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Abstract

In this paper we determine some examples of the domains of n-valence
for functions which are analytic with classical normalization and locally uni-
valent. This problem has not been studied yet. It seems to be rather difficult.
We formulate a few conjectures concerning some subclasses of typically real
functions and odd typically real functions.

1 Introduction

Suppose that T denotes the well-known family of all typically real functions, i.e.
functions which are analytic in the unit disc U = {z ∈ C : |z| < 1}, normalized
by f (0) = f ′(0) − 1 = 0 and such that Im z Im f (z) ≥ 0 for z ∈ U. More-

over, let T(2) be the class which consists of all odd typically real functions, that is,

T(2) = { f ∈ T : f (z) = − f (−z), z ∈ U}.
The univalence problems in the class of typically real functions were consid-

ered by Golusin in [1]. He proved that the domain of local and global univalence
for typically real functions coincide. The problems of univalence for the class of
odd typically real functions were investigated by Koczan and Zaprawa in [4] and
[5]. They proved that there can be infinitely many domains of univalence for odd
typically real functions and they determined some of these domains.
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In this paper we study the problems of n-valence in some classes of analytic
functions. This problem has not been studied yet. It seems to be rather difficult.
Recall now the definition of n-valent function (see e.g. [2], vol. I, p.89).

Definition 1. A function f analytic in a domain D is said to be n-valent in D, if for
each w0 the equation f (z) = w0 has at most n roots in D (where the roots are counted
in accordance with their multiplicity) and if there is some w1 such that the equation
f (z) = w1 has exactly n roots in D.

Now we formulate a few definitions connected with n-valence problems. Let
A be the class of all analytic functions. A domain D ⊂ U is called the domain of
n-valence of the class A ⊂ A, if every function from the class A is at most n-valent
in D and for every domain Ω such that D  Ω ⊂ U there exists a function which
is at least (n + 1)-valent in Ω. A domain D ⊂ U is called the domain of n-valence
of the function f ∈ A, if the function f is n-valent in D and for every domain Ω

such that D  Ω ⊂ U the function f is at least (n + 1)-valent in Ω. We say that
rn(A) is the radius of n-valence of the class A ⊂ A, if all functions of the class A are
at most n-valent in the disc |z| < rn(A) and for every r ∈ (rn(A), 1) there exists
a function in A which is at least (n + 1)-valent in the disc |z| < r. We say that rn

is the radius of n-valence of the function f ∈ A, if the function f is n-valent in the
disc |z| < rn and the function f is at least (n + 1)-valent in every disc |z| < r,
r ∈ (rn, 1).

2 Main results

Let us denote by F a typically real function, called the universal function, which
was introduced by Goodman in the paper [3], that is,

(1) F(z) =
1

π
tan

πz

1 + z2
, z ∈ U.

We determine the radius of n-valence of the function F. We know from [3] that
F ∈ T and F′(z) 6= 0, z ∈ U. This means that the function F is typically real and
locally univalent. One can observe that

F(z) =
1

πi

1 − exp
{

−2iπz
1+z2

}

1 + exp
{

−2iπz
1+z2

} =
1

πi

1 − e−iω

1 + e−iω
for ω(z) =

2πz

1 + z2
, z ∈ U.

The function ω 7→ eiω is n-valent function in every curvelinear strip with the
width in the direction to the real axis equals to 2nπ, i.e. the intersection of this
strip with any straight line parallel to the real axis is the segment of the measure
2nπ. Hence let us consider vertical strip

{ω ∈ C : |Re ω| < nπ} , n ∈ N.

Thus for each n ∈ N we determine the subset of U described by the inequality
∣∣∣∣Re

2πz

1 + z2

∣∣∣∣ < nπ,
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that is, by the inequality

(2)

∣∣∣∣Re
z

1 + z2

∣∣∣∣ <
n

2
.

Let z = reiθ, θ ∈ [0, π/2]. Then

Re
z

1 + z2
=

r(1 + r2) cos θ

r4 + 2r2 cos 2θ + 1
=

r(1 + r2) cos θ

r4 + 4r2 cos2 θ + 1 − 2r2
.

From this and (2) we obtain the following inequality

r(1 + r2) cos θ

r4 + 4r2 cos2 θ + 1 − 2r2
<

n

2

or equivalently, putting cos θ = t, |t| ≤ 1, we get

r(1 + r2) t

r4 + 4r2 t2 + 1 − 2r2
<

n

2
.

We find the largest r which satisfies the inequality above for every t ∈ [−1, 1].
Define

w(t) = 4r2 t2 − 2

n
r (1 + r2) t + (r2 − 1)2.

We solve the following inequality

(3) min
t∈[−1,1]

w(t) > 0.

We obtain

min
t∈[−1,1]

w(t) =

{
w(tv) for tv ≤ 1,

w(1) for tv > 1,

=

{(
r2 − 1 − 1+r2

2n

) (
r2 − 1 + 1+r2

2n

)
for 2n −

√
4n2 − 1 ≤ r ≤ 1,

(
r2 + 1

) (
r2 + 1 − nr

2

)
for 0 ≤ r < 2n −

√
4n2 − 1,

where tv = 1+r2

4rn is the vertex of the parabola. It is easy to check that w(1) > 0 for

0 ≤ r < 2n −
√

4n2 − 1. Thus from w(tv) > 0 we have

{(
r2 − 1 − 1+r2

2n

) (
r2 − 1 + 1+r2

2n

)
> 0

2n −
√

4n2 − 1 ≤ r ≤ 1

or equivalently

{
r2

<
2n−1
2n+1

2n −
√

4n2 − 1 ≤ r ≤ 1
⇔ 2n −

√
4n2 − 1 ≤ r <

√
2n − 1

2n + 1
.

Therefore from the inequality (3) we get 0 ≤ r <

√
2n−1
2n+1 . Hence we have proved

the following theorem.
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Theorem 1. The function F given by (1) is n-valent function in the disc

|z| <
√

2n−1
2n+1 .

Corrolary 1. The radius of univalence of the function F given by (1) is equal to
√

3/3.

The domains of n-valence of a given function could not be unique. There exist
functions having infinitely many domains of univalence (see for example [4]). We
show that the universal function F has infinitely many domains of n-valence and
we determine three of them.

Let us consider a strip bounded by two straight lines l1 : ω = −nπ + yeiϕ and
l2 : ω = nπ + yeiϕ, n ∈ N, ϕ ∈ (0, π) (the strip includes 0). Obviously this strip
has the width in the direction to the real axis equals to 2nπ, i.e. the intersection
of this strip with any straight line parallel to the real axis is the segment of the
measure 2nπ. So the inverse images of the strip through the function z 7→ πz

1+z2

are the domains of n-valence of the function F given by (1). Thus we get the one-
parameter family of domains of n-valence of the function F; there are infinitely
many such domains.

Assume that En is a set which is bounded, symmetric with the respect to both
axes of the complex plane and which has the boundary in the first quadrant of
the coordinate system given by the polar equation ρ = r(θ) eiθ , where

r(θ) =





1 f or θ ∈
[
0, arccos 1

n

)
,

1
2n

(
α −

√
α2 − 4n2

)
f or θ ∈

[
arccos 1

n , π
2

]
,

where α = cos θ +
√

cos2 θ + 4n2 sin2 θ. In Figures 1 and 2 we can see the sets E1,

E5 and the discs of univalence |z| <
√

3/3 and of 5-valence |z| < 3
√

11/11 of the
function F.

K1,0 K0,5 0 0,5 1,0

K1,0

K0,5

0,5

1,0

Figure 1: The boundary of the set E1

(solid line) and the disc of univalence
|z| <

√
3/3 (dot line).

K1,0 K0,5 0 0,5 1,0

K1,0

K0,5

0,5

1,0

Figure 2: The boundary of the set E5

(solid line) and the disc of 5-valence
|z| < 3

√
11/11 (dot line).
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Theorem 2. The set En is the domain of n-valence of the function F given by (1).

Proof. The universal function F is n-valent when

−nπ < Im
2πiz

1 + z2
< nπ, that is, when − nπ < Re

2πz

1 + z2
< nπ.

Thus to determine the domain of n-valence, it is sufficient to solve the following
equation

Re
z

1 + z2
=

n

2
.

Let z = reiθ, θ ∈ [0, π/2]. Therefore the equation above takes the form

r (1 + r2) cos θ

r4 + 4r2 cos2 θ + 1 − 2r2
=

n

2
⇔ r4 − 2

n
r (r2 + 1) cos θ+ 4r2 cos2 θ − 2r2 + 1 = 0.

Putting r + 1
r = x, x ≥ 2, we obtain the following equation

(4) x2 − 2

n
x cos θ − 4 sin2 θ = 0,

which has two solutions of the form:

x1 =
1

n

(
cos θ +

√
cos2 θ + 4n2 sin2 θ

)
,

x2 =
1

n

(
cos θ −

√
cos2 θ + 4n2 sin2 θ

)
.

Notice that x2 ≤ 0. The condition x1 ≥ 2 implies

1

n

(
cos θ +

√
cos2 θ + 4n2 sin2 θ

)
≥ 2 ⇔ cos θ

(
cos θ − 1

n

)
≤ 0

⇔ 0 ≤ cos θ ≤ 1

n
⇔ θ ∈

[
arccos

1

n
,

π

2

]
.

Hence θ ∈
[
arccos 1

n , π
2

]
and r(θ) is the solution of the equation

r2 − r

n

(
cos θ +

√
cos2 θ + 4n2 sin2 θ

)
+ 1 = 0

which belongs to the interval [0, 1], that is,

r(θ) =
1

2n

(
cos θ +

√
cos2 θ + 4n2 sin2 θ

)
+

− 1

2n

√(
cos θ +

√
cos2 θ + 4n2 sin2 θ

)2
− 4n2.

Therefore, the proof is complete.
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Suppose that Bn is a set which is bounded, symmetric with the respect of the
real axis and which the boundary coincides with the segment [−i, i] and the arc
given by the polar equation ρ = r(θ)eiθ , where

r(θ) =





1 f or θ ∈
(
− arccos 1

2n , arccos 1
2n

)
,

1
4n

(
β −

√
β2 − 16n2

)
f or θ ∈

[
−π

2 ,− arccos 1
2n

]
∪
[
arccos 1

2n , π
2

]
,

where β = cos θ +
√

cos2 θ + 16n2 sin2 θ. Moreover, let B̃n denote set which is
symmetric to the set Bn with the respect of the imaginary axis. In Figure 3 we can

see the sets B1 and B̃1.

0,2 0,4 0,6 0,8 1,0

K1,0

K0,5

0

0,5

1,0

K1,0 K0,8 K0,6 K0,4 K0,2 0

K1,0

K0,5

0,5

1,0

Figure 3: The boundary of the set B1 and of the set B̃1.

Theorem 3. The sets Bn and B̃n are the domain of n-valence of the function F given by
(1).

The proof is similar to the proof of Theorem 2, but we consider vertical strip

{ω ∈ C : 0 < Re ω < 2nπ} , n ∈ N

and we solve the following equation

Re
z

1 + z2
= n.

In each domain of n-valence of a given function, there exist domains of
n-valence of a given class. We know that all functions from a given class A ⊂ A
are n-valent in the disc |z| < rn(A). It may suggest that the intersection of the
domains of n-valence of a given class A includes the disc |z| < rn(A). Neverthe-
less, let us notice that in the class {F} (i.e. the class which consists of one function
F) the intersection of the domains of n-valence is included in the intersection of
the sets Bn and B̃n, that is, in the set Bn ∩ B̃n, which is the empty set. Thus there
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exist classes for which the intersection of the domains of n-valence is the empty
set.

And finally, we formulate the following conjectures. Let ALU be the subclass
of A which consists of functions with classical normalization locally univalent in
U, i.e.

ALU =
{

f ∈ A : f (z) = z + a2z2 + . . . , f ′(z) 6= 0, z ∈ U

}
.

Conjecture 1.

(i) The radius of n-valence of the function F given by (1) is the radius of n-valence of

the class T(2) ∩ALU and of the class T ∩ALU.

(ii) The domains of n-valence of the function F given by (1) are the domains of n-valence

of the class T(2) ∩ALU and of the class T ∩ALU .

3 Some examples

Similar problems one can consider in the classes generated by functions which are
not locally univalent. First, let us introduce some notation: U(p, r) =
{z ∈ C : |z − p| < r} (so U(0, 1) = U), U+ = {z ∈ U : Imz > 0}, U− =
{z ∈ U : Imz < 0}, C+ = {z ∈ C : Imz > 0} and for a set A let A be a closure of
a set A.

Now let us consider the function

h(z) = z + z2.

Notice that the function h is 2-valent but it is not neither typically-real nor locally
univalent. Let us observe that h(U+) is the set which is bounded by the curve
Γ1 ∪ Γ2, where

Γ1 :

{
x(θ) = cos θ + cos 2θ

y(θ) = sin θ + sin 2θ
, θ ∈ [0, π]

Γ2 = [0, 2].

Since the function h has real coefficients, so h(U−) is the set which is symmet-
ric to h(U+) with the respect to the real axis of the complex plane. Thus, the
set h(U) can be presented as the union of two disjoint sets G1 and G2 such that
all points of the set G1 are taken by the function h only once, and all points of
the set G2 are taken by h twice. Hence, the set G2 is the interior of the curve{

h
(
eiθ

)
: θ ∈ [2π/3, 4π/3]

}
. In Figure 5 we have the set h(U).

Suppose that D1 = U \
(

U(−1, 1) ∩ C+
)

, D2 is the set which is symmet-

ric to D1 with respect to the real axis of the complex plane and D3 = U ∩
{z ∈ C : Rez > −1/2}. In Figure 4 we can see the sets D1, D2 and D3.

Theorem 4. The sets D1, D2, D3 are the domains of univalence of the function h(z) =
z + z2.
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Proof. The function h is univalent in U
−, because for all z1, z2 ∈ U

− we have
h(z1) = h(z2) ⇔ z1 + z2

1 = z2 + z2
2. Therefore, z1 = z2 or z1 + z2 = 1. The second

equality is not true for z1, z2 ∈ U−. Thus, h is univalent also in U+ and in each
subset of U+.

First we prove that D1 is the domain of univalence of the function h. Denote

by E the subset of U+ such that h(E) = h(U) \ h(U−). To this end, we solve the
following equation

h(z) = h
(

eiθ
)

, θ ∈ [2π/3, π]

z2 + z = e2iθ + eiθ ⇔ (z − eiθ)(z + eiθ + 1) = 0 ⇔ z = eiθ ∨ z = −e−iθ − 1.

Since {
h(eiθ) : θ ∈ (0, 2π/3)

}
= ∂h(U) ∩ C

+,

{
h(−e−iθ − 1) : θ ∈ (2π/3, π)

}
= ∂h(U−) ∩ C

+

and

{h(x) : x ∈ [0, 1)} = [0, 2),

then h(E) = G1 ∩ C
+. Hence, h(E) ∩ h(U−) = ∅ and h(E) ∪ h(U−) ∪ [0, 2) =

h(U).
Analogously, we can prove that D2 is the domain of univalence of the function

h.
Now we prove that D3 is the domain of univalence of the function h. Because

the function h is univalent in U+, so it is univalent also in H+ = D3 ∩ C+. Since
we have: {

h(eiθ) : θ ∈ (0, 2π/3)
}
= ∂h(U) ∩ C

+,

{
h(it − 1/2) : t ∈ (0,

√
3/2)

}
= (−1,−1/4),

{h(x) : x ∈ (−1/2, 1)} = (−1/4, 2)

and the function h is locally univalent for z 6= −1/2, thus h(H+) = h(U) ∩ C+.
Analogously, the function h is univalent in H− = D3 ∩ C+ and h(H−) =

h(U) ∩ C−.

Figure 4: The boundaries of the sets D1, D2 and D3.
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G
2

G
1

K1 0 1 2

K1,5

K1,0

K0,5

0,5

1,0

1,5

Figure 5: The boundary of the set h(U).

Finally, we present (without proof) one more example of the function with
their domains of univalence. Namely, the function

g(z) = z + z2 +
1

3
z3

which is locally univalent but it is not typically-real. Let H1 = U \U

(
− 3

2 +
√

3
2 i, 1

)
,

H2 = U \ U

(
− 3

2 −
√

3
2 i, 1

)
and H3 = U ∩

{
z : | arg(z + 1)| < π

3

}
. In Figure 6 we

can see the sets H1, H2, H3 and in Figure 7 - the set g(U).

Figure 6: The boundaries of the sets H1, H2 and H3.

K1 0 1 2

K1,5

K1,0

K0,5

0,5

1,0

1,5

Figure 7: The boundary of the set g(U).
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Theorem 5. The sets H1, H2, H3 are the domains of univalence of the function g(z) =
z + z2 + 1

3z3.
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