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Abstract

Following Andrei’s approach, a modified scaled memoryless BFGS
preconditioned conjugate gradient method is proposed based on the mod-
ified secant equation suggested by Li and Fukushima. It is shown that the
method is globally convergent without convexity assumption on the objec-
tive function. Furthermore, for uniformly convex objective functions, suffi-
cient descent property of the method is established based on an eigenvalue
analysis. Numerical experiments are employed to demonstrate the efficiency
of the method.

1 Introduction

Conjugate gradient (CG) methods have attracted special attention for solving
large-scale unconstrained optimization problems in the form of min

x∈Rn
f (x), with

the smooth nonlinear function f : R
n → R, because of low memory requirement,

simple computation and strong global convergence. Iterations of the CG methods
are given by

x0 ∈ R
n, xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., (1.1)

where αk is a steplength to be computed by a line search procedure and dk is the
search direction defined by

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, ...,
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in which gk = ∇ f (xk) and βk is a scalar called the CG (update) parameter.
Different CG methods mainly correspond to different choices for the CG

parameter [21]. Furthermore, in convergence analysis and implementation of the
CG methods Wolfe line search conditions [32], i.e.,

f (xk + αkdk)− f (xk) ≤ δαk∇ f (xk)
Tdk, (1.2)

∇ f (xk + αkdk)
Tdk ≥ σ∇ f (xk)

Tdk, (1.3)

with 0 < δ < σ < 1, have been widely paid attention to.
To enhance efficiency of the CG methods using information of the Hessian of

the objective function more straightly, Andrei [1, 2, 3, 4, 5] proposed the family
of scaled CG algorithms of SCALCG, hybridizing the memoryless BFGS precon-
ditioned CG method suggested by Shanno [29] and the spectral CG method sug-
gested by Birgin and Martı́nez [15], based on the standard secant equation [32],
i.e.,

∇2 f (xk+1)sk = yk, (1.4)

where yk = gk+1 − gk. In order to employ the objective function information
in addition to the gradient information, recently Babie-Kafaki [9] made a mod-
ification on the SCALCG, using a revised form of the modified secant equation
suggested by Zhang et al. [33] which was proposed in [13], that is,

∇2 f (xk+1)sk = zk, zk = yk + ρk
max{ϑk, 0}

sT
k uk

uk, (1.5)

where ρk is a nonnegative parameter, uk ∈ R
n is a vector parameter satisfying

sT
k uk 6= 0, and ϑk = 6( fk − fk+1) + 3(gk + gk+1)

Tsk.
Search directions of the scaled CG methods suggested in [1, 2, 3, 4, 5, 9] are in

the following form:

d0 = −g0, dk+1 = −Qk+1gk+1, k = 0, 1, ..., (1.6)

with the matrix Qk+1 ∈ R
n×n defined by

Qk+1 = θk+1 I − θk+1
vksT

k + skvT
k

sT
k vk

+

(

1 + θk+1
vT

k vk

sT
k vk

)

sksT
k

sT
k vk

, (1.7)

where, depending to the secant equations (1.4) and (1.5), vk = yk in [1, 2, 3, 4, 5]
and vk = zk in [9], and also, θk+1 is a scaling parameter determined based on a
two-point approximation of the corresponding secant equation [14, 27], i.e.,

θk+1 =
sT

k sk

sT
k vk

. (1.8)

Note that the matrix Qk+1 is not formed; only its product with gk+1 is applied
instead. Also, Qk+1 is precisely the BFGS update in which approximation of the
inverse Hessian is restarted as θk+1 I. Since from (1.3) we have

sT
k zk ≥ sT

k yk = sT
k gk+1 − sT

k gk ≥ −(1 − σ)sT
k gk > 0, (1.9)
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the matrix Qk+1 is positive definite [26, 32] and consequently, the search direc-
tions (1.6) are descent directions. In addition, for uniformly convex objective
functions [32], Babaie-Kafaki [7, 10, 9] showed that the search directions (1.6) with
vk = yk and vk = zk satisfy the sufficient descent condition, that is,

gT
k dk ≤ −τ||gk||

2, k = 0, 1, ..., (1.10)

where τ is a positive constant and ||.|| stands for the Euclidean norm.
Here, we suggest a modified scaled CG method based on the modified secant

equation proposed by Li and Fukushima [23]. The remainder of this work is or-
ganized as follows. In Section 2, we propose our method and discuss its global
convergence and sufficient descent property. In Section 3, we present compara-
tive numerical results. Finally, we make conclusions in Section 4.

2 A modified scaled conjugate gradient method

In this section, at first we briefly discuss the modified secant equation proposed
by Li and Fukushima [23], being necessary in explanation of our modified scaled
CG method.

Convexity assumption on the objective function plays an important role in
convergence analysis of the quasi-Newton methods (see [6] and the references
therein). Nevertheless, Li and Fukushima [23] proposed a modified BFGS method
which is globally and superlinearly convergent for nonconvex objective functions
(see also [19, 24, 34]). The method has been designed based on the following
modified secant equation:

∇2 f (xk+1)sk = wk, wk = yk + hk||gk||
rsk, (2.1)

where r > 0, and hk > 0 is defined by

hk = C + max{−
sT

k yk

||sk||2
, 0}||gk||

−r,

with some positive constant C. As an interesting property, for the modified se-
cant equation (2.1) we have sT

k wk > 0, independent of the line search and the
objective function convexity, which guarantees heredity of positive definiteness
for the related BFGS updates. Note that from (1.9), Wolfe conditions ensure that
hk = C, ∀k ≥ 0. In such situation, if ||gk|| < 1, ∀k ≥ K, with some positive integer
K large enough, and r ≥ 1, then we have hk||gk||

r = O(||gk||), which leads to nice
theoretical properties as given by Theorem 4.1 of [23].

Recently, efforts have been made to suggest unconstrained optimization algo-
rithms based on the modified secant equation (2.1). Examples include the non-
linear CG method proposed by Zhou and Zhang [34], the hybrid CG method
proposed by Babaie-Kafaki et al. [12], the descent CG method proposed by Naru-
shima and Yabe [25], the three-term CG method proposed by Sugiki et al. [31],
and the two-point stepsize gradient algorithm proposed by Babaie-Kafaki and
Fatemi [11].
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Effectiveness of the modified secant equation (2.1) motivated us to apply it in
order to suggest another modified version of SCALCG. More precisely, here we
deal with a scaled CG method in which the search directions are computed by
(1.6)-(1.8) with vk = wk defined in (2.1). Thus, letting d0 = −g0, search directions
of our method are given by

dk+1 = −θk+1gk+1 + θk+1
sT

k gk+1

sT
k wk

wk + θk+1
wT

k gk+1

sT
k wk

sk (2.2)

−

(

1 + θk+1
wT

k wk

sT
k wk

)

sT
k gk+1

sT
k wk

sk, k ≥ 1,

in which

θk+1 =
sT

k sk

sT
k wk

. (2.3)

As mentioned in Section 1, since sT
k wk > 0, the matrix Qk+1 defined by (1.7)

with vk = wk is positive definite and consequently, the search directions (2.2) are
descent directions. Next, we show that our method is globally convergent with-
out convexity assumption on the objective function. In this context, we need to
make the following standard assumptions on the objective function.

Assumption A1: The level set L = {x| f (x) ≤ f (x0)}, with x0 to be the starting
point of the iterative method (1.1), is bounded.

Assumption A2: In some open convex neighborhood N of L, f is continuously
differentiable and its gradient is Lipschitz continuous; that is, there exists a posi-
tive constant L such that

||∇ f (x)−∇ f (y)|| ≤ L||x − y||, ∀x, y ∈ N . (2.4)

Note that these assumptions imply that there exists a positive constant γ such
that

||∇ f (x)|| ≤ γ, ∀x ∈ L (see Proposition 3.1 of [13]). (2.5)

The following important lemma plays an essential role in proving the global
convergence theorem of our method.

Lemma 2.1. [31] Suppose that Assumptions A1 and A2 hold. Consider any
iterative method in the form of (1.1), where dk and αk satisfy the sufficient
descent condition (1.10) and the Wolfe conditions (1.2) and (1.3), respectively. If

∑
k≥0

1

||dk||2
= ∞, (2.6)

then the method converges in the sense that

lim inf
k→∞

||gk|| = 0. (2.7)
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Now, we can establish the following global convergence theorem for our me-
thod.

Theorem 2.1. Suppose that Assumptions A1 and A2 hold. Consider any iterative
method in the form of (1.1) in which the search direction dk is computed by (2.2) with
θk+1 defined by (2.3), and the steplength αk is determined to fulfill the Wolfe conditions
(1.2) and (1.3). If the sufficient descent condition (1.10) is satisfied, then the method
converges in the sense that (2.7) holds.

Proof. At first, note that search directions of the method are descent directions.
So, from (1.2) the sequence {xk}k≥0 is a subset of the level set L. Now, to prove
the theorem by contradiction, we suppose that there exists a positive constant ε
such that

||gk|| ≥ ε, ∀k ≥ 0. (2.8)

Hence, since (1.9) ensures that from the Wolfe conditions we have sT
k yk > 0, from

(2.8) we get

sT
k wk = sT

k yk + C||gk||
r||sk||

2 ≥ Cεr ||sk||
2, (2.9)

which leads to

θk+1 ≤
1

Cεr
. (2.10)

Also, from (2.4) and (2.5) we can write

||wk|| ≤ ||yk||+ Cγr||sk|| ≤ (L + Cγr)||sk||. (2.11)

Now, from Cauchy-Schwarz inequality, (2.5), (2.9), (2.10) and (2.11) we have

||dk+1|| ≤ θk+1||gk+1||+ 2θk+1
||sk||||wk||||gk+1||

sT
k wk

+

(

1 + θk+1
||wk||

2

sT
k wk

)

||sk||||gk+1||

sT
k wk

||sk||

≤
1

Cεr
γ + 2

1

Cεr

(L + Cγr)γ||sk||
2

Cεr||sk||2

+

(

1 +
1

Cεr

(L + Cγr)2||sk||
2

Cεr ||sk||2

)
γ||sk||

Cεr ||sk||2
||sk||

=
γ

Cεr
+ 2

(L + Cγr)γ

C2ε2r
+

(

1 +
(L + Cγr)2

C2ε2r

)
γ

Cεr
,

which leads to (2.6). So, from Lemma 2.1, (2.7) holds, contradicting (2.8).

Although search directions of our method are descent directions, the suffi-
cient descent condition in the assumptions of Theorem 2.1 may seem to be to
some extent strong. In what follows, based on an eigenvalue analysis we show
that search directions of our method possess the sufficient descent property for
uniformly convex objective functions.
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Lemma 2.2. For the search directions (1.6) with the matrix Qk+1 defined by (1.7),
if for all k ≥ 0,

||vk|| ≤ Λ||sk||, (2.12)

and
sT

k vk ≥ ξ||sk ||
2, (2.13)

with some positive constants Λ and ξ, then the sufficient descent condition (1.10)
holds.

Proof. Since sT
k vk > 0, we have sk 6= 0 and vk 6= 0. So, there exists a set of mutually

orthonormal vectors {ui
k}

n−2
i=1 such that

sT
k ui

k = vT
k ui

k = 0, i = 1, ..., n − 2,

which leads to
Qk+1ui

k = θk+1ui
k, i = 1, ..., n − 2.

That is, the vectors ui
k, i = 1, ..., n− 2, are the eigenvectors of Qk+1 corresponding

to the eigenvalue θk+1. Next, we find the two remaining eigenvalues of Qk+1,
namely λ−

k and λ+
k .

Since the trace of a square matrix is equal to the sum of its eigenvalues, we
have

tr(Qk+1) = (n − 2)θk+1 +

(

1 + θk+1
||vk||

2

sT
k vk

)

θk+1

= θk+1 + ... + θk+1
︸ ︷︷ ︸

(n−2) times

+λ−
k + λ+

k ,

which leads to

λ−
k + λ+

k =

(

1 + θk+1
||vk||

2

sT
k vk

)

θk+1. (2.14)

Furthermore, from the properties of the Frobenius norm we have

||Qk+1||
2
F = tr(QT

k+1Qk+1) = tr(Q2
k+1)

= (n − 2)θ2
k+1 − 2θ2

k+1 +

(

1 + θk+1
||vk||

2

sT
k vk

)2

θ2
k+1

= θ2
k+1 + ... + θ2

k+1
︸ ︷︷ ︸

(n−2) times

+λ−2

k + λ+2

k ,

which yields

λ−2

k + λ+2

k = −θ2
k+1 + 2θ3

k+1

||vk||
2

sT
k vk

+ θ4
k+1

||vk||
4

(sT
k vk)2

. (2.15)

Now, from (2.14) and (2.15), after some algebraic manipulations we get

λ−
k λ+

k = θ2
k+1, (2.16)
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and consequently, from (2.3), (2.14) and (2.16), λ−
k and λ+

k can be computed by

λ±
k =

1

2
θk+1




1 +

||sk||
2||vk||

2

(sT
k vk)2

±

√
√
√
√

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

)2

− 4




 . (2.17)

From Cauchy-Schwarz inequality we get

λ+
k ≥

1

2
θk+1

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

)

≥ θk+1,

and

λ−
k ≤

1

2
θk+1

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

−

√
√
√
√

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

)2

− 4
||sk||

2||vk||
2

(sT
k vk)2






=
1

2
θk+1

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

−

(

||sk||
2||vk||

2

(sT
k vk)2

− 1

))

= θk+1.

Thus, λ−
k is the smallest eigenvalue of the positive definite matrix Qk+1. Now,

from Cauchy-Schwarz inequality, (2.12) and (2.13) we have

λ−
k =

1

2
θk+1

4

1 +
||sk||

2||vk||
2

(sT
k vk)2

+

√
√
√
√

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

)2

− 4

≥
1

2
θk+1

4

2

(

1 +
||sk||

2||vk||
2

(sT
k vk)2

) =
||sk||

2(sT
k vk)

(sT
k vk)2 + ||sk||2||vk||2

≥
||sk||

2(sT
k vk)

2||sk||2||vk||2
≥

ξ

2Λ2
. (2.18)

Therefore, from (2.18) we can write

dT
k+1gk+1 = −gT

k+1Qk+1gk+1 ≤ −
ξ

2Λ2
||gk+1||

2, ∀k ≥ 0. (2.19)

So, from (2.19) and since dT
0 g0 = −||g0||2, to complete the proof it is enough to let

τ = min{1,
ξ

2Λ2
} in the sufficient descent condition (1.10).

Note that in our method we have vk = wk. So, if Assumptions A1 and A2 hold
and the objective function is uniformly convex on N , then there exists a positive
constant µ such that

sT
k yk ≥ µ||sk||

2,
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which leads to

sT
k wk = sT

k yk + C||gk||
r||sk||

2 ≥ sT
k yk ≥ µ||sk||

2. (2.20)

Thus, from (2.11) and (2.20), Lemma 2.2 guarantees the sufficient descent prop-
erty for an iterative method in the form of (1.1) with the search directions (2.2).

3 Numerical experiments

Here, we present some numerical results obtained by applying a MATLAB 7.7.0.
471 (R2008b) implementation of the iterative method (1.1) in which the search
directions are computed by (1.6)-(1.8) with the following three choices for the
vector parameter vk:

• The method M1: vk = wk defined by (2.1) which yields our modified scaled
CG method;

• The method M2: vk = zk defined by (1.5) which yields the modified scaled
CG method suggested in [9];

• The SCALCG method: vk = yk;

comparing with the HS+ method, i.e., a CG method with the parameter βk =

max

{

gT
k+1yk

dT
k yk

, 0

}

obtained by nonnegative restriction of the CG parameter sug-

gested by Hestenes and Stiefel [22], firstly proposed in [28] and then studied in
[17]. The implementations were performed on a computer, Intel(R) Core (TM)2
Duo CPU 2.00 GHz, with 1 GB of RAM. Since CG methods have been mainly
designed for solving large-scale problems, our experiments have been done on a
set of 105 unconstrained optimization test problems of the CUTEr collection [18]
with various dimensions n ∈ [100, 15625], as specified in [8].

For M1, we set C = 10−6 in (2.1) because of the promising numerical results
obtained among the different values C ∈ {10−k}6

k=0. Also, we adopt the sugges-
tion of [34] for the computation of r in the sense that we set r = 3, if ||gk|| < 1,
and r = 1, otherwise. For M2, we adopt the suggestions of [9] and set uk = sk in
(1.5), for all k ≥ 0, and also, ρk = 1, if ||sk|| < 1, and ρk = 0, otherwise.

In our implementations, if

gT
k dk > −10−10||gk||||dk||, (3.1)

then we considered dk as an improper search direction. Although (3.1) seldom
occurred, when encountering we restarted the algorithm with dk = −gk. We
used the Wolfe line search conditions (1.2) and (1.3) with δ = 0.0001 and σ = 0.9,
and computed the steplength αk using the interpolation scheme proposed in [26]
with the initial trial value being equal to ||sk−1||/||dk ||, for all k ≥ 1, and ||gk||

−1
∞ ,

for k = 0 [3, 30]. Also, all attempts to solve the test problems were limited to
reaching a maximum of 10000 iterations or achieving a solution with ||gk||∞ <

10−6(1 + | f (xk)|).



A modified scaled conjugate gradient method 473

Efficiency comparisons were made using the performance profile introduced
by Dolan and Moré [16], on the running time and the total number of function
and gradient evaluations being equal to N f + 3Ng [20], where N f and Ng respec-
tively denote the number of function and gradient evaluations. Performance pro-
file gives, for every ω ≥ 1, the proportion p(ω) of the test problems that each
considered algorithmic variant has a performance within a factor of ω of the best.
Figures 1 and 2 show the comparisons results. As shown by Figure 1, although
M2 outperforms M1, and SCALCG is often preferable to M1, at times M1 outper-
forms SCALCG with respect to the total number of function and gradient evalua-
tions. Also, Figure 2 shows that although the methods M1, M2 and SCALCG are
approximately competitive, M1 slightly outperforms SCALCG, and M2 slightly
outperforms M1 with respect to the running time. Moreover, the figures show
that all the three methods M1, M2 and SCALCG outperform the HS+ method.

Figure 1: Total number of function and gradient evaluations performance profiles
for M1, M2, SCALCG and HS+

4 Conclusions and future work

A modified scaled conjugate gradient method is proposed following Andrei’s
approach of hybridizing the memoryless BFGS preconditioned conjugate gradi-
ent method suggested by Shanno [29] and the spectral conjugate gradient method
suggested by Birgin and Martı́nez [15], based on the modified secant equation
suggested by Li and Fukushima [23]. When the line search fulfills the Wolfe con-
ditions, it has been shown that the method is globally convergent without con-
vexity assumption on the objective function. Also, based on an eigenvalue anal-
ysis, it has been shown that search directions of the method satisfy the sufficient



474 S. Babaie-Kafaki – R. Ghanbari

Figure 2: CPU time performance profiles for M1, M2, SCALCG and HS+

descent property for uniformly convex objective functions. The method (M1) has
been numerically compared with the modified scaled conjugate gradient method
suggested in [9] (M2), and the methods of SCALCG and HS+. Numerical results
showed that the method is practically promising.

As a future work, because of the relationship between the scaled conjugate
gradient methods and the BFGS method, it would be interesting to study the
superlinear convergence of the scaled conjugate gradient methods.
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