Let P be a digital m-simplex. If P
′

is a nonempty proper subset of P, then

P
′

is called a face of P. We write Vert(P) to denote the vertex set of P, namely, the
set of all digital 0-simplexes in P. A digital subcomplex A of a digital simplicial
complex X with κ-adjacency is a digital simplicial complex [15] contained in X
with Vert(A) ⊂ Vert(X).

Definition 2.6. Let (X, κ) be a finite collection of digital m-simplexes, 0 ≤ m ≤ d
for some nonnegative integer d. If the following statements hold, then (X, κ) is
called [1] a finite digital simplicial complex :

(1) If P belongs to X, then every face of P also belongs to X.
(2) If P, Q ∈ X, then P ∩ Q is either empty or a common face of P and Q.

The dimension of a digital simplicial complex X is the largest integer m such
that X has an m-simplex. Cκ

q(X) is a free abelian group [1] with basis of all digital

(κ, q)-simplexes in X.

Corollary 2.7. [1]. Let (X, κ) ⊂ Z
n be a digital simplicial complex of dimension m.

Then, for all q > m, Cκ
q (X) is a trivial group.

Let (X, κ) ⊂ Z
n be a digital simplicial complex of dimension m. The homo-

morphism ∂q : Cκ
q (X) −→ Cκ

q−1(X) defined (see [1]) by

∂q(< p0, p1, . . . , pq >) =

{
∑

q
i=0(−1)i

< p0, p1, . . . , p̂i, . . . , pq >, q ≤ m
0, q > m

is called a boundary homomorphism, where p̂i means delete the point pi. In [1],
it is shown that for all 1 ≤ q ≤ m,

∂q−1 ◦ ∂q = 0.
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Definition 2.8. [7]. Let (X, κ) be a digital simplicial complex.

(1) Zκ
q (X) = Ker ∂q is called the group of digital simplicial q-cycles.

(2) Bκ
q(X) = Im ∂q+1 is called the group of digital simplicial q-boundaries.

(3) Hκ
q (X) = Zκ

q (X)/Bκ
q (X) is called the qth digital simplicial homology group.

We recall some important examples about digital homology groups of certain
digital images.

Example 2.9. Let X = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z
2 be a digital image with

4-adjacency (see Figure 1). In [1], it is shown that digital homology groups of X
are:

H4
q(X) =

{
Z, q = 0
0, q 6= 0.

Figure 1: X

Example 2.10. Let MSS
′

6 = {c0 = (0, 0, 0), c1 = (1, 0, 0), c2 = (1, 1, 0),
c3 = (0, 1, 0), c4 = (0, 0, 1), c5 = (1, 0, 1), c6 = (1, 1, 1), c7 = (0, 1, 1)} be a digital
image with 6-adjacency (see Figure 2). Boxer et al. [7] show that

H6
q(MSS

′

6) =





Z, q = 0
Z

5, q = 1
0, q 6= 0, 1.

Example 2.11. Let MSS
′

18 = {c0 = (1, 1, 0), c1 = (0, 2, 0), c2 = (−1, 1, 0),
c3 = (0, 0, 0), c4 = (0, 1,−1), c5 = (0, 1, 1)} be a digital image with 18-adjacency
(see Figure 3). Boxer et al. [7] get the following

H18
q (MSS

′

18) =

{
Z, q = 0, 2
0, q 6= 0, 2.
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Figure 2: MSS
′

6

Figure 3: MSS
′

18

Theorem 2.12. [7]. Let (X, κ) be a directed digital simplicial complex of dimension m.

(1) Hκ
q (X) is a finitely generated abelian group for every q ≥ 0.

(2) Hκ
q (X) is a trivial group for all q > m.

(3) Hκ
m(X) is a free abelian group, possible zero.

Boxer et al. [7] conclude that for each q ≥ 0, Hκ
q is a covariant functor from

the category of digital simplicial complexes and simplicial maps to the category
of abelian groups.

Definition 2.13. [7]. Let f : (X, κ0) −→ (Y, κ1) be a function between two digital
images. If for every digital (κ0, m)-simplex P determined by κ0 in X, f (P) is a
(κ1, n)-simplex in Y for some n ≤ m, then f is called a digital simplicial map.
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For a digital simplicial map f : (X, κ0) −→ (Y, κ1) and q ≥ 0, two induced
homomorphisms f# : Cκ0

q (X) −→ Cκ1
q (Y) and f∗ : Hκ0

q (X) −→ Hκ1
q (Y) are defined

by (see [7])
f#(< p0, . . . , pq >) =< f#(p0), . . . , f#(pq) >,

f∗(z + Bκ
q(X)) = f#(z) + Bκ

q(Y),

where z ∈ Zκ
q (X), respectively.

Definition 2.14. [12]. Let (A, κ) be a digital subcomplex of the digital simplicial
complex (X, κ). Then the chain group Cκ

q(A) is a subgroup of the chain group

Cκ
q (X). The quotient group

Cκ
q (X, A) = Cκ

q (X)/Cκ
q (A)

is called the group of relative chains of X modulo A. The boundary operator

∂q : Cκ
q (A) −→ Cκ

q−1(A)

is the restriction of the boundary operator on Cκ
q (X). It induces a homomorphism

Cκ
q (X, A) −→ Cκ

q−1(X, A)

of the relative chain groups and this is also denoted by ∂q.

Definition 2.15. [12]. Let (A, κ) be a digital subcomplex of the digital simplicial
complex (X, κ).

• Zκ
q (X, A) = Ker ∂q is called the group of digital relative simplicial q-cycles.

• Bκ
q(X, A) = Im ∂q+1 is called the group of digital relative simplicial

q-boundaries.

• Hκ
q (X, A) = Zκ

q (X, A)/Bκ
q (X, A) is called the qth digital relative simplicial

homology group.

Definition 2.16. [12]. Let (X, κ) be a digital simplicial complex.

H̃κ
0(X) =

Ker ǫ

Im ∂1

is called the zero dimensional reduced digital homology group of (X, κ), where

ǫ : Cκ
0(X) −→ Z

is defined by ǫ(v) = 1 and ∂1 : Cκ
1(X) −→ Cκ

0(X) is the boundary homomor-

phism. If H̃κ
p(X) = Hκ

p(X) for each p > 1, then

{H̃κ
i (X), i = 0, 1, . . .}

are called the reduced digital homology groups of (X, κ).

Theorem 2.17. [12]. For a digital simplicial complex (X, κ), there are the following
formulas which are related to reduced homology groups :

Hκ
0(X) ∼= H̃κ

0(X)⊕ Z,

Hκ
p(X) = H̃κ

p(X), p ≥ 1.



830 O. Ege – I. Karaca

3 Applications of the Lefschetz fixed point theorem to digital

images

Let (X, κ) be a digital image and f : (X, κ) −→ (X, κ) be any (κ, κ)-continuous
function. We say the digital image (X, κ) has the fixed point property [10] if for
every (κ, κ)-continuous map f : X −→ X there exists x ∈ X such that f (x) = x.
The fixed point property is preserved by any digital isomorphism, i.e., it is a topo-
logical invariant. The Lefschetz fixed point theorem determines when there exist
fixed points of a map on a finite digital simplicial complex using a characteristic
of the map known as the Lefschetz number. We can give a definition of trace for
a digital map as in Algebraic Topology.

Definition 3.1. [9]. Given some digital map f : X −→ X where (X, κ) is a digital
image, the trace of this map is defined by considering the trace of matrix repre-
sentation of f , that is, choosing a basis for X and describing f as a matrix to this
basis, and taking the trace of this square matrix.

Theorem 3.2. [9]. Let (X, κ) and (Y, κ
′
) be digital images. If f : X −→ Y and

g : Y −→ X are digital maps, then tr(g ◦ f ) = tr( f ◦ g).

Proof. The proof is the same as in Algebraic Topology.

Definition 3.3. [10]. For a map f : (X, κ) −→ (X, κ), where (X, κ) is a digital
image whose digital homology groups are finitely generated and vanish above
some dimension, the Lefschetz number λ( f ) is defined as follows:

λ( f ) =
n

∑
i=0

(−1)i tr( f∗),

where f∗ : Hκ
i (X) −→ Hκ

i (X) and tr denotes the trace.

Theorem 3.4. [10]. If (X, κ) is a finite digital simplicial complex, or the retract of some
finite digital simplicial complex, and f : (X, κ) −→ (X, κ) is a map with λ( f ) 6= 0, then
f has a fixed point.

Theorem 3.5. Let (X, κ) be a digital image. If f : (X, κ) −→ (X, κ) has λ( f ) 6= 0,
then any map homotopic to f has a fixed point.

Proof. Assume that g : (X, κ) −→ (X, κ) is (κ, κ)-homotopic to f . Then by homo-
topy axiom, we have

f∗ = g∗ : Hκ
∗(X) −→ Hκ

∗(X)

and hence

λ( f ) =
n

∑
q=0

(−1)qtr( f∗) =
n

∑
q=0

(−1)qtr(g∗) = λ(g).

So g has a fixed point.
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Boxer et al. [6] define the Euler characteristic of digital images. Let (X, κ) be a
digital image of dimension m, and for each q ≥ 0, let αq be the number of digital
(κ, q)-simplexes in X. The Euler characteristic of X is defined by

χ(X, κ) =
m

∑
q=0

(−1)qαq.

They also prove that if (X, κ) is a digital image of dimension m, then

χ(X, κ) =
m

∑
q=0

(−1)qrankHκ
q (X).

Proposition 3.6. [10]. Let (X, κ) be a digital image. If a map f : (X, κ) −→ (X, κ) is
homotopic to the identity, then λ( f ) = χ(X, κ).

Theorem 3.7. Let (X, κ) be a digital image. If χ(X) 6= 0, then any map homotopic to
identity has a fixed point.

Proof. From Proposition 3.6, if χ(X) 6= 0, we have λ(1X) 6= 0. Let g be
(κ, κ)-homotopic to 1X. By Theorem 3.5, we have λ(g) 6= 0 and hence g has a
fixed point.

Theorem 3.8. Let (X, κ1) and (Y, κ2) be two digital images. If f : X −→ Y and
g : Y −→ X are digital maps, then

λ(g ◦ f ) = λ( f ◦ g).

Proof. By Theorem 3.2, we have

λ(g ◦ f ) =
n

∑
q=0

(−1)qtr((g ◦ f )∗)

=
n

∑
q=0

(−1)qtr(g∗ ◦ f∗)

=
n

∑
q=0

(−1)qtr( f∗ ◦ g∗)

=
n

∑
q=0

(−1)qtr(( f ◦ g)∗)

= λ( f ◦ g).

Theorem 3.9. Let (X, κ1) and (Y, κ2) be two digital images. If f : X −→ X is a map
and h : X −→ Y is a digital homotopy equivalence with a homotopy inverse k : Y −→ X,
then

λ( f ) = λ(h ◦ f ◦ k).

Proof. From the digital homotopy equivalence of h and k, we have

h ◦ k ≃(κ2,κ2) 1Y and k ◦ h ≃(κ1,κ1)
1X.
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Since k ◦ h ≃(κ1,κ1)
1X, we get

k ◦ h ◦ f ≃(κ1,κ1)
1X ◦ f ≃(κ1,κ1)

f .

Using Theorem 3.8, we conclude that

k ◦ h ◦ f ≃(κ1,κ1)
h ◦ f ◦ k ≃(κ1,κ1)

f .

As a result, we have λ( f ) = λ(h ◦ f ◦ k).

The boundary Bd(In+1) of an (n + 1)-cube In+1 is homeomorphic to n-sphere
Sn. This allows us to represent a digital sphere by using the boundary of a digital
cube. We use 0n to denote the origin of Z

n. Boxer [6] defines sphere-like digital
image as follows:

Sn = [−1, 1]n+1
Z

\ {0n+1} ⊂ Z
n+1.

For instance,

S1 = {c0 = (1, 0), c1 = (1, 1), c2 = (0, 1), c3 = (−1, 1), c4 = (−1, 0), c5 = (−1,−1),

c6 = (0,−1), c7 = (1,−1)}

is digital 1-sphere with 4-adjacency in Z
2 (see Figure 4).

Figure 4: Digital 1-sphere S1

The following result is given in [1].

H4
q(S1) =

{
Z, q = 0, 1
0, q 6= 0, 1.

S2, called MSS6, is a digital image with 6-adjacency in Z
3 where

S2 = {c0 = (−1,−1, 0), c1 = (0,−1, 0), c2 = (1,−1, 0), c3 = (1, 0, 0), c4 = (0, 0, 0),

c5 = (−1, 0, 0), c6 = (−1, 1, 0), c7 = (0, 1, 0), c8 = (1, 1, 0), c9 = (1, 1, 1),

c10 = (0, 1, 1), c11 = (−1, 1, 1), c12 = (−1, 0, 1), c13 = (1, 0, 1), c14 = (1,−1, 1),

c15 = (0,−1, 1), c16 = (−1,−1, 1), c17 = (−1,−1, 2), c18 = (0,−1, 2),

c19 = (1,−1, 2), c20 = (1, 0, 2), c21 = (0, 0, 2), c22 = (−1, 0, 2), c23 = (−1, 1, 2),
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Figure 5: S2

c24 = (0, 1, 2), c25 = (1, 1, 2)}

(see Figure 5). Demir and Karaca [8] show that the digital homology groups of S2

are as follows:

H6
q(S2) =





Z, q = 0
Z

23, q = 1
0, q 6= 0, 1.

Definition 3.10. Let f : (Sn, κn) −→ (Sn, κn) be a (κn, κn)-continuous map where
(Sn, κn) is digital n-sphere, n ∈ {1, 2} and κ1 = 4, κ2 = 6. Then f induces homo-
morphisms

f∗ : Hκn
∗ (Sn) −→ Hκn

∗ (Sn).

Definition of degree of f can be given similarly in algebraic topology (see [15]).
We see that f∗ must be of the form

f∗([x]) = m[x],

for some fixed m ∈ Z, where [x] is a generator of Hκn
∗ (Sn). This m is the called

the degree of f .

Theorem 3.11. Let Sn be a digital n-sphere where n ∈ {1, 2}. If f : Sn −→ Sn is a map
of degree m 6= 1, then f has fixed point.

Proof. Let f be a map of degree m 6= 1.

f∗ : Hκ
∗(Sn) −→ Hκ

∗(Sn)

The trace of f∗ must be m. Since the trace of f0 : Hκ
0(Sn) −→ Hκ

0(Sn) is 1, we have

λ( f ) =
1

∑
i=0

(−1)itr( fi)

= tr( f0)− tr( f1)

= 1 − m.

Since m 6= 1, we get λ( f ) 6= 0. By Theorem 3.4, f has a fixed point theorem.
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Proposition 3.12. Let (X, κ) be digital image and f : (X, κ) −→ (X, κ) be a map. If

f∗ : Hκ
∗(X) −→ Hκ

∗(X)

z 7−→ f∗(z) = kz

where k is an integer, then λ( f ) = kχ(X).

Proof. It is easy to see that

λ(1X) =
∞

∑
q=0

(−1)qtr((1X)∗)

=
∞

∑
q=0

(−1)q rankHκ
q (X)

= χ(X).

As a result, we get

kχ(X) = k
∞

∑
q=0

(−1)q rankHκ
q (X)

=
∞

∑
q=0

(−1)qk. rankHκ
q (X)

=
∞

∑
q=0

(−1)qtr( f∗)

= λ( f ).

Definition 3.13. If x = (x1, . . . , xn+1) ∈ Sn, its antipode is −x = (−x1, . . . ,−xn+1).
The antipodal map α = αn : Sn −→ Sn is defined by α(x) = −x.

Theorem 3.14. Let αi : (Si , κi) −→ (Si , κi) be the antipodal map between two digital
i-spheres where i = {1, 2} and κi = {4, 6}. Then αi has degree (−1)i+1.

Proof. By definition, we have deg(αi) = d, where (αi)∗ : H
κi
i (Si) −→ H

κi
i (Si) is

multiplication by d. Thus we get

tr(αi)∗ = d = deg(αi),

so that
λ(αi) = 1 + (−1)id.

but from Theorem 3.4, we have λ(αi) = 0 because the antipodal map has no fixed
points. As a result, d = (−1)i+1.



Applications of the Lefschetz Number to Digital Images 835

Theorem 3.15. Let h : (S1, 4) −→ (S1, 4) be a digital (4, 4)-continuous map. If h is
digitally nullhomotopic, then h has a fixed point.

Proof. Since h : (S1, 4) −→ (S1, 4) is digitally nullhomotopic, h ≃(4,4) c where c is

a constant map on (S1, 4). By Theorem 3.5, we have h∗ = c∗. Since the Lefschetz
number of c is

λ(c) =
∞

∑
i=0

(−1)itr(c∗) = 1,

we conclude that h has a fixed point.

Corollary 3.16. If h : (S1, 4) −→ (S1, 4) is defined by h(ci) = ci+1 where ci ∈ S1, then
h is not nullhomotopic.

Proof. It’s clear that h has not a fixed point. So from Theorem 3.15, we conclude
that h is not nullhomotopic.

Corollary 3.17. There is at least one digital (4, 4)-continuous map

h : (S1, 4) −→ (S1, 4)

ci 7−→ h(ci) = ci+4 (mod 8)

for all ci ∈ S1 which maps some point x ∈ S1 to its antipode −x.

Lemma 3.18. If A ⊂ S1 is digital homeomorphic to Ik for k ∈ {0, 1} where I = [0, 1]Z,
then H4

q(S1 − A) = 0 for all q ≥ 0.

Proof. Since S1 − A is digital 4-contractible image, digital homology groups of
S1 − A and one-point digital image are digital isomorphic. Thus we have

H4
q(S1 − A) = 0

for all q ≥ 0.

Ege et al. in [12] give definition and properties of relative homology groups in
digital images. We now would like to discuss the relative Lefschetz number for
digital images.

Definition 3.19. Let f : (X, A) −→ (X, A) be a digital map, where (A, κ) is a
digital subcomplex of (X, κ). The map f induces homomorphisms

f∗ : Hκ
q (X, A) −→ Hκ

q (X, A).

The relative Lefschetz number λ( f ; X, A) is defined by

λ( f ; X, A) =
n

∑
q=0

(−1)q tr( f∗),

where f∗ : Hκ
q (X, A) −→ Hκ

q (X, A).
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Example 3.20. We compute the relative Lefschetz number of (MSS
′

6 , A) where

A = {c0, c1, c2, c3} ⊂ MSS
′

6

has 6-adjacency. Ege et al. [12] show that for all q ≥ 0, H4
q(MSS

′

6, A) = 0. Let

f : (MSS
′

6, A) −→ (MSS
′

6, A) be a digital map. The relative Lefschetz number of
f is given by

λ( f ; MSS
′

6 , A) =
n

∑
q=0

(−1)q tr( f∗) = 0,

where f∗ : H6
q(MSS

′

6, A) −→ H6
q(MSS

′

6, A).

We now would like to deal with a property on the relative Lefschetz number,
which is satisfied in algebraic topology but is not satisfied in digital images. The
property is given as follows. Let (X, κ) be a digital complex, A and B be digital
subcomplexes of X. Then

λ( f ) = λ( fA) + λ( fB)− λ( fA∩B),

where f : X −→ X, fA : A −→ A, fB : B −→ B and fA∩B : A ∩ B −→ A ∩ B. The
above property is not satisfied in digital images. Let’s show it by an example.

Example 3.21. Let X = MSS
′

6, A = {c0, c1, c2, c3}, B = {c4, c5, c6, c7} and
A ∩ B = ∅. Moreover, we take maps

f : X −→ X, fA : A −→ A, fB : B −→ B and fA∩B : A ∩ B −→ A ∩ B.

Since A and B are digital simple closed 4-curves [1],

H4
q(A) = H4

q(B) =

{
Z, q = 0, 1
0, q 6= 0, 1.

Therefore, we have the following results.

λ( f ) = 1 − 5 = −4,

λ( fA) = 1 − 1 = 0,

λ( fB) = 1 − 1 = 0,

λ( fA∩B) = 0.

From the following inequality

−4 6= 0 + 0 − 0,

we conclude that the equality

λ( f ) = λ( fA) + λ( fB)− λ( fA∩B)

does not yield for digital images.

Theorem 3.5 can be given for relative digital images as follows.
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Theorem 3.22. Let (X, κ) be a digital complex and A ⊂ X be a digital subcomplex. If
f : (X, A, κ) −→ (X, A, κ) has λ( f ; X, A) 6= 0, then any map homotopic to f has a
fixed point.

Proof. Let g : (X, A, κ) −→ (X, A, κ) be (κ, κ)-homotopic to f . From homotopy
axiom, we have

f∗ = g∗ : Hκ
∗(X, A) −→ Hκ

∗(X, A).

We conclude that

λ( f ; X, A) =
n

∑
q=0

(−1)qtr( f∗) =
n

∑
q=0

(−1)qtr(g∗) = λ(g; X, A).

As a result, g has a fixed point.

Definition 3.23. Let (X, κ) be a digital image and f : (X, κ) −→ (X, κ) be a digital
map. The reduced Lefschetz number λ̃( f ) is defined by

λ̃( f ) = λ( f ) − 1,

where λ( f ) is the Lefschetz number of f .

Example 3.24. Let’s compute the reduced Lefschetz number of

f : MSS
′

18 −→ MSS
′

18,

where MSS
′

18 and its digital homology groups are given in Example 2.11. From
Theorem 2.17, we know that

H18
0 (MSS

′

18)
∼= H̃18

0 (MSS
′

18)⊕ Z,

H18
q (MSS

′

18) = H̃18
q (MSS

′

18), q ≥ 1.

Since H18
0 (MSS

′

18)
∼= Z, we have H̃18

0 (MSS
′

18) = 0. So the reduced homology

groups of MSS
′

18 are

H̃18
q (MSS

′

18) =

{
Z, q = 2
0, q 6= 2.

The Lefschetz number of f is

λ( f ) =
∞

∑
q=0

(−1)q tr( fq) = 1 − 0 + 1 − 0 + . . . = 2,

where fq : H18
q (MSS

′

18) −→ H18
q (MSS

′

18). As a result, the reduced Lefschetz
number of f is

λ̃( f ) = λ( f )− 1 = 2 − 1 = 1.
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4 Conclusion

The essential aim of this study is to determine some important applications of
fixed point theory for a digital image. We study the relation between the Euler
characteristic and the Lefschetz number. We deal with some characterizations
about the Lefschetz number. We give also calculations about theorems and prop-
erties. Relative and reduced Lefschetz number is defined for digital images. We
expect that properties in the paper will be useful for fixed point theory.
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