On 2-pyramidal Hamiltonian cycle systems *

R. A. Bailey
M. Buratti
G. Rinaldi
T. Traetta

Abstract

A Hamiltonian cycle system of the complete graph minus a 1 -factor $K_{2 v}-I$ (briefly, an $\operatorname{HCS}(2 v)$) is 2-pyramidal if it admits an automorphism group of order $2 v-2$ fixing two vertices. In spite of the fact that the very first example of an $\operatorname{HCS}(2 v)$ is very old and 2-pyramidal, a thorough investigation of this class of HCSs is lacking. We give first evidence that there is a strong relationship between 2-pyramidal $\operatorname{HCS}(2 v)$ and 1-rotational Hamiltonian cycle systems of the complete graph $K_{2 v-1}$. Then, as main result, we determine the full automorphism group of every 2-pyramidal $\operatorname{HCS}(2 v)$. This allows us to obtain an exponential lower bound on the number of non-isomorphic 2-pyramidal $\mathrm{HCS}(2 v)$.

1 Introduction

Speaking of a Hamiltonian cycle system of order v, or $\operatorname{HCS}(v)$ for short, we mean a set of Hamiltonian cycles of K_{v} whose edges partition $E\left(K_{v}\right)$ if v is odd or $E\left(K_{v}\right)$ I, with I a 1-factor of K_{v}, if v is even. Two HCSs are isomorphic if there exists a bijection (isomorphism) between their vertex-sets mapping one into the other. An automorphism of a Hamiltonian cycle system \mathcal{H} is an isomorphism of \mathcal{H} with itself. The automorphisms of \mathcal{H} form the full automorphism group of \mathcal{H}, denoted by $\operatorname{Aut}(\mathcal{H})$. Speaking of an automorphism group of \mathcal{H} one means a subgroup of Aut (\mathcal{H}).

[^0]HCSs possessing a non-trivial automorphism group have attracted considerable attention (see [8] for a short recent survey on this topic). Detailed results can be found in: $[9,15]$ for the cyclics; [10] for the dihedrals; [4] for the doubly transitives; [7] for the regulars; $[1,6]$ for the symmetrics; [11] for those being both cyclic and symmetric. Here, we only need to recall the basic facts on the 1-rotationals which have been widely studied in [3, 13].

Throughout this paper every group will be denoted in multiplicative notation and its identity will be denoted by 1 , except when the group is the cyclic group \mathbb{Z}_{n}. As usual, additive notation will be used in this case with identity 0 .

An HCS (v) is 1-rotational under a group G (also called a round dance neighbour design based on G in [3]) if it admits G as an automorphism group of order $v-1$ fixing one vertex ∞. In this case the action of G on the other vertices is necessarily sharply transitive. Thus it is natural to identify the vertex-set V with $G \cup\{\infty\}$ and to see the action of G on V as the multiplication on the left with the rule that $g \infty=\infty$ for every $g \in G$.

In what follows, when speaking of the differences of two adjacent vertices g_{1} and g_{2}, with $g_{1}, g_{2} \in G$, we will mean $g_{1}^{-1} g_{2}$ and $g_{2}^{-1} g_{1}$.

We first note that a 1 -rotational HCS of even order cannot exist.
There exists a 1-rotational $\operatorname{HCS}(2 n+1)$ under a group G of order $2 n$ if and only if G is symmetrically sequenceable (see [12, Proposition 3.9]). This means that G is binary, namely it admits exactly one involution, and there exists a path $T=\left[g_{1}, g_{2}, \ldots, g_{2 n}\right]$ (directed terrace) with vertex-set G satisfying the following properties:
(i) $g_{2 n+1-i}=\lambda g_{i}$ for $1 \leq i \leq 2 n$ where λ is the only involution of G, i.e., we have: $T=\left[g_{1}, g_{2}, \ldots, g_{n}, \lambda g_{n}, \ldots, \lambda g_{2}, \lambda g_{1}\right]$.
(ii) every $g \in G \backslash\{1, \lambda\}$ can be written in exactly one way as a difference of two adjacent vertices g_{i} and g_{i+1} of the subpath $T^{\prime}=\left[g_{1}, g_{2}, \ldots, g_{n}\right]$.

The 1-rotational HCSs under G are precisely the G-orbits of a cycle obtainable by joining ∞ with the endpoints of a directed terrace of G.

Thus, if $T=\left[g_{1}, \ldots, g_{2 n}\right]$ is a directed terrace of G, then the 1-rotational HCS generated by T is easily seen to be $\mathcal{H}(T)=\{s C \mid s \in S\}$ with $C=\left(\infty, g_{1}, \ldots, g_{2 n}\right), s C=\left(\infty, s g_{1}, \ldots, s g_{2 n}\right)$ and S an arbitrary complete system of representatives for the cosets of the subgroup $\{1, \lambda\}$ of G of order 2 ; for instance one can take $S=\left\{g_{1}, \ldots, g_{n}\right\}$ in view of condition (i). Without loss of generality we can always assume that $g_{1}=1$, in which case T is said to be a basic directed terrace and C is said to be the starter cycle of $\mathcal{H}(T)$.

We refer to [20] for a survey on sequenceable groups. Here we recall that every binary solvable group except Q_{8} (the group of quaternions) has been proved to be symmetrically sequenceable in [2].

We say that an $\operatorname{HCS}(v)$ is 2-pyramidal if it admits an automorphism group G of order $v-2$ fixing 2 vertices ∞ and $\bar{\infty}$. First observe that such an $\operatorname{HCS}(v)$ has v even apart from the trivial case of $v=3$. In fact, for v odd, the edge connecting the two vertices fixed by G should be covered by a cycle C of the HCS and then we see that every $g \in G$ would have to fix C pointwise. This is possible only in the case that G is the trivial group.

Reasoning as above one can also see that in every 2-pyramidal HCS of even order, the edge $[\infty, \bar{\infty}]$ is always in the removed 1 -factor I.

It is not difficult to see that for any given 2-pyramidal HCS under G, the action of G on the non-fixed vertices is sharply transitive. Hence the vertex-set V can be identified with $G \cup\{\infty, \bar{\infty}\}, v=2 n+2,|G|=2 n$, and the action of G on V is the multiplication on the left with the rule that $g \infty=\infty$ and $g \bar{\infty}=\bar{\infty}$ for every $g \in G$.

Given $g \in G$, we will denote by τ_{g} the bijection on G defined by $\tau_{g}(x)=g x$ for every $x \in G$. By abuse of notation, for $\infty, \bar{\infty} \notin G$, the bijections on $G \cup\{\infty\}$ or $G \cup\{\infty, \bar{\infty}\}$ acting as τ_{g} on G and fixing the infinities will be also denoted by τ_{g}.

In what follows we will denote by \widehat{G} the group $\left\{\tau_{g} \mid g \in G\right\}$. The action of \widehat{G} on the vertex-set naturally extends to edges and cycles and thus \widehat{G} is an automorphism group of the HCS. Moreover each automorphism τ_{g} preserves differences between adjacent vertices and the map $g \mapsto \tau_{g}$ is an isomorphism between G and \widehat{G}.

In the next section we will see that every 2-pyramidal $\operatorname{HCS}(2 n+2)$ is generated by a suitable 1-rotational $\operatorname{HCS}(2 n+1)$.

In the third section we will prove that the full automorphism group of a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G always is isomorphic with G itself for $n \geq 3$. As a consequence, there exists an $\operatorname{HCS}(2 n+2)$ with full automorphism group G for any symmetrically sequenceable group G.

Finally, in the last section we show that for $n \geq 3$, up to isomorphism, every 2-pyramidal $\operatorname{HCS}(2 n+2)$ is generated by exactly two 1-rotational $\operatorname{HCS}(2 n+1)$ so that the number of non-isomorphic 2-pyramidal $\operatorname{HCS}(2 n+2)$ is exactly half the number of non-isomorphic 1 -rotational $\operatorname{HCS}(2 n+1)$. This fact, using the enumerative results on 1-rotational $\operatorname{HCS}(2 n+1)$ obtained in [13], allows us to claim that there are at least $2^{[3 n / 4\rceil-1}$ pairwise non-isomorphic 2-pyramidal $\operatorname{HCS}(2 n+2)$ for every $n \geq 6$.

2 On the structure of 2-pyramidal HCSs

The famous $\operatorname{HCS}(2 n+1)$ by Walecki (see [18]) is 1 -rotational under $\mathbb{Z}_{2 n}$. We denote this $W(2 n+1)$. It is well known that inserting in every cycle of it a new vertex $\bar{\infty}$ between the two vertices at distance n from ∞ one obtains a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under $\mathbb{Z}_{2 n}$ that will be denoted by $W(2 n+1)_{+}$. (see Figure 1$)$.

Indeed we are going to show that the 2-pyramidal HCSs are precisely those obtainable in this way starting from any 1 -rotational HCS.

From now on, if C is a $(2 n+1)$-cycle with a vertex denoted by ∞, then C_{+}will denote the $(2 n+2)$-cycle obtainable from C by inserting a new vertex $\bar{\infty}$ between the two vertices of C at distance n from ∞. If \mathcal{H} is any collection of $(2 n+1)$-cycles passing through ∞, then we set $\mathcal{H}_{+}=\left\{C_{+} \mid C \in \mathcal{H}\right\}$.

Figure 1:

Proposition 2.1. If \mathcal{H} is a 1-rotational $\operatorname{HCS}(2 n+1)$ under G, then \mathcal{H}_{+}is a 2 -pyramidal $\operatorname{HCS}(2 n+2)$ under G.

Conversely, every 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G has the form \mathcal{H}_{+}with \mathcal{H} a suitable 1-rotational $\operatorname{HCS}(2 n+1)$ under G.

Proof. Let \mathcal{H} be a 1-rotational $\operatorname{HCS}(2 n+1)$ under G and let $C=\left(\infty, g_{1}, \ldots\right.$, $\left.g_{2 n}\right)$ be its starter cycle. Thus $T=\left[g_{1}, \ldots, g_{2 n}\right]$ is a basic directed terrace of G and we have $\mathcal{H}=\left\{g_{i} C \mid 1 \leq i \leq n\right\}$, with $g_{i} C=\left(\infty, g_{i} g_{1}, \ldots, g_{i} g_{n}\right)$. For $i=1,2, \ldots, n$, the two vertices at distance n from ∞ in the cycle $g_{i} C$ are the endpoints of the edge [$g_{i} g_{n}, g_{i} g_{n+1}$]. All these edges form the cosets of $\{1, \lambda\}$ in G by condition (i) on directed terraces and hence they form, together with $[\infty, \bar{\infty}]$, a 1 -factor I of the complete graph $K_{2 n+2}$ with vertex-set $G \cup\{\infty, \bar{\infty}\}$. Thus, we easily see that \mathcal{H}_{+} is a decomposition of $K_{2 n+2}-I$, i.e., an $\operatorname{HCS}(2 n+2)$. We also see that the cycles of \mathcal{H}_{+}are those of the \widehat{G}-orbit of the cycle C_{+}. Therefore \mathcal{H}_{+}is 2-pyramidal under G.

Now assume that \mathcal{H}^{\prime} is a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G. Let I be the 1 -factor not covered by the cycles of \mathcal{H}^{\prime} and recall that $[\infty, \bar{\infty}]$ is in I.

Let λ be any involution of G and suppose that there exists an edge e of a cycle C of \mathcal{H}^{\prime} which is a right coset of $\{1, \lambda\}$ in G. Of course τ_{λ} switches the endpoints of e and hence it acts on C as a reflection in the axis of e. This is absurd since the reflection in the axis of an edge of an even-cycle has no fixed vertex while we know that τ_{λ} fixes both ∞ and $\bar{\infty}$. We conclude that no right coset of $\{1, \lambda\}$ is
edge of a cycle of \mathcal{H}^{\prime}. Therefore each of the n right cosets of $\{1, \lambda\}$ is an edge of I and hence, by the pigeon hole principle, $I \backslash[\infty, \bar{\infty}]$ necessarily coincides with the set of right cosets of $\{1, \lambda\}$ in G. We also deduce that λ is the only involution of G otherwise, with the same reasoning, we would have other edges not covered by the cycles of \mathcal{H}^{\prime}. Thus G is binary and $\{1, \lambda\}$ is normal in G.

Now take any cycle C of \mathcal{H}^{\prime}, let $\operatorname{Stab}(C)$ be its \widehat{G}-stabilizer, and let $\operatorname{Orb}(C)$ be its \widehat{G}-orbit. Of course $\operatorname{Orb}(C)$ is entirely contained in \mathcal{H}^{\prime} and hence its length is at most equal to $\left|\mathcal{H}^{\prime}\right|$, which a trivial counting argument shows to be equal to n. It follows that $\operatorname{Stab}(C)$ is not trivial. A non-identity element τ_{g} of $\operatorname{Stab}(C)$ fixes C and also fixes the two vertices ∞ and $\bar{\infty}$ so that $[\infty, \bar{\infty}]$ is necessarily a diameter of C and τ_{g} acts on C as a reflection in this diameter. We deduce, in particular, that g is an involution and hence, recalling that G is binary, we have $\operatorname{Stab}(C)=\left\{1, \tau_{\lambda}\right\}$. Thus $\operatorname{Orb}(C)$ has length $\frac{|G|}{2}=n$, that is the size of \mathcal{H}^{\prime}. We conclude that \mathcal{H}^{\prime} coincides with $\operatorname{Orb}(C)$.

From the above paragraph, the neighbors x and y of $\bar{\infty}$ in C are switched by τ_{λ}, i.e., we have $y=\lambda x$. It follows that the pairs of neighbors of $\bar{\infty}$ in the cycles of \mathcal{H}^{\prime} are the cosets of $\{1, \lambda\}$ in G, i.e., the edges of $I \backslash[\infty, \bar{\infty}]$. We conclude that removing $\bar{\infty}$ from each cycle of \mathcal{H}^{\prime} and joining its neighbors we get a set \mathcal{H} of $(2 n+1)$-cycles which is an $\operatorname{HCS}(2 n+1)$ with vertex-set $G \cup\{\infty\}$. It follows that \mathcal{H} is 1-rotational and that $\mathcal{H}^{\prime}=\mathcal{H}_{+}$.

If \mathcal{H} is a 1-rotational $\operatorname{HCS}(2 n+1)$ and C is its starter cycle, then C_{+}will be naturally called the starter cycle of \mathcal{H}_{+}.

Remembering how \mathcal{H}_{+}is obtained from \mathcal{H}, it is evident from the above proposition that $[\infty, \bar{\infty}]$ is a diameter of every cycle of a 2-pyramidal HCS.

In view of the general result concerning 1-rotational HCSs mentioned above, we can state the following result.

Corollary 2.2. There exists a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under a group G of order $2 n$ if and only if G is symmetrically sequenceable.

3 The full automorphism group of a 2-pyramidal HCS

It is easy to see that, up to isomorphism, there is exactly one $\operatorname{HCS}(4)$ and exactly one $\operatorname{HCS}(6)$, both pictured in Figure 2. They are 2-pyramidal under \mathbb{Z}_{2} and \mathbb{Z}_{4}, respectively and their full automorphism groups are both isomorphic to the dihedral group of order 8 . This is clear if we consider that the HCS(4) is just a 4 -cycle, whereas the full automorphism group of the HCS(6) is generated by the translation τ_{1} and by the reflection β in the axis a of the diameter $[\infty, \bar{\infty}]$.

For $n>2$ we prove that the full automorphism group of a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G is just G.

In this case, differently from the $\operatorname{HCS}(4)$ and the $\operatorname{HCS}(6)$, the reflection β in the axis of the diameter $[\infty, \bar{\infty}]$ is not an automorphism of a 2-pyramidal $\mathrm{HCS}(2 n+2)$ with $n>2$.

Figure 2:
Theorem 3.1. If $n>2$, the full automorphism group of a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G is isomorphic to G itself.

Proof. Let \mathcal{H} be a 2-pyramidal $\operatorname{HCS}(2 n+2)$ under G and let C be its starter cycle. Denote by A the full automorphism group of \mathcal{H}.

We know that $\widehat{G}:=\left\{\tau_{g} \mid g \in G\right\}$ is a subgroup of A isomorphic to G and that \widehat{G} is transitive on \mathcal{H} so that A is transitive on \mathcal{H} as well. Thus, if \widehat{G}_{0} and A_{0} are the stabilizers of C under \widehat{G} and A respectively, we have

$$
\begin{equation*}
|\mathcal{H}|=\left|\widehat{G}: \widehat{G}_{0}\right|=\left|A: A_{0}\right| \tag{3.1}
\end{equation*}
$$

by the orbit-stabilizer theorem.
Since $n>2$, the only edge of the removed 1-factor that is a diameter of every cycle is $[\infty, \bar{\infty}]$, hence A fixes $\{\infty, \bar{\infty}\}$. There are exactly four symmetries of C which preserve $\{\infty, \bar{\infty}\}$; they are the identity, the reflection τ_{λ} in the diameter $[\infty, \bar{\infty}]$, the reflection α in the axis of $[\infty, \bar{\infty}]$, and the rotation $\tau_{\lambda} \alpha$ through 180 degrees. Therefore either $A_{0}=\widehat{G}_{0}=\left\{\tau_{1}, \tau_{\lambda}\right\}$ or $A_{0}=\left\{\tau_{1}, \tau_{\lambda}, \alpha, \tau_{\lambda} \alpha\right\}$. By (3.1), we have $A=\widehat{G}$ in the former case and $|A: \widehat{G}|=2$ in the latter.

Suppose that $A_{0} \neq \widehat{G}_{0}$ so that $\alpha \in A_{0}$. Note that α swaps the infinities and that α has order 2 , so that $\alpha^{2}(g)=g$ for every $g \in G$. For $|A: \widehat{G}|=2$, we have that \widehat{G} is normal in A. Thus, for every $g \in G$, there exists a suitable $\phi(g) \in G$ such that $\alpha \tau_{g} \alpha^{-1}=\tau_{\phi(g)}$. Given g_{1}, g_{2} in G, we can write:

$$
\tau_{\phi\left(g_{1} g_{2}\right)}=\alpha \tau_{g_{1} g_{2}} \alpha^{-1}=\alpha \tau_{g_{1}} \alpha^{-1} \alpha \tau_{g_{2}} \alpha^{-1}=\tau_{\phi\left(g_{1}\right)} \tau_{\phi\left(g_{2}\right)}=\tau_{\phi\left(g_{1}\right) \phi\left(g_{2}\right)} .
$$

It follows that ϕ is a permutation on G such that $\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)$ for every pair of elements $g_{1}, g_{2} \in G$, i.e., ϕ is an automorphism of G. Set $\alpha(1)=h$ so that we have $\alpha \tau_{g} \alpha^{-1}(h)=\alpha\left(\tau_{g}(1)\right)=\alpha(g)$. By definition of $\phi(g)$, we also have $\alpha \tau_{g} \alpha^{-1}(h)=\tau_{\phi(g)}(h)=\phi(g) h$. Thus we have:

$$
\begin{equation*}
\alpha(g)=\phi(g) h \quad \forall g \in G . \tag{3.2}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
1=\alpha^{2}(1)=\alpha(h)=\phi(h) h . \tag{3.3}
\end{equation*}
$$

Applying (3.2) twice and taking into account that ϕ is an automorphism of G, we have

$$
g=\alpha^{2}(g)=\alpha(\phi(g) h)=\phi(\phi(g) h) h=\phi^{2}(g) \phi(h) h \quad \forall g \in G
$$

and then, by (3.3), we have

$$
\begin{equation*}
g=\phi^{2}(g) \quad \forall g \in G \tag{3.4}
\end{equation*}
$$

Now let ψ be the automorphism of \mathcal{H} defined by $\psi=\tau_{h^{-1}} \alpha$. In view of (3.2) we have $\psi(g)=\tau_{h^{-1}} \alpha(g)=h^{-1} \phi(g) h$, for all $g \in G$. Thus we can write

$$
\psi^{2}(g)=\psi\left(h^{-1} \phi(g) h\right)=h^{-1} \phi\left(h^{-1} \phi(g) h\right) h
$$

and then, recalling again that ϕ is an automorphism of G,

$$
\psi^{2}(g)=h^{-1} \phi\left(h^{-1}\right) \phi^{2}(g) \phi(h) h .
$$

On the other hand we have $\phi(h)=h^{-1}$ by (3.3) and $\phi^{2}(g)=g$ by (3.4) so that we have

$$
\begin{equation*}
\psi^{2}(g)=g \quad \forall g \in G \tag{3.5}
\end{equation*}
$$

Let $\operatorname{Fix}(\psi)$ and $\operatorname{Fix}\left(\tau_{\lambda} \psi\right)$ be the sets of vertices which are fixed by ψ and $\tau_{\lambda} \psi$, respectively. If $|\operatorname{Fix}(\psi)| \geq 3$, then there is an edge $[x, y]$ with endpoints in $\operatorname{Fix}(\psi)$ not belonging to the removed 1-factor I and hence there is a cycle $C(x, y)$ of \mathcal{H} containing $[x, y]$. For $\psi(x)=x$ and $\psi(y)=y$, we have that ψ fixes $C(x, y)$, i.e., ψ is a symmetry of $C(x, y)$. It follows that ψ is the identity since there is no non-trivial symmetry of a cycle having three fixed vertices. On the other hand we see that ψ swaps the infinities so that we have a contradiction. We conclude that $\operatorname{Fix}(\psi)$ has size at most two. Similarly, one can prove that $\operatorname{Fix}\left(\tau_{\lambda} \psi\right)$ has size at most two.

Thus the set $\operatorname{Fix}(\psi) \cup \operatorname{Fix}\left(\tau_{\lambda} \psi\right)$ has size at most four and then, having $|G| \geq$ 6 , there is some $g \in G$ such that $\psi(g) \neq g$ and $\psi(g) \neq \lambda g$. This means that $e:=[g, \psi(g)]$ is an edge not belonging to I. Now note that e is fixed by ψ in view of (3.5) and hence ψ also fixes the cycle of \mathcal{H} containing e. On the other hand, using (3.2), we see that $\psi(1)=1$ contradicting the fact that a non-trivial symmetry of a cycle of even length which fixes an edge has no fixed vertex.

The conclusion is that we have $A_{0}=\widehat{G}_{0}$ and hence $A=\widehat{G}$ which is the assertion.

It is interesting to establish which groups, up to isomorphism, are the full automorphism group of a combinatorial design of a given type. Although this problem is often hard to solve in general, it has been settled when the design is, for example, one of the following: a Steiner triple or quadruple system [19]; a non-Hamiltonian 2-factorization of the complete graph [5]; an even cycle system [14]; an odd cycle system [17]. For HCSs of even order we have the following partial answer.
Corollary 3.2. If G is a symmetrically sequenceable group, then there exists an HCS of even order whose full automorphism group is isomorphic to G.

Proof. By Corollary 2.2 and Theorem 3.1, it is enough to prove the assertion for groups G of order not greater than 4 , namely only for $G=\mathbb{Z}_{2}$ and $G=$ \mathbb{Z}_{4} considering that $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not symmetrically sequenceable. Consider the following two $\operatorname{HCS}(10)$ with vertex-set \mathbb{Z}_{10} and removed 1-factor $I=\{[i, i+$ 5] | $0 \leq i \leq 4\}$:

$$
\begin{aligned}
\mathcal{H}=\{ & (0,1,3,9,7,5,2,4,8,6),(0,2,3,6,4,5,9,1,8,7) \\
& (0,3,4,7,6,5,1,2,9,8),(0,4,1,7,3,5,8,2,6,9)\} \\
\mathcal{H}^{\prime}=\{ & (0,1,3,7,9,5,4,2,8,6),(0,2,9,1,8,5,3,6,4,7) \\
& (0,3,4,1,2,5,7,6,9,8),(0,4,8,7,1,5,6,2,3,9)\}
\end{aligned}
$$

One can check that the only non-trivial automorphism of \mathcal{H} is the permutation (16)(27)(38)(49) so that $\operatorname{Aut}(\mathcal{H})$ is isomorphic to \mathbb{Z}_{2}. Also, $\operatorname{Aut}\left(\mathcal{H}^{\prime}\right)$ is generated by the permutation $(1267)(3984)$ and hence it is isomorphic to \mathbb{Z}_{4}. The assertion follows.

In particular, by the mentioned result by Anderson and Ihrig we can claim that for any binary solvable group except Q_{8} there exists an HCS of even order whose full automorphism group is G.

4 Enumeration of 2-pyramidal HCSs

Let $\mathcal{H}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a 1-rotational $\operatorname{HCS}(2 n+1)$ under G and consider the set of Hamiltonian cycles $\mathcal{H}^{*}=\left\{C_{1}^{*}, \ldots, C_{n}^{*}\right\}$ where, for $1 \leq i \leq n$, the cycle C_{i}^{*} is obtained from C_{i} by simply moving ∞ between the two vertices at distance n from it. We note that \mathcal{H}^{*} is again a 1-rotational $\operatorname{HCS}(2 n+1)$ under G; we call it the twin of \mathcal{H}. As an example, Figure 3 shows $W(7)$, that is the Walecki 1-rotational HCS(7), and its twin $W(7)^{*}$.

Using the above terminology, a result on 3-perfect $\operatorname{HCS}(2 n+1)$ recently, and independently, obtained in [13] and [16] can be stated as follows.

Theorem 4.1. For $n \geq 3$, the twin of the Waleki $\operatorname{HCS}(2 n+1)$ is 3-perfect.
For convenience of the reader, we recall that an $\operatorname{HCS}(2 n+1)$ is said to be i perfect with $1 \leq i \leq n$ if for every pair of vertices x and y there is exactly one cycle of the HCS in which x and y are at distance i.

The Walecki $\operatorname{HCS}(2 n+1)$ is not 3-perfect and hence, by Theorem 4.1, it is not isomorphic to its twin. We are going to show that this result holds in general.

Lemma 4.2. If \mathcal{H} is a 1 -rotational $\operatorname{HCS}(2 n+1)$ with $n \geq 3$, then \mathcal{H} and its twin \mathcal{H}^{*} are not isomorphic.

Proof. Assume that \mathcal{H} is isomorphic to its twin \mathcal{H}^{*}. In this case, reasoning as in [13, Theorem 4.3], there is an isomorphism α between \mathcal{H} and \mathcal{H}^{*} sending ∞ into ∞. Consider the permutation β on $G \cup\{\infty, \bar{\infty}\}$ switching the two infinities and acting as α on G. Given $C=\left(\infty, g_{1}, \ldots, g_{2 n}\right) \in \mathcal{H}$, we have $C_{+}^{*}=\left(\bar{\infty}, g_{1}, \ldots, g_{n}, \infty, g_{n+1}, \ldots, g_{2 n}\right) \in \mathcal{H}_{+}^{*}$ and thus we see that $\beta\left(C_{+}^{*}\right)=\alpha(C)_{+}$.

Figure 3:

Thus, considering that $\alpha(C) \in \mathcal{H}^{*}$, every cycle $C_{+}^{*} \in \mathcal{H}_{+}^{*}$ is turned by β into a cycle still belonging to \mathcal{H}_{+}^{*}, i.e., β is an automorphism of \mathcal{H}_{+}^{*}. This is a contradiction since, by Theorem 3.1, any automorphism of a 2-pyramidal $\operatorname{HCS}(2 n+2)$ with $n \geq 3$ fixes both the infinities.

Theorem 4.3. For $n \geq 3$, the number of non-isomorphic 1-rotational $\operatorname{HCS}(2 n+1)$ is twice the number of non-isomorphic 2-pyramidal $\operatorname{HCS}(2 n+2)$.

Proof. For a given Hamiltonian cycle system \mathcal{H}, let us denote by [$\mathcal{H}]$ its isomorphism class. Then denote by $\mathbb{H}_{1 r o t}(2 n+1)$ the set of all isomorphism classes of 1-rotational $\operatorname{HCS}(2 n+1)$ under any group and by $\mathbb{H}_{2 p y r}(2 n+2)$ the set of all isomorphism classes of 2-pyramidal $\operatorname{HCS}(2 n+2)$ under any group. The map

$$
f:[\mathcal{H}] \in \mathbb{H}_{1 r o t}(2 n+1) \mapsto\left[\mathcal{H}_{+}\right] \in \mathbb{H}_{2 p y r}(2 n+2)
$$

is clearly well defined and it is surjective by Proposition 2.1.
Also note that we have $f([\mathcal{H}])=f\left(\left[\mathcal{H}^{*}\right]\right)$ for every $[\mathcal{H}] \in \mathbb{H}_{1 \text { rot }}(2 n+1)$. In fact, if \mathcal{H} is a 1-rotational $\operatorname{HCS}(2 n+1)$ under G, then the transposition (∞) is an isomorphism between \mathcal{H}_{+}and \mathcal{H}_{+}^{*}.

Assume that \mathcal{H} and \mathcal{H}^{\prime} are 1-rotational $\operatorname{HCS}(2 n+1)$ (under G and G^{\prime}, respectively) such that $\left[\mathcal{H}_{+}\right]=\left[\mathcal{H}_{+}^{\prime}\right]$ so that there exists an isomorphism $\alpha: G \cup\{\infty, \bar{\infty}\} \rightarrow G^{\prime} \cup\{\infty, \bar{\infty}\}$ between \mathcal{H}_{+}and \mathcal{H}_{+}^{\prime}. In both \mathcal{H}_{+}and \mathcal{H}_{+}^{\prime}, $[\infty, \bar{\infty}]$ is the only removed edge which is a diameter of every cycle, so α must fix
the 2-set $\{\infty, \bar{\infty}\}$ and hence we can define the $\operatorname{map} \beta: G \cup\{\infty\} \rightarrow G^{\prime} \cup\{\infty\}$ by setting $\beta(\infty)=\infty$ and $\beta(g)=\alpha(g)$ for every $g \in G$.

Take a cycle $C=\left(\infty, g_{1}, \ldots, g_{n}, g_{n+1}, \ldots, g_{2 n}\right) \in \mathcal{H}$ and distinguish two cases according to whether α fixes $\{\infty, \bar{\infty}\}$ pointwise or not.

1st case: α fixes $\{\infty, \bar{\infty}\}$ pointwise. We have:

$$
\alpha\left(C_{+}\right)=\left(\infty, \alpha\left(g_{1}\right), \ldots, \alpha\left(g_{n}\right), \bar{\infty}, \alpha\left(g_{n+1}\right), \ldots, \alpha\left(g_{2 n}\right)\right)=\beta(C)_{+}
$$

and hence, considering that $\alpha\left(C_{+}\right) \in \mathcal{H}_{+}^{\prime}$, we have $\beta(C) \in \mathcal{H}^{\prime}$. Thus β turns every cycle C of \mathcal{H} into a cycle of \mathcal{H}^{\prime}, i.e., β is an isomorphism between \mathcal{H} and \mathcal{H}^{\prime}.

2nd case: α swaps ∞ and $\bar{\infty}$. Here we have:

$$
\alpha\left(C_{+}\right)=\left(\bar{\infty}, \alpha\left(g_{1}\right), \ldots, \alpha\left(g_{n}\right), \infty, \alpha\left(g_{n+1}\right), \ldots, \alpha\left(g_{2 n}\right)\right)=\beta\left(C^{*}\right)_{+}
$$

and hence, considering that $\alpha\left(C_{+}\right) \in \mathcal{H}_{+}^{\prime}$, we have $\beta\left(C^{*}\right) \in \mathcal{H}^{\prime}$. Thus β turns every cycle C^{*} of \mathcal{H}^{*} into a cycle of \mathcal{H}^{\prime}, i.e., β is an isomorphism between \mathcal{H}^{*} and \mathcal{H}^{\prime}.

Thus the equality $\left[\mathcal{H}_{+}\right]=\left[\mathcal{H}_{+}^{\prime}\right]$ implies that $\left[\mathcal{H}^{\prime}\right]$ is either $[\mathcal{H}]$ or $\left[\mathcal{H}^{*}\right]$ which are distinct isomorphism classes by Lemma 4.2. We conclude that the pre-image under f of any isomorphism class a of 2-pyramidal $\operatorname{HCS}(2 n+2)$ always has size two and hence the size of $\mathbb{H}_{1 r o t}(2 n+1)$ is twice the size of $\mathbb{H}_{2 \text { pyr }}(2 n+1)$, that is the assertion.

In [13] the last three authors determined a formula enumerating all 1-rotational $\operatorname{HCS}(2 n+1)$ up to isomorphism. Even though our formula heavily depends on some hardly computable parameters, it allowed us to claim that for any $n \geq 6$ there are at least $2^{\lceil 3 n / 4\rceil}$ non-isomorphic 1-rotational $\operatorname{HCS}(2 n+1)$. Hence, by Theorem 4.3, we can state the following result.

Theorem 4.4. If $n \geq 6$, then there exists at least $2^{\lceil 3 n / 4\rceil-1}$ non-isomorphic 2-pyramidal $\operatorname{HCS}(2 n+2)$.

References

[1] J. Akiyama, M. Kobayashi and G. Nakamura, Symmetric Hamilton cycle decompositions of the complete graph, J. Combin. Des. 12 (2004), 39-45.
[2] B.A. Anderson and E.C. Ihrig, Every finite solvable group with a unique element of order two, except the quaternion group, has a symmetric sequencing, J. Combin. Des. 1 (1993), 3-14.
[3] R.A. Bailey, M.A. Ollis and D.A. Preece, Round-dance neighbour designs from terraces, Discrete Math. 266 (2003), 69-86.
[4] A. Bonisoli, M. Buratti and G. Mazzuoccolo, Doubly transitive 2-factorizations, J. Combin. Des. 15 (2007), 120-132.
[5] S. Bonvicini, G. Mazzuoccolo and G. Rinaldi, On 2-Factorizations of the complete graph: from the k-pyramidal to the universal property, J. Combin. Des. 17 (2009), 211-228.
[6] R.A. Brualdi and M.W. Schroeder, Symmetric Hamilton cycle decompositions of complete graphs minus a 1-factor, J. Combin. Des. 19 (2011), 1-15.
[7] M. Buratti, Sharply vertex-transitive Hamiltonian cycle systems of the complete and cocktail party graph, preprint.
[8] M. Buratti, S. Capparelli, F. Merola, G. Rinaldi and T. Traetta, A collection of results on Hamiltonian cycle systems with a nice automorphism group, Electron. Notes Discrete Math. 40C (2013) 245-252.
[9] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004), 107-119.
[10] M. Buratti and F. Merola, Dihedral Hamiltonian cycle systems of the cocktail party graph, J. Combin. Des. 21 (2013), 1-23.
[11] M. Buratti and F. Merola, Hamiltonian cycle systems that are both cyclic and symmetric, J. Combin. Des. 22 (2014), 367-390.
[12] M. Buratti and G. Rinaldi, 1-rotational k-factorizations of the complete graph and new solutions to the Oberwolfach problem, J. Combin. Des. 16 (2008), 87-100.
[13] M. Buratti, G. Rinaldi and T. Traetta, Some results on 1-rotational Hamiltonian cycle systems of the complete graph, J. Combin. Des. 22 (2014), 231-251.
[14] M.J. Grannell, T.S. Griggs and G.J. Lovergrove, Even-cycle systems with prescribed automorphism groups, J. Comb. Des. 21(4) (2013), 142-156.
[15] H. Jordon and J. Morris, Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Discrete Math. 308 (2008), 2440-2449.
[16] M. Kobayashi, B. McKay, N. Mutoh, G. Nakamura and C. Nara, 3-perfect hamiltonian decomposition of the complete graph, Australas. J. Combin. 56 (2013), 219-224.
[17] G.J. Lovergrove, Odd-cycle systems with prescribed automorphism groups, Discrete Math. 314 (2014), 6-13.
[18] E. Lucas, Récréations Mathématiques, Vol II. Paris, 1892.
[19] E. Mendelsohn, On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory Ser. A 25 (1978), 97-104.
[20] M.A. Ollis, Sequenceable groups and related topics, Electron. J. Combin., Dynamic Surveys (10), 34 pp., 2002.

School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, UK, email: rab@mcs.st-andrews.ac.uk (R. A. Bailey)

Dipartimento di Matematica e Informatica, Università di Perugia, via Vanvitelli 1 - 06123 Italy, emails: buratti@dmi.unipg.it, traetta@dmi.unipg.it (M. Buratti and T. Traetta)

Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2 - 42122 Italy, email: rinaldi.gloria@unimore.it (G. Rinaldi)

[^0]: *Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Research Council) of Italy and supported by M.I.U.R. project "Disegni combinatorici, grafi e loro applicazioni, PRIN 2008". The fourth author is supported by a fellowship of INdAM.

 Received by the editors in January 2014 - In revised form in May 2014.
 Communicated by H. Van Maldeghem.
 2010 Mathematics Subject Classification : 05E18, 05C60, 05C70.
 Key words and phrases : 1-rotational Hamiltonian cycle system; 2-pyramidal Hamiltonian cycle system; binary group; group action.

