
Notes on Remainders of Paratopological

Groups∗

Hanfeng Wang Wei He

Abstract

In this paper, it is proved that a non-locally compact paratopological
group G has a remainder which is a p-space if and only if G is either a
Lindelöf p-space or a σ-compact space. We show that if G is a non-locally
compact paratopological group with a compactification bG such that the re-
mainder bG \ G is locally metrizable, then both G and bG are separable and
metrizable. It is proved that if G is a cosmic paratopological group with a
paracompact remainder, then G is separable and metrizable.

1 Introduction

By a remainder of a Tychonoff topological space G, we mean the subspace
bG \ G of some compactification bG of G. Remainders of a topological group or
a paratopological group have many interesting properties and have been studied
extensively in literature (see [1]-[6] and [8]-[11]).

One of the most interesting questions in the study of remainders is to de-
termine to what extent a property of a topological space X is related to another
property of some or all remainders of X. A classical result about remainders is
the following theorem due to M. Henriksen and J. Isbell [18]:

Theorem 1.1. A Tychonoff space X is of countable type if and only if the remainder in
any (or some) Hausdorff compactification of X is Lindelöf.
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In [11] Arhangel’skii studied properties of topological groups with an Ohio
complete remainder. He proved that a non-locally compact topological group G
has a remainder which is a p-space if and only if G is either a Lindelöf p-space or
a σ-compact space.

In this paper we generalize the above result and prove the following:
A non-locally compact paratopological group G has a remainder which is a

p-space if and only if G is either a Lindelöf p-space or a σ-compact space.
We investigate local metrizability of remainders of a paratopological group.

We prove that if G is a non-locally compact paratopological group with a com-
pactification bG such that the remainder bG \ G is locally metrizable, then both G
and bG are separable and metrizable.

We show that a cosmic paratopological group with a paracompact remainder
must be separable and metrizable.

We also investigate remainders of semitopological groups. It is proved that if
a separable semitopological group G has a remainder Y with countable
π-character, then either Y is countably compact, or G has a countable π-base.

Throughout this paper, a topological space always means a Tychonoff space.
c(X) is the cellularity or Souslin number of the space X. For unexplained terms
and symbols we refer the reader to [7] or [14].

2 Preliminaries

Recall that a topological group G is a group G with a topology such that
multiplication on G considered as a map of G × G to G is jointly continuous and
the inversion in G is continuous. A paratopological group G is a group G with a
topology such that multiplication on G is jointly continuous. A semitopological
group G is a group G with a topology such that multiplication on G is separately
continuous.

Recall that a space X is of (pointwise) countable type if every (point) compact
subset P of X is contained in a compact subset F ⊂ X that has a countable base
of open neighbourhoods in X. Obviously, every space of countable type is of
pointwise countable type. However, the converse is not true, even in the category
of homogeneous spaces [12]. So the following result by A.V. Arhangel’skii is
interesting.

Theorem 2.1. [2] Let G be a paratopological group. If there exists a non-empty compact
subset of G of countable character in G, then G is a space of countable type.

From Theorem 2.1 we know that a paratopological group of pointwise count-
able type is a space of countable type.

Let O be a family of open subsets of a space X and F be a subset of X. O is
said to be an outer base of F in X if for each x ∈ F and each neighbourhood U of
x in X there exists an element V of O such that x ∈ V ⊂ U.

Recall that a space X is called Ohio complete [11], if in every compactification
bX of X there exists a Gδ-subset Z such that X ⊂ Z and every y ∈ Z \ X is
separated from X by a Gδ-subset of Z. By [11] all p-spaces and all Lindelöf spaces
are Ohio complete.
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3 Remainders of paratopological groups

To extend Arhangel’skii’s result mentioned in the introduction to paratopo-
logical groups, we first prove a lemma.

Lemma 3.1. Let G be a homogeneous space with a compactification bG such that the
remainder bG \ G is Ohio complete. Then either bG \ G is Čech-complete or G is of
pointwise countable type.

Proof We consider two cases.
Case 1: G is locally compact. Then G is of countable type and bG \ G is

compact.
Case 2: G is non-locally compact. Then G is nowhere locally compact, since G

is a homogeneous space. It follows that the remainder Y = bG \ G is dense in bG.
Hence, bG is also a compactification of bG \ G. Since bG \ G is Ohio complete, we
can fix a Gδ-subset Z of bG such that Y ⊂ Z and every y ∈ Z \Y can be separated
from Y by a Gδ-subset of Z.

If Z \Y is empty, then Y = Z is a Gδ-subset Z of bG which implies that bG \G
is Čech-complete.

If Z \ Y is not empty, one can take a point p ∈ Z \ Y and a Gδ-subset P
of Z such that p ∈ P ⊂ Z \ Y. Then p ∈ P ⊂ G, and P is a Gδ-subset of bG
since Z is a Gδ-subset of bG. Since bG is compact, it follows that there exists
a non-empty compact subset F ⊂ P such that F has a countable base of open
neighbourhoods in G. Since G is a homogeneous space, G has a cover by compact
subsets with countable bases of open neighbourhoods in G. Then it follows that
G is of pointwise countable type.

Lemma 3.2. [11] If X is a Lindelöf p-space, then any remainder of X is a Lindelöf p-
space.

Theorem 3.1. Suppose that G is a non-locally compact paratopological group and that
bG is a compactification of G. Then the remainder bG \ G is a p-space if and only if at
least one of the following conditions holds:

(1) G is a Lindelöf p-space;
(2) G is σ-compact.

Proof Sufficiency: If G is a Lindelöf p-space, then by Lemma 3.2, bG \ G is a Lin-
delöf p-space. If G is σ-compact, then bG \ G is Čech-complete, which implies
that bG \ G is a p-space.

Necessity. Since every p-space is Ohio complete [11], it follows from Lemma
3.1 that either bG \ G is Čech-complete or G is of pointwise countable type. If
bG \G is Čech-complete, then G is σ-compact. If G is of pointwise countable type,
then G is of countable type by Theorem 2.1. It follows that bG \ G is Lindelöf, by
Theorem 1.1. Since bG \ G is a Lindelöf p-space, Lemma 3.2 implies that G is a
Lindelöf p-space.

Corollary 3.1. Suppose that G is a non-locally compact paratopological group with a
compactification bG such that the remainder bG \ G is a paracompact p-space. Then G
is a Lindelöf p-space.
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Proof By Theorem 3.1, G is a Lindelöf p-space or a σ-compact space. Suppose G
is σ-compact. The cellularity of a σ-compact paratopological group is countable
[7, Corollary 5.7.12]. It follows that c(G) ≤ ω. Since G is dense in bG, c(bG) ≤
ω. It follows that c(bG \ G) ≤ ω, since bG \ G is dense in bG. Thus, bG \ G
is Lindelöf, since bG \ G is paracompact and c(bG \ G) ≤ ω. Since bG \ G is
a Lindelöf p-space and G is a remainder of bG \ G, G is a Lindelöf p-space by
Lemma 3.2.

By Corollary 3.1 we have the following result.

Corollary 3.2. Suppose that G is a non-locally compact paratopological group with a
compactification bG such that the remainder bG \ G is a paracompact p-space. Then both
G and bG \ G are Lindelöf p-spaces.

Corollary 3.3. Let G be a paratopological group with a Gδ-diagonal and let bG be a
compactification of G. If the remainder bG \ G is a paracompact p-space, then G is
metrizable.

Proof If G is locally compact, then G is a topological group since a locally compact
paratopological group is a topological group [7, Proposition 2.3.11]. Since every
locally compact space is a p-space, it follows that G is a paracompact p-space
[7, Theorem 4.3.35]. It follows that G is metrizable since G has a Gδ-diagonal [15].

If G is non-locally compact, then G is a Lindelöf p-space by Corollary 3.1.
Since G has a Gδ-diagonal, it follows that G is separable and metrizable [15].

Corollary 3.4. Let G be a paratopological group with a Gδ-diagonal and let bG be a
compactification of G. If the remainder bG \ G is a p-space, then G is a cosmic space. In
particular, G is submetrizable.

Proof By Theorem 3.1, G is a Lindelöf p-space or σ-compact. If G is a Lindelöf
p-space with a Gδ-diagonal, then G is separable and metrizable, which implies
that G has a countable network. If G is σ-compact, G has a countable network,
since every compact subspace with a Gδ-diagonal is separable and metrizable
[15].

Since every semitopological group with countable π-character has a Gδ-dia-
gonal [7, Corollary 5.7.5], by Corollary 3.4, we have the following result.

Corollary 3.5. Let G be a paratopological group with countable π-character and let bG
be a compactification of G. If the remainder bG \ G is a p-space, then G is a cosmic space.

Theorem 3.2. Let G be a cosmic paratopological group with a compactification bG such
that the remainder bG \ G is paracompact, then G is separable and metrizable.

Proof If G is locally compact, then G is a p-space. Since G is a cosmic space,
G is a Lindelöf space with a Gδ-diagonal. Since every Lindelöf p-space with a
Gδ-diagonal is separable and metrizable, so is G.

If G is not locally compact, then bG \ G is dense in bG and G is a remainder
of bG \ G. Then we have c(G) ≤ ω since G has a countable network. Since G
is dense in bG, c(bG) ≤ ω. It follows that c(bG \ G) ≤ ω, since bG \ G is dense
in bG. Thus, bG \ G is Lindelöf, since it is paracompact and c(bG \ G) ≤ ω.
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Then G is of countable type, by Theorem 1.1. Therefore, there exists a compact
subset K ⊂ G such that K has a countable base of open neighbourhoods in G.
Since K is compact and has a countable network, it follows that K is separable
and metrizable [14]. By [17], a compact subspace F of a space X, such that F is
separable and metrizable and has a countable base of open neighbourhoods in
X, has a countable outer base in X. Therefore, K has a countable outer base in
G. In particular, G has a countable local base at every point of K. Since G is
homogeneous, it follows that G is first countable. Since G is a paratopological
group, it has a countable base by a result of Ravsky (see [19, Proposition 2.13]).
Therefore, G is separable and metrizable.

In Theorem 3.2, the condition that G has a countable network cannot be re-
placed by the weaker one that G has a countable π-base. Indeed, the Sorgenfrey
line G, as a paratopological group with a countable π-base, has a compactification
bG which is homeomorphic to the two arrows space, and the remainder bG \ G is
Lindelöf. However, G is non-metrizable.

In [10], Arhangel’skii proved that if a non-locally compact topological group
has a compactification bG such that the remainder bG \ G has a Gδ-diagonal, then
both G and bG are separable and metrizable. However, the conclusion is false
in the category of paratopological groups [10]. By Corollary 3.2, we have the
following result.

Theorem 3.3. Let G be a non-locally compact paratopological group with a compactifica-
tion bG such that the remainder bG \ G is metrizable. Then both G and bG are separable
and metrizable.

Proof Since bG \ G is metrizable, it is a paracompact p-space. By Corollary 3.2,
both G and bG \ G are Lindelöf p-spaces. Since bG \ G is metrizable and Lindelöf,
it follows that bG \ G is separable and metrizable.

Fix a countable base B of bG \ G. For each B ∈ B, take an open subset VB

of bG such that VB ∩ (bG \ G) = B. Put OB = VB ∩ G, for each B ∈ B. Since
both bG \ G and G are dense in bG, it follows that {OB : B ∈ B} is a countable
π-base of G. Since a paratopological group with countable π-character has a
Gδ-diagonal [7, Corollary 5.7.5], G has a Gδ-diagonal. Therefore, G is separable
and metrizable, since G is a Lindelöf p-space with a Gδ-diagonal [15].

Since both G and bG \ G are separable and metrizable, it follows that bG has
a countable network. Therefore, bG is separable and metrizable.

In [4] C. Liu studied local properties of remainders of a topological group and
proved that if a non-locally compact topological group has a compactification bG
such that bG \ G has a local Gδ-diagonal, then both G and bG are separable and
metrizable. For non-locally compact paratopological groups with locally metriz-
able remainders, we can show the following result which complements Theorem
3.3.

Theorem 3.4. Suppose G is a non-locally compact paratopological group with a com-
pactification bG such that the remainder bG \ G is locally metrizable. Then both G and
bG are separable and metrizable.
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Proof Fix a point y ∈ bG \ G and two open neighbourhoods Vy and Wy of y in
bG \ G such that Wy is metrizable and the closure of Vy in bG \ G is contained in
Wy. We denote by Uy the closure of Vy in bG \ G. Obviously, Uy is metrizable.

Claim 1: Uy is not countably compact. Suppose to the contrary that Uy is
countably compact. Then Uy is is compact, since Uy is metrizable. Hence, Uy is
closed in bG. On the other hand, there exists an open neighbourhood U of y in bG
such that U ∩ (bG \G) = Vy. Since G is non-locally compact and homogeneous, G
is nowhere locally compact, which implies that bG \ G is dense in bG. Therefore,
Vy is dense in U. Thus, the closure of U in bG coincides with the closure of Vy in
bG. It follows that the closure of U in bG coincides with Uy. This contradicts the
fact that U ∩ G 6= ∅.

Claim 2: G has a Gδ-diagonal. Since Uy is not countably compact, there exists
an infinite closed discrete countable subset F of bG \ G contained in Uy. Since bG

is compact, there exists a point c in G such that c ∈ F
bG

. Since Wy is an open subset
of bG \ G such that that Wy is metrizable and Uy ⊂ Wy, it follows that bG \ G has
countable character at each point of F. Then bG has countable character at each
point of F, since bG \ G is dense in bG. For each y ∈ F, take a countable local
base Oy of y in bG, and put By = {V ∩ G : V ∈ Oy}. Then

⋃
y∈F By is a countable

π-base of c in G. Since G is homogeneous, G has countable π-character. It follows
that G has a Gδ-diagonal [7, Corollary 5.7.5].

Let K be the closure of Uy in bG. Obviously, K \ Uy is a non-empty subset of
G, and the interior of K \ Uy in G is also not empty. Since Uy is metrizable, it is
Ohio complete [11]. Therefore, there exists a Gδ-subset H of K such that Uy ⊂ H
and every x ∈ H \ Uy is separated from Uy by a Gδ-subset of H.

Now we show that both G and bG are separable and metrizable. For this
purpose, we consider two cases.

Case 1: H \ Uy = ∅, i.e. H = Uy. Then K \ Uy is σ-compact. Since K \ Uy is
contained in G, K \ Uy has a Gδ-diagonal. Thus, K \ Uy has a countable network,
which implies that c(K \ Uy) ≤ ω. Therefore, c(K) ≤ ω, since K \ Uy is dense
in K. It follows from the density of Uy in K that c(Uy) ≤ ω. Therefore, Uy is
separable and metrizable. Since both Uy and K \ Uy have countable networks,
it follows that K has a countable network. Thus, K is separable and metrizable.
Then K \Uy is separable and metrizable. Since G is homogeneous, it follows that
G is locally separable and locally metrizable.

We claim that G is of countable type. Take an arbitrary compact subset C
of G. For every x ∈ C, fix an open neighbourhood Ox of x in G such that Ox

is separable and metrizable. Then there exists a finite subset A of G such that
C ⊂

⋃
{Ox : x ∈ A}. It follows that C has a countable outer base in G. Then it is

easy to see that C has a countable character in G. Thus, G is of countable type.

By Theorem 1.1, bG \ G is Lindelöf. Hence bG \ G is locally separable since
bG \ G is Lindelöf and locally metrizable. Since bG \ G is locally separable and
locally metrizable, it follows that bG \ G is separable and metrizable. Therefore,
bG \ G is a Lindelöf p-space. Then G is a Lindelöf p-space by Corollary 3.2. Since
G has a Gδ-diagonal, it follows that G is separable and metrizable. Since both
bG \ G and G are separable and metrizable, one can conclude that bG is separable
and metrizable.
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Case 2: H \ Uy 6= ∅. Let O be the interior of K \ Uy in G. Then O is dense in
K. Since G is dense in bG, it follows that O ⊆ IntbGK. We have the following two
subcases.

Subcase (a): H ∩ O = ∅. Then O ⊂ K \ H, which implies that K \ H is dense
in K. Since K \ H is σ-compact and has a Gδ-diagonal, it follows that K \ H has
a countable network. Thus c(K \ H) ≤ ω. Since both K \ H and Uy are dense
in K, one can conclude that c(Uy) ≤ ω. Therefore, Uy is separable and metriz-
able. Then K \ Uy is a Lindelöf p-space. It follows from the fact that K \ Uy has a
Gδ-diagonal that K \ Uy is separable and metrizable, which implies that G is lo-
cally separable and locally metrizable. As in Case 1, we come to the conclusion
that both G and bG are separable and metrizable.

Subcase (b): H ∩ O 6= ∅. Fix a point x ∈ H ∩ O, then there is a Gδ-subset P
of H such that x ∈ P ⊂ H \ Uy. Since H is a Gδ-subset of K, it follows that P is
a Gδ-subset of K. Let {Pn : n ∈ ω} be a sequence of open subsets of K such that
P = ∩{Pn : n ∈ ω}. Take a sequence {Wn : n ∈ ω} of open neighbourhoods of x
in bG such that W0 ⊂ K and Wn+1 ⊂ Wn ∩ Pn. It is easy to see that {Wn : n ∈ ω} is
a local base of the compact set ∩{Wn : n ∈ ω} in bG. Obviously, ∩{Wn : n ∈ ω}
is contained in G and has countable character in G. Since G is a paratopological
group, it follows that G is of countable type, by Theorem 2.1. Therefore, bG \ G is
Lindelöf. Since bG \ G is locally metrizable, it is locally separable. It follows that
bG \ G is separable and metrizable. As in Case 1, this implies that both G and bG
are separable and metrizable.

Next we consider semitopological groups with remainders of countable π-
character.

Theorem 3.5. Suppose G is a non-locally compact separable semitopological group with
a compactification bG such that the remainder bG \ G has countable π-character. Then
either bG \ G is countably compact or G has a countable π-base.

Proof Assume that bG \G is not countably compact. Then there exists a countable
infinite closed discrete subset F of bG \G. Since bG is compact, there exists a point

p of G such that p ∈ F
bG

. Since G is non-locally compact, bG \ G is dense in bG.
Then it follows from the fact that bG \G has countable π-character that each point
of bG \ G has a countable π-base in bG. For each y ∈ F, take a countable π-base
Oy of y in bG, and put By = {V ∩ G : V ∈ Oy}. Then

⋃
y∈F By is a countable

π-base of p in G.
Since G is homogeneous, G has a countable π-base Be at the identity e. Take a

countable subset L of G such that L is dense in G. Put B = {xU : x ∈ L, U ∈ Be}.
We claim that B is a countable π-base of G.

Indeed, for each point a of G and an open neighbourhood W of a, there exists
a point x of L such that x ∈ W. Since G is a semitopological group, there exists a
neighbourhood V of e such that xV ⊂ W. Since Be is a π-base of G at e, we can
find an element U ∈ Be such that U ⊂ V. Then xU ∈ B and xU ⊂ W. Therefore,
B is a countable π-base of G.

Theorem 3.6. Suppose G is a non-locally compact cosmic semitopological group with
a compactification bG such that the remainder bG \ G has countable π-character. Then
either bG \ G is C̆ech-complete or G has a countable π-base.
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Proof Let N be a countable closed network of G. Denote by γ the family of all
compact elements of N . We consider two cases.

Case 1:
⋃

γ = G. It follows that G is σ-compact, which implies that bG \ G is
C̆ech-complete.

Case 2: G \
⋃

γ 6= ∅. Fix a point a ∈ G \
⋃

γ and put β = {P ∈ N : a ∈
P}. Then β is a countable network of G at a, and none element of β is compact.

Therefore, P
bG

∩ (bG \ G) 6= ∅, for each P ∈ β. Fix a point yP ∈ P
bG

∩ (bG \ G)

for each P ∈ β, and put A = {yP : P ∈ β}. Then A is countable and a ∈ A
bG

.
Since bG \ G is dense in bG and has countable π-character, it follows that bG has
countable π-character at every point of bG \ G. For each yP ∈ A, take a countable
π-base OP of yP in bG, and put BP = {V ∩ G : V ∈ OP}. Obviously,

⋃
yP∈A BP is

a countable π-base of a in G. Since G is homogeneous, G has a countable π-base
Be at the identity e. Since G has a countable network, it is separable. Let S be a
countable subset of G which is dense in G, and put V = {sA : s ∈ S, A ∈ Be}.
Then it follows from the proof of Theorem 3.5 that V is a π-base of G.

Recall that a Tychonoff space X is said to be weakly pseudocompact if there
exists a Hausdorff compactification bX such that X is Gδ-dense in bX, that is,
every non-empty Gδ-set in bX intersects X.

Theorem 3.7. Suppose G is a weakly pseudocompact semitopological group with a com-
pactification bG such that the remainder bG \ G has countable π-character. Then either
bG \ G is countably compact or G is a topological group metrizable by a complete metric.

Proof Suppose that bG \ G is not countably compact. Then bG \ G is not compact
and, hence, G is not locally compact. As in the proof of Theorem 3.5, we see
that G has countable π-character. Then G has a Gδ-diagonal. However, every
weakly pseudocompact Tychonoff space X with a Gδ-diagonal is Čech-complete
[7, Proposition 5.7.19]. Further, every Čech-complete semitopological group is a
topological group [13]. Then G is a topological group with countable π-character,
which implies that G is metrizable [16]. Since G is Čech-complete, it follows that
G is a completely metrizable topological group.

Since every pseudocompact space is weakly pseudocompact and pseudo-
compact metrizable space is compact, the following result follows from Theorem
3.7.

Corollary 3.6. Suppose that G is a pseudocompact and non-compact semitopological
group and bG is a compactification of G. If the remainder bG \ G has countable
π-character, then bG \ G is countably compact.
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