On 2-pyramidal Hamiltonian cycle systems *

R. A. Bailey

M. Buratti

G. Rinaldi

T. Traetta

Abstract

A Hamiltonian cycle system of the complete graph minus a 1–factor $K_{2v} - I$ (briefly, an HCS(2v)) is 2-*pyramidal* if it admits an automorphism group of order 2v - 2 fixing two vertices. In spite of the fact that the very first example of an HCS(2v) is very old and 2-pyramidal, a thorough investigation of this class of HCSs is lacking. We give first evidence that there is a strong relationship between 2-pyramidal HCS(2v) and 1-*rotational* Hamiltonian cycle systems of the complete graph K_{2v-1} . Then, as main result, we determine the full automorphism group of every 2-pyramidal HCS(2v). This allows us to obtain an exponential lower bound on the number of non-isomorphic 2-pyramidal HCS(2v).

1 Introduction

Speaking of a *Hamiltonian cycle system* of order v, or HCS(v) for short, we mean a set of Hamiltonian cycles of K_v whose edges partition $E(K_v)$ if v is odd or $E(K_v) - I$, with I a 1-factor of K_v , if v is even. Two HCSs are isomorphic if there exists a bijection (isomorphism) between their vertex–sets mapping one into the other. An automorphism of a Hamiltonian cycle system \mathcal{H} is an isomorphism of \mathcal{H} with itself. The automorphisms of \mathcal{H} form the *full automorphism group* of \mathcal{H} , denoted by $Aut(\mathcal{H})$. Speaking of *an automorphism group* of \mathcal{H} one means a subgroup of $Aut(\mathcal{H})$.

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 747–758

^{*}Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy and supported by M.I.U.R. project "Disegni combinatorici, grafi e loro applicazioni, PRIN 2008". The fourth author is supported by a fellowship of INdAM.

Received by the editors in January 2014 - In revised form in May 2014.

Communicated by H. Van Maldeghem.

²⁰¹⁰ Mathematics Subject Classification : 05E18, 05C60, 05C70.

Key words and phrases : 1-rotational Hamiltonian cycle system; 2–pyramidal Hamiltonian cycle system; binary group; group action.

HCSs possessing a non-trivial automorphism group have attracted considerable attention (see [8] for a short recent survey on this topic). Detailed results can be found in: [9, 15] for the *cyclics*; [10] for the *dihedrals*; [4] for the *doubly transitives*; [7] for the *regulars*; [1, 6] for the *symmetrics*; [11] for those being both cyclic and symmetric. Here, we only need to recall the basic facts on the 1-*rotationals* which have been widely studied in [3, 13].

Throughout this paper every group will be denoted in multiplicative notation and its identity will be denoted by 1, except when the group is the cyclic group \mathbb{Z}_n . As usual, additive notation will be used in this case with identity 0.

An HCS(v) is 1-rotational under a group G (also called a *round dance neighbour design based on* G in [3]) if it admits G as an automorphism group of order v - 1 fixing one vertex ∞ . In this case the action of G on the other vertices is necessarily sharply transitive. Thus it is natural to identify the vertex-set V with $G \cup \{\infty\}$ and to see the action of G on V as the multiplication on the left with the rule that $g\infty = \infty$ for every $g \in G$.

In what follows, when speaking of the *differences* of two adjacent vertices g_1 and g_2 , with $g_1, g_2 \in G$, we will mean $g_1^{-1}g_2$ and $g_2^{-1}g_1$.

We first note that a 1-rotational HCS of even order cannot exist.

There exists a 1-rotational HCS(2n + 1) under a group *G* of order 2n if and only if *G* is *symmetrically sequenceable* (see [12, Proposition 3.9]). This means that *G* is *binary*, namely it admits exactly one involution, and there exists a path $T = [g_1, g_2, \ldots, g_{2n}]$ (*directed terrace*) with vertex-set *G* satisfying the following properties:

- (i) $g_{2n+1-i} = \lambda g_i$ for $1 \le i \le 2n$ where λ is the only involution of *G*, i.e., we have: $T = [g_1, g_2, \dots, g_n, \lambda g_n, \dots, \lambda g_2, \lambda g_1]$.
- (ii) every $g \in G \setminus \{1, \lambda\}$ can be written in exactly one way as a difference of two adjacent vertices g_i and g_{i+1} of the subpath $T' = [g_1, g_2, \dots, g_n]$.

The 1-rotational HCSs under *G* are precisely the *G*-orbits of a cycle obtainable by joining ∞ with the endpoints of a directed terrace of *G*.

Thus, if $T = [g_1, \ldots, g_{2n}]$ is a directed terrace of G, then the 1-rotational HCS generated by T is easily seen to be $\mathcal{H}(T) = \{sC \mid s \in S\}$ with $C = (\infty, g_1, \ldots, g_{2n}), sC = (\infty, sg_1, \ldots, sg_{2n})$ and S an arbitrary complete system of representatives for the cosets of the subgroup $\{1, \lambda\}$ of G of order 2; for instance one can take $S = \{g_1, \ldots, g_n\}$ in view of condition (i). Without loss of generality we can always assume that $g_1 = 1$, in which case T is said to be a *basic* directed terrace and C is said to be the *starter cycle* of $\mathcal{H}(T)$.

We refer to [20] for a survey on sequenceable groups. Here we recall that every binary solvable group except Q_8 (the group of quaternions) has been proved to be symmetrically sequenceable in [2].

We say that an HCS(v) is 2-*pyramidal* if it admits an automorphism group G of order v - 2 fixing 2 vertices ∞ and $\overline{\infty}$. First observe that such an HCS(v) has v even apart from the trivial case of v = 3. In fact, for v odd, the edge connecting the two vertices fixed by G should be covered by a cycle C of the HCS and then we see that every $g \in G$ would have to fix C pointwise. This is possible only in the case that G is the trivial group.

Reasoning as above one can also see that in every 2-pyramidal HCS of even order, the edge $[\infty, \overline{\infty}]$ is always in the removed 1-factor *I*.

It is not difficult to see that for any given 2-pyramidal HCS under *G*, the action of *G* on the non-fixed vertices is sharply transitive. Hence the vertex-set *V* can be identified with $G \cup \{\infty, \overline{\infty}\}$, v = 2n + 2, |G| = 2n, and the action of *G* on *V* is the multiplication on the left with the rule that $g\infty = \infty$ and $g\overline{\infty} = \overline{\infty}$ for every $g \in G$.

Given $g \in G$, we will denote by τ_g the bijection on G defined by $\tau_g(x) = gx$ for every $x \in G$. By abuse of notation, for $\infty, \overline{\infty} \notin G$, the bijections on $G \cup \{\infty\}$ or $G \cup \{\infty, \overline{\infty}\}$ acting as τ_g on G and fixing the *infinities* will be also denoted by τ_g .

In what follows we will denote by \widehat{G} the group $\{\tau_g \mid g \in G\}$. The action of \widehat{G} on the vertex-set naturally extends to edges and cycles and thus \widehat{G} is an automorphism group of the HCS. Moreover each automorphism τ_g preserves differences between adjacent vertices and the map $g \mapsto \tau_g$ is an isomorphism between G and \widehat{G} .

In the next section we will see that every 2-pyramidal HCS(2n + 2) is *generated* by a suitable 1-rotational HCS(2n + 1).

In the third section we will prove that the full automorphism group of a 2-pyramidal HCS(2n + 2) under *G* always is isomorphic with *G* itself for $n \ge 3$. As a consequence, there exists an HCS(2n + 2) with full automorphism group *G* for any symmetrically sequenceable group *G*.

Finally, in the last section we show that for $n \ge 3$, up to isomorphism, every 2-pyramidal HCS(2n + 2) is generated by exactly two 1-rotational HCS(2n + 1) so that the number of non-isomorphic 2-pyramidal HCS(2n + 2) is exactly half the number of non-isomorphic 1-rotational HCS(2n + 1). This fact, using the enumerative results on 1-rotational HCS(2n + 1) obtained in [13], allows us to claim that there are at least $2^{\lceil 3n/4 \rceil - 1}$ pairwise non-isomorphic 2-pyramidal HCS(2n + 2) for every $n \ge 6$.

2 On the structure of 2-pyramidal HCSs

The famous HCS(2n + 1) by Walecki (see [18]) is 1-rotational under \mathbb{Z}_{2n} . We denote this W(2n + 1). It is well known that inserting in every cycle of it a new vertex $\overline{\infty}$ between the two vertices at distance *n* from ∞ one obtains a 2-pyramidal HCS(2n + 2) under \mathbb{Z}_{2n} that will be denoted by $W(2n + 1)_+$. (see Figure 1).

Indeed we are going to show that the 2-pyramidal HCSs are precisely those obtainable in this way starting from any 1-rotational HCS.

From now on, if *C* is a (2n + 1)-cycle with a vertex denoted by ∞ , then C_+ will denote the (2n + 2)-cycle obtainable from *C* by inserting a new vertex $\overline{\infty}$ between the two vertices of *C* at distance *n* from ∞ . If \mathcal{H} is any collection of (2n + 1)-cycles passing through ∞ , then we set $\mathcal{H}_+ = \{C_+ \mid C \in \mathcal{H}\}$.

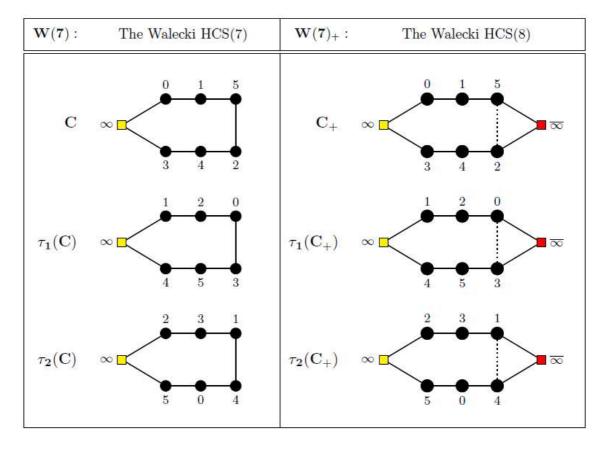


Figure 1:

Proposition 2.1. *If* \mathcal{H} *is a* 1-*rotational* HCS(2n+1) *under* G*, then* \mathcal{H}_+ *is a* 2-*pyramidal* HCS(2n+2) *under* G*.*

Conversely, every 2-pyramidal HCS(2n + 2) under G has the form \mathcal{H}_+ with \mathcal{H} a suitable 1-rotational HCS(2n + 1) under G.

Proof. Let \mathcal{H} be a 1-rotational HCS(2n + 1) under G and let $C = (\infty, g_1, \ldots, g_{2n})$ be its starter cycle. Thus $T = [g_1, \ldots, g_{2n}]$ is a basic directed terrace of G and we have $\mathcal{H} = \{g_i C \mid 1 \le i \le n\}$, with $g_i C = (\infty, g_i g_1, \ldots, g_i g_n)$. For $i = 1, 2, \ldots, n$, the two vertices at distance n from ∞ in the cycle $g_i C$ are the endpoints of the edge $[g_i g_n, g_i g_{n+1}]$. All these edges form the cosets of $\{1, \lambda\}$ in G by condition (i) on directed terraces and hence they form, together with $[\infty, \overline{\infty}]$, a 1-factor I of the complete graph K_{2n+2} with vertex-set $G \cup \{\infty, \overline{\infty}\}$. Thus, we easily see that \mathcal{H}_+ is a decomposition of $K_{2n+2} - I$, i.e., an HCS(2n + 2). We also see that the cycles of \mathcal{H}_+ are those of the \widehat{G} -orbit of the cycle C_+ . Therefore \mathcal{H}_+ is 2-pyramidal under G.

Now assume that \mathcal{H}' is a 2-pyramidal HCS(2n + 2) under *G*. Let *I* be the 1-factor not covered by the cycles of \mathcal{H}' and recall that $[\infty, \overline{\infty}]$ is in *I*.

Let λ be any involution of *G* and suppose that there exists an edge *e* of a cycle *C* of \mathcal{H}' which is a right coset of $\{1, \lambda\}$ in *G*. Of course τ_{λ} switches the endpoints of *e* and hence it acts on *C* as a reflection in the *axis* of *e*. This is absurd since the reflection in the axis of an edge of an even-cycle has no fixed vertex while we know that τ_{λ} fixes both ∞ and $\overline{\infty}$. We conclude that no right coset of $\{1, \lambda\}$ is

edge of a cycle of \mathcal{H}' . Therefore each of the *n* right cosets of $\{1, \lambda\}$ is an edge of *I* and hence, by the *pigeon hole principle*, $I \setminus [\infty, \overline{\infty}]$ necessarily coincides with the set of right cosets of $\{1, \lambda\}$ in *G*. We also deduce that λ is the only involution of *G* otherwise, with the same reasoning, we would have other edges not covered by the cycles of \mathcal{H}' . Thus *G* is binary and $\{1, \lambda\}$ is normal in *G*.

Now take any cycle C of \mathcal{H}' , let $\operatorname{Stab}(C)$ be its \widehat{G} -stabilizer, and let $\operatorname{Orb}(C)$ be its \widehat{G} -orbit. Of course $\operatorname{Orb}(C)$ is entirely contained in \mathcal{H}' and hence its length is at most equal to $|\mathcal{H}'|$, which a trivial counting argument shows to be equal to n. It follows that $\operatorname{Stab}(C)$ is not trivial. A non-identity element τ_g of $\operatorname{Stab}(C)$ fixes C and also fixes the two vertices ∞ and $\overline{\infty}$ so that $[\infty, \overline{\infty}]$ is necessarily a diameter of C and τ_g acts on C as a reflection in this diameter. We deduce, in particular, that g is an involution and hence, recalling that G is binary, we have $\operatorname{Stab}(C) = \{1, \tau_\lambda\}$. Thus $\operatorname{Orb}(C)$ has length $\frac{|G|}{2} = n$, that is the size of \mathcal{H}' . We conclude that \mathcal{H}' coincides with $\operatorname{Orb}(C)$.

From the above paragraph, the neighbors x and y of $\overline{\infty}$ in C are switched by τ_{λ} , i.e., we have $y = \lambda x$. It follows that the pairs of neighbors of $\overline{\infty}$ in the cycles of \mathcal{H}' are the cosets of $\{1, \lambda\}$ in G, i.e., the edges of $I \setminus [\infty, \overline{\infty}]$. We conclude that removing $\overline{\infty}$ from each cycle of \mathcal{H}' and joining its neighbors we get a set \mathcal{H} of (2n + 1)-cycles which is an HCS(2n + 1) with vertex-set $G \cup \{\infty\}$. It follows that \mathcal{H} is 1-rotational and that $\mathcal{H}' = \mathcal{H}_+$.

If \mathcal{H} is a 1-rotational HCS(2n + 1) and *C* is its starter cycle, then C_+ will be naturally called the starter cycle of \mathcal{H}_+ .

Remembering how \mathcal{H}_+ is obtained from \mathcal{H} , it is evident from the above proposition that $[\infty, \overline{\infty}]$ is a diameter of every cycle of a 2-pyramidal HCS.

In view of the general result concerning 1-rotational HCSs mentioned above, we can state the following result.

Corollary 2.2. There exists a 2-pyramidal HCS(2n + 2) under a group G of order 2n if and only if G is symmetrically sequenceable.

3 The full automorphism group of a 2-pyramidal HCS

It is easy to see that, up to isomorphism, there is exactly one HCS(4) and exactly one HCS(6), both pictured in Figure 2. They are 2-pyramidal under \mathbb{Z}_2 and \mathbb{Z}_4 , respectively and their full automorphism groups are both isomorphic to the *dihe*-*dral group* of order 8. This is clear if we consider that the HCS(4) is just a 4-cycle, whereas the full automorphism group of the HCS(6) is generated by the translation τ_1 and by the reflection β in the *axis a* of the diameter $[\infty, \overline{\infty}]$.

For n > 2 we prove that the full automorphism group of a 2-pyramidal HCS(2n + 2) under *G* is just *G*.

In this case, differently from the HCS(4) and the HCS(6), the reflection β in the axis of the diameter $[\infty, \overline{\infty}]$ is not an automorphism of a 2-pyramidal HCS(2n + 2) with n > 2.

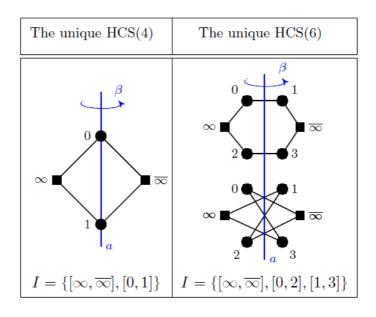


Figure 2:

Theorem 3.1. If n > 2, the full automorphism group of a 2-pyramidal HCS(2n + 2) under G is isomorphic to G itself.

Proof. Let \mathcal{H} be a 2-pyramidal HCS(2n + 2) under G and let C be its starter cycle. Denote by A the full automorphism group of \mathcal{H} .

We know that $\widehat{G} := \{\tau_g \mid g \in G\}$ is a subgroup of A isomorphic to G and that \widehat{G} is transitive on \mathcal{H} so that A is transitive on \mathcal{H} as well. Thus, if \widehat{G}_0 and A_0 are the stabilizers of C under \widehat{G} and A respectively, we have

$$|\mathcal{H}| = |\widehat{G}:\widehat{G}_0| = |A:A_0|$$
 (3.1)

by the orbit-stabilizer theorem.

Since n > 2, the only edge of the removed 1-factor that is a diameter of every cycle is $[\infty, \overline{\infty}]$, hence A fixes $\{\infty, \overline{\infty}\}$. There are exactly four symmetries of C which preserve $\{\infty, \overline{\infty}\}$; they are the identity, the reflection τ_{λ} in the diameter $[\infty, \overline{\infty}]$, the reflection α in the axis of $[\infty, \overline{\infty}]$, and the rotation $\tau_{\lambda}\alpha$ through 180 degrees. Therefore either $A_0 = \widehat{G}_0 = \{\tau_1, \tau_{\lambda}\}$ or $A_0 = \{\tau_1, \tau_{\lambda}, \alpha, \tau_{\lambda}\alpha\}$. By (3.1), we have $A = \widehat{G}$ in the former case and $|A : \widehat{G}| = 2$ in the latter.

Suppose that $A_0 \neq \widehat{G}_0$ so that $\alpha \in A_0$. Note that α swaps the infinities and that α has order 2, so that $\alpha^2(g) = g$ for every $g \in G$. For $|A : \widehat{G}| = 2$, we have that \widehat{G} is normal in A. Thus, for every $g \in G$, there exists a suitable $\phi(g) \in G$ such that $\alpha \tau_g \alpha^{-1} = \tau_{\phi(g)}$. Given g_1, g_2 in G, we can write:

$$\tau_{\phi(g_1g_2)} = \alpha \tau_{g_1g_2} \alpha^{-1} = \alpha \tau_{g_1} \alpha^{-1} \alpha \tau_{g_2} \alpha^{-1} = \tau_{\phi(g_1)} \tau_{\phi(g_2)} = \tau_{\phi(g_1)\phi(g_2)}$$

It follows that ϕ is a permutation on *G* such that $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$ for every pair of elements $g_1, g_2 \in G$, i.e., ϕ is an automorphism of *G*. Set $\alpha(1) = h$ so that we have $\alpha \tau_g \alpha^{-1}(h) = \alpha(\tau_g(1)) = \alpha(g)$. By definition of $\phi(g)$, we also have $\alpha \tau_g \alpha^{-1}(h) = \tau_{\phi(g)}(h) = \phi(g)h$. Thus we have:

$$\alpha(g) = \phi(g)h \quad \forall g \in G.$$
(3.2)

In particular, we have

$$1 = \alpha^{2}(1) = \alpha(h) = \phi(h)h.$$
 (3.3)

Applying (3.2) twice and taking into account that ϕ is an automorphism of *G*, we have

$$g = \alpha^2(g) = \alpha(\phi(g)h) = \phi(\phi(g)h)h = \phi^2(g)\phi(h)h \quad \forall g \in G$$

and then, by (3.3), we have

$$g = \phi^2(g) \quad \forall \ g \in G. \tag{3.4}$$

Now let ψ be the automorphism of \mathcal{H} defined by $\psi = \tau_{h^{-1}} \alpha$. In view of (3.2) we have $\psi(g) = \tau_{h^{-1}} \alpha(g) = h^{-1} \phi(g) h$, for all $g \in G$. Thus we can write

$$\psi^2(g) = \psi(h^{-1}\phi(g)h) = h^{-1}\phi(h^{-1}\phi(g)h)h$$

and then, recalling again that ϕ is an automorphism of *G*,

$$\psi^2(g) = h^{-1}\phi(h^{-1})\phi^2(g)\phi(h)h.$$

On the other hand we have $\phi(h) = h^{-1}$ by (3.3) and $\phi^2(g) = g$ by (3.4) so that we have

$$\psi^2(g) = g \quad \forall g \in G. \tag{3.5}$$

Let $\operatorname{Fix}(\psi)$ and $\operatorname{Fix}(\tau_{\lambda}\psi)$ be the sets of vertices which are fixed by ψ and $\tau_{\lambda}\psi$, respectively. If $|\operatorname{Fix}(\psi)| \ge 3$, then there is an edge [x, y] with endpoints in $\operatorname{Fix}(\psi)$ not belonging to the removed 1-factor *I* and hence there is a cycle C(x, y) of \mathcal{H} containing [x, y]. For $\psi(x) = x$ and $\psi(y) = y$, we have that ψ fixes C(x, y), i.e., ψ is a symmetry of C(x, y). It follows that ψ is the identity since there is no non-trivial symmetry of a cycle having three fixed vertices. On the other hand we see that ψ swaps the infinities so that we have a contradiction. We conclude that $\operatorname{Fix}(\psi)$ has size at most two.

Thus the set $\operatorname{Fix}(\psi) \cup \operatorname{Fix}(\tau_{\lambda}\psi)$ has size at most four and then, having $|G| \geq 6$, there is some $g \in G$ such that $\psi(g) \neq g$ and $\psi(g) \neq \lambda g$. This means that $e := [g, \psi(g)]$ is an edge not belonging to *I*. Now note that *e* is fixed by ψ in view of (3.5) and hence ψ also fixes the cycle of \mathcal{H} containing *e*. On the other hand, using (3.2), we see that $\psi(1) = 1$ contradicting the fact that a non-trivial symmetry of a cycle of even length which fixes an edge has no fixed vertex.

The conclusion is that we have $A_0 = \hat{G}_0$ and hence $A = \hat{G}$ which is the assertion.

It is interesting to establish which groups, up to isomorphism, are the full automorphism group of a combinatorial design of a given type. Although this problem is often hard to solve in general, it has been settled when the design is, for example, one of the following: a Steiner triple or quadruple system [19]; a non-Hamiltonian 2-factorization of the complete graph [5]; an even cycle system [14]; an odd cycle system [17]. For HCSs of even order we have the following partial answer.

Corollary 3.2. *If G is a symmetrically sequenceable group, then there exists an* HCS *of even order whose full automorphism group is isomorphic to G.*

Proof. By Corollary 2.2 and Theorem 3.1, it is enough to prove the assertion for groups *G* of order not greater than 4, namely only for $G = \mathbb{Z}_2$ and $G = \mathbb{Z}_4$ considering that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not symmetrically sequenceable. Consider the following two HCS(10) with vertex-set \mathbb{Z}_{10} and removed 1-factor $I = \{[i, i + 5] \mid 0 \le i \le 4\}$:

$$\mathcal{H} = \{ (0, 1, 3, 9, 7, 5, 2, 4, 8, 6), (0, 2, 3, 6, 4, 5, 9, 1, 8, 7), \\ (0, 3, 4, 7, 6, 5, 1, 2, 9, 8), (0, 4, 1, 7, 3, 5, 8, 2, 6, 9) \}; \\ \mathcal{H}' = \{ (0, 1, 3, 7, 9, 5, 4, 2, 8, 6), (0, 2, 9, 1, 8, 5, 3, 6, 4, 7), \\ (0, 3, 4, 1, 2, 5, 7, 6, 9, 8), (0, 4, 8, 7, 1, 5, 6, 2, 3, 9) \}.$$

One can check that the only non-trivial automorphism of \mathcal{H} is the permutation (16)(27)(38)(49) so that $Aut(\mathcal{H})$ is isomorphic to \mathbb{Z}_2 . Also, $Aut(\mathcal{H}')$ is generated by the permutation (1267)(3984) and hence it is isomorphic to \mathbb{Z}_4 . The assertion follows.

In particular, by the mentioned result by Anderson and Ihrig we can claim that for any binary solvable group except Q_8 there exists an HCS of even order whose full automorphism group is *G*.

4 Enumeration of 2-pyramidal HCSs

Let $\mathcal{H} = \{C_1, ..., C_n\}$ be a 1-rotational HCS(2n + 1) under *G* and consider the set of Hamiltonian cycles $\mathcal{H}^* = \{C_1^*, ..., C_n^*\}$ where, for $1 \le i \le n$, the cycle C_i^* is obtained from C_i by simply moving ∞ between the two vertices at distance *n* from it. We note that \mathcal{H}^* is again a 1-rotational HCS(2n + 1) under *G*; we call it the *twin* of \mathcal{H} . As an example, Figure 3 shows W(7), that is the Walecki 1-rotational HCS(7), and its twin $W(7)^*$.

Using the above terminology, a result on 3-*perfect* HCS(2n + 1) recently, and independently, obtained in [13] and [16] can be stated as follows.

Theorem 4.1. For $n \ge 3$, the twin of the Waleki HCS(2n + 1) is 3-perfect.

For convenience of the reader, we recall that an HCS(2n + 1) is said to be *i*-perfect with $1 \le i \le n$ if for every pair of vertices *x* and *y* there is exactly one cycle of the HCS in which *x* and *y* are at distance *i*.

The Walecki HCS(2n + 1) is not 3-perfect and hence, by Theorem 4.1, it is not isomorphic to its twin. We are going to show that this result holds in general.

Lemma 4.2. If \mathcal{H} is a 1-rotational HCS(2n + 1) with $n \ge 3$, then \mathcal{H} and its twin \mathcal{H}^* are not isomorphic.

Proof. Assume that \mathcal{H} is isomorphic to its twin \mathcal{H}^* . In this case, reasoning as in [13, Theorem 4.3], there is an isomorphism α between \mathcal{H} and \mathcal{H}^* sending ∞ into ∞ . Consider the permutation β on $G \cup \{\infty, \overline{\infty}\}$ switching the two infinities and acting as α on G. Given $C = (\infty, g_1, \dots, g_{2n}) \in \mathcal{H}$, we have $C^*_+ = (\overline{\infty}, g_1, \dots, g_n, \infty, g_{n+1}, \dots, g_{2n}) \in \mathcal{H}^*_+$ and thus we see that $\beta(C^*_+) = \alpha(C)_+$.

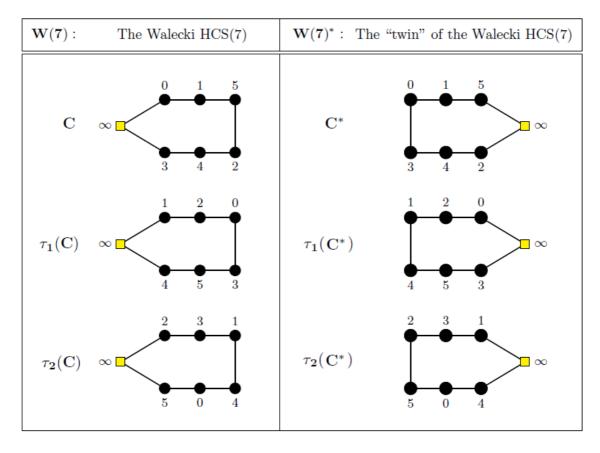


Figure 3:

Thus, considering that $\alpha(C) \in \mathcal{H}^*$, every cycle $C^*_+ \in \mathcal{H}^*_+$ is turned by β into a cycle still belonging to \mathcal{H}^*_+ , i.e., β is an automorphism of \mathcal{H}^*_+ . This is a contradiction since, by Theorem 3.1, any automorphism of a 2-pyramidal HCS(2n + 2) with $n \ge 3$ fixes both the infinities.

Theorem 4.3. For $n \ge 3$, the number of non-isomorphic 1-rotational HCS(2n + 1) is twice the number of non-isomorphic 2-pyramidal HCS(2n + 2).

Proof. For a given Hamiltonian cycle system \mathcal{H} , let us denote by $[\mathcal{H}]$ its isomorphism class. Then denote by $\mathbb{H}_{1rot}(2n+1)$ the set of all isomorphism classes of 1-rotational HCS(2n+1) under any group and by $\mathbb{H}_{2pyr}(2n+2)$ the set of all isomorphism classes of 2-pyramidal HCS(2n+2) under any group. The map

$$f : [\mathcal{H}] \in \mathbb{H}_{1rot}(2n+1) \mapsto [\mathcal{H}_+] \in \mathbb{H}_{2pyr}(2n+2)$$

is clearly well defined and it is surjective by Proposition 2.1.

Also note that we have $f([\mathcal{H}]) = f([\mathcal{H}^*])$ for every $[\mathcal{H}] \in \mathbb{H}_{1rot}(2n+1)$. In fact, if \mathcal{H} is a 1-rotational HCS(2n+1) under G, then the transposition $(\infty \overline{\infty})$ is an isomorphism between \mathcal{H}_+ and \mathcal{H}_+^* .

Assume that \mathcal{H} and \mathcal{H}' are 1-rotational HCS(2n + 1) (under *G* and *G'*, respectively) such that $[\mathcal{H}_+] = [\mathcal{H}'_+]$ so that there exists an isomorphism $\alpha : G \cup \{\infty, \overline{\infty}\} \to G' \cup \{\infty, \overline{\infty}\}$ between \mathcal{H}_+ and \mathcal{H}'_+ . In both \mathcal{H}_+ and \mathcal{H}'_+ , $[\infty, \overline{\infty}]$ is the only removed edge which is a diameter of every cycle, so α must fix

the 2-set $\{\infty, \overline{\infty}\}$ and hence we can define the map $\beta : G \cup \{\infty\} \to G' \cup \{\infty\}$ by setting $\beta(\infty) = \infty$ and $\beta(g) = \alpha(g)$ for every $g \in G$.

Take a cycle $C = (\infty, g_1, \dots, g_n, g_{n+1}, \dots, g_{2n}) \in \mathcal{H}$ and distinguish two cases according to whether α fixes $\{\infty, \overline{\infty}\}$ pointwise or not.

1st case: α fixes $\{\infty, \overline{\infty}\}$ pointwise. We have:

$$\alpha(C_+) = (\infty, \alpha(g_1), \dots, \alpha(g_n), \overline{\infty}, \alpha(g_{n+1}), \dots, \alpha(g_{2n})) = \beta(C)_+$$

and hence, considering that $\alpha(C_+) \in \mathcal{H}'_+$, we have $\beta(C) \in \mathcal{H}'$. Thus β turns every cycle *C* of \mathcal{H} into a cycle of \mathcal{H}' , i.e., β is an isomorphism between \mathcal{H} and \mathcal{H}' .

2nd case: α swaps ∞ and $\overline{\infty}$. Here we have:

$$\alpha(C_+) = (\overline{\infty}, \alpha(g_1), \dots, \alpha(g_n), \infty, \alpha(g_{n+1}), \dots, \alpha(g_{2n})) = \beta(C^*)_+$$

and hence, considering that $\alpha(C_+) \in \mathcal{H}'_+$, we have $\beta(C^*) \in \mathcal{H}'$. Thus β turns every cycle C^* of \mathcal{H}^* into a cycle of \mathcal{H}' , i.e., β is an isomorphism between \mathcal{H}^* and \mathcal{H}' .

Thus the equality $[\mathcal{H}_+] = [\mathcal{H}'_+]$ implies that $[\mathcal{H}']$ is either $[\mathcal{H}]$ or $[\mathcal{H}^*]$ which are distinct isomorphism classes by Lemma 4.2. We conclude that the pre-image under *f* of any isomorphism class a of 2-pyramidal HCS(2n + 2) always has size two and hence the size of $\mathbb{H}_{1rot}(2n + 1)$ is twice the size of $\mathbb{H}_{2pyr}(2n + 1)$, that is the assertion.

In [13] the last three authors determined a formula enumerating all 1-rotational HCS(2n + 1) up to isomorphism. Even though our formula heavily depends on some hardly computable parameters, it allowed us to claim that for any $n \ge 6$ there are at least $2^{\lceil 3n/4 \rceil}$ non-isomorphic 1-rotational HCS(2n + 1). Hence, by Theorem 4.3, we can state the following result.

Theorem 4.4. If $n \ge 6$, then there exists at least $2^{\lceil 3n/4 \rceil - 1}$ non-isomorphic 2-pyramidal HCS(2n + 2).

References

- [1] J. Akiyama, M. Kobayashi and G. Nakamura, *Symmetric Hamilton cycle decompositions of the complete graph*, J. Combin. Des. **12** (2004), 39–45.
- [2] B.A. Anderson and E.C. Ihrig, *Every finite solvable group with a unique element of order two, except the quaternion group, has a symmetric sequencing*, J. Combin. Des. **1** (1993), 3–14.
- [3] R.A. Bailey, M.A. Ollis and D.A. Preece, *Round-dance neighbour designs from terraces*, Discrete Math. **266** (2003), 69–86.
- [4] A. Bonisoli, M. Buratti and G. Mazzuoccolo, *Doubly transitive 2-factorizations*, J. Combin. Des. **15** (2007), 120–132.
- [5] S. Bonvicini, G. Mazzuoccolo and G. Rinaldi, *On 2-Factorizations of the complete graph: from the k-pyramidal to the universal property*, J. Combin. Des. **17** (2009), 211–228.
- [6] R.A. Brualdi and M.W. Schroeder, *Symmetric Hamilton cycle decompositions of complete graphs minus a 1-factor*, J. Combin. Des. **19** (2011), 1–15.
- [7] M. Buratti, *Sharply vertex-transitive Hamiltonian cycle systems of the complete and cocktail party graph*, preprint.
- [8] M. Buratti, S. Capparelli, F. Merola, G. Rinaldi and T. Traetta, A collection of results on Hamiltonian cycle systems with a nice automorphism group, Electron. Notes Discrete Math. 40C (2013) 245–252.
- [9] M. Buratti and A. Del Fra, *Cyclic Hamiltonian cycle systems of the complete graph*, Discrete Math. **279** (2004), 107–119.
- [10] M. Buratti and F. Merola, *Dihedral Hamiltonian cycle systems of the cocktail party graph*, J. Combin. Des. **21** (2013), 1–23.
- [11] M. Buratti and F. Merola, *Hamiltonian cycle systems that are both cyclic and symmetric*, J. Combin. Des. **22** (2014), 367-390.
- [12] M. Buratti and G. Rinaldi, 1-rotational k-factorizations of the complete graph and new solutions to the Oberwolfach problem, J. Combin. Des. 16 (2008), 87–100.
- [13] M. Buratti, G. Rinaldi and T. Traetta, *Some results on 1-rotational Hamiltonian cycle systems of the complete graph*, J. Combin. Des. **22** (2014), 231–251.
- [14] M.J. Grannell, T.S. Griggs and G.J. Lovergrove, *Even-cycle systems with prescribed automorphism groups*, J. Comb. Des. **21(4)** (2013), 142–156.
- [15] H. Jordon and J. Morris, *Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor*, Discrete Math. **308** (2008), 2440–2449.
- [16] M. Kobayashi, B. McKay, N. Mutoh, G. Nakamura and C. Nara, 3-perfect hamiltonian decomposition of the complete graph, Australas. J. Combin. 56 (2013), 219–224.

- [17] G.J. Lovergrove, Odd-cycle systems with prescribed automorphism groups, Discrete Math. 314 (2014), 6–13.
- [18] E. Lucas, Récréations Mathématiques, Vol II. Paris, 1892.
- [19] E. Mendelsohn, On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory Ser. A **25** (1978), 97–104.
- [20] M.A. Ollis, *Sequenceable groups and related topics*, Electron. J. Combin., Dynamic Surveys (10), 34 pp., 2002.

School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, UK, email: rab@mcs.st-andrews.ac.uk (R. A. Bailey)

Dipartimento di Matematica e Informatica, Università di Perugia, via Vanvitelli 1 - 06123 Italy, emails: buratti@dmi.unipg.it, traetta@dmi.unipg.it (M. Buratti and T. Traetta)

Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2 - 42122 Italy, email: rinaldi.gloria@unimore.it (G. Rinaldi)