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Abstract

Let S(D) be the collection of all the holomorphic self-maps of open unit
disk D of the complex plane C, and Cϕ, the composition operator induced
by ϕ ∈ S(D). For α > 0, λ ∈ C, we give some sufficient and necessary
conditions for the hypercyclicity of multiples of composition operators λCϕ

acting on the weighted Banach spaces of entire functions H∞
α,0. Moreover,

we obtain a partial characterization for the frequent hypercyclicity of λCϕ on
H∞

α,0.

1 Introduction

Let D denote the open unit disk of the complex plane C and ∂D the boundary of
D. Let H(D) and S(D) denote the set of all holomorphic functions on D and the
collection of all the holomorphic self-maps of D. For ϕ ∈ S(D), we can define a
linear composition operator

Cϕ : H(D) → H(D), f → f ◦ ϕ.

The study of composition operators on various spaces of analytic functions has
quite a long and rich story. This is because the theory of composition operators
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links quite basic questions, such as the study of commutants of multiplication op-
erators and the theory of dynamical systems. Composition operators have been
studied by many authors on various spaces of analytic functions. For general ref-
erences on the theory of composition operators, see the well-known books [7] by
Cowen and MacCluer, [20] by Shapiro and [23] by K. H. Zhu.

We denote the class of automorphisms of D by Aut(D). Particularly useful
automorphisms are the special ones ϕa, defined for each a ∈ D by

ϕa(z) =
a − z

1 − āz
.

The map ϕa interchanges the point a and the origin, and

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)

|1 − āz|2 , ϕa ◦ ϕa(z) = z for a, z ∈ D.

Let ν : D → (0, ∞) be a bounded and continuous function (weight). Then we
define

H∞
ν := { f ∈ H(D), ‖ f‖ν = sup

z∈D

ν(z)| f (z)| < ∞} and

H∞
ν,0 = { f ∈ H∞

ν , lim
|z|→1

ν(z)| f (z)| = 0}.

Endowed with the weighted sup-norm ‖.‖ν, H∞
ν and H∞

ν,0 both are Banach spaces
and we refer to them as weighted-type spaces. As we all know the set of polyno-
mials is dense in H∞

ν,0, so that H∞
ν,0 is a separable space. In particular, for α > 0 and

ν(z) = (1 − |z|2)α, we obtain H∞
α and H∞

α,0. Weights which satisfy ν(z) = ν(|z|)
for every z ∈ D are called radial. A typical weight is a radial weight which is
non-increasing with respect to |z| such that additionally lim

|z|→1
ν(z) = 0 holds. If

the weight satisfies the following condition (due to Lusky, see [16])

(L1) inf
n∈N

ν(1 − 2−n−1)

ν(1 − 2−n)
> 0,

by Theorem 2.3 in [3], all operators Cϕ : H∞
ν,0 → H∞

ν,0 are bounded. Examples of

weights satisfying condition (L1) include the standard weights να = (1 − |z|2)α

with α > 0.
Let L(X) denote the space of linear and continuous operators on a separable,

infinite dimensional Banach space X. A continuous linear operator T ∈ L(X)
is said to be hypercyclic if there is an f ∈ X such that the orbit orb( f , T) :=
{Tn f}n≥0 is dense in X, and in this case we refer to f as a hypercyclic vector for
T.

Recently, the investigation of linear dynamics has become a very active area
of research. The hypercyclicity of composition operators on the Hardy space H2

have been primarily considered by Bourdon and Shapiro in [4, 5, 20]. Very re-
cently, in [2], Bonet showed that the differentiation operator D : Hν → Hν is
continuous if and only if D : Hν,0 → Hν,0 is continuous. At the same time, he
obtained a beautiful result [2, Theorem 2.3] for the hypercyclicity of D : Hν,0 →
Hν,0. Similarly, here Hν and Hν,0 are weighted spaces of holomorphic functions
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on C. We refer the reader to [2, p. 650]. Moreover, In [10], important results about
the hypercyclicity of λCϕ acting on weighted Dirichlet spaces Sν are obtained. In
2010, the authors of [1] have investigated the frequent hypercyclicity of λCϕ also
acting on Sν. Based on the above references, we continue this line and investigate
the hypercyclic behavior of λCϕ : H∞

α,0 → H∞
α,0 in this paper, where

H∞
α,0 = { f ∈ H∞

α : lim
|z|→1

(1 − |z|2)α| f (z)| = 0}.

The space is a separable, infinite dimensional Banach space when endowed with
the norm

‖ f‖α = sup
z∈D

(1 − |z|2)α| f (z)| < ∞.

An important point for our research is the fact that H∞
α,0 is an automorphism-

invariant space. Indeed, for any automorphism ϕa (a ∈ D) and any f ∈ H∞
α,0, we

have that

lim
|z|→1

(1 − |z|2)α| f ◦ ϕa(z)| = lim
|w|→1

(1 − |ϕa(w)|2)α| f (w)|

= lim
|w|→1

(1 − |ϕa(w)|2)α

(1 − |w|2)α
(1 − |w|2)α| f (w)|

= lim
|w|→1

(

1 − |a|2
|1 − āw|2

)α

(1 − |w|2)α| f (w)| = 0.

That is, f ◦ ϕa ∈ H∞
α,0 as required.

A linear fractional transformation is a mapping of the form

ϕ (z) =
az + b

cz + d
,

where ad − bc 6= 0. We will write LFT(D) to refer to the set of all such maps,
which are additionally self-maps of the unit disk D. Those maps that take D onto
itself are precisely the members of Aut(D), so that Aut(D) ⊂ LFT(D) ⊂ S(D).

We classify those maps according to their fixed point behaviour, see [20, p. 5]:
(a) Parabolic members of LFT(D) have their fixed point on ∂D.
(b) Hyperbolic members of LFT(D) must have an attractive fixed point in D,

with the other fixed point outside D, and lying on ∂D if and only if the map is an
automorphism of D.

(c) Loxodromic and elliptic members of ϕ ∈ LFT(D) have a fixed point in D

and a fixed point outside D. The elliptic ones are precisely the automorphisms in
LFT(D) with this fixed point configuration.

We can find that most our work will focus on maps ϕ with no fixed point in D.
For these we give the following remarkable proposition. We refer the interested
reader to [20, p. 78].

Proposition 1.1. (Denjoy-Wolff) If ϕ : D → D is an analytic map with no fixed point
in D. Then there exists a point a ∈ ∂D such that ϕn → a uniformly on compact subsets
of D.
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The point is called the Denjoy-Wolff point of ϕ and satisfies that a is a bound-
ary fixed point of ϕ, that is, ϕ has non-tangential limit a at a.

The hypercyclicity of composition operators in one complex variable has been
discussed in [4, 5, 13, 14, 18]. Especially from [18], we obtain the following condi-
tions for the hypercyclicity of Cϕ : H∞

ν,0 → H∞
ν,0 according to the classification of

ϕ.

Theorem 1.2. Let ν be a weight on D and ϕ ∈ S(D). If Cϕ : H∞
ν,0 → H∞

ν,0 is continuous,
then the following holds:

(1) If ϕ ∈ Aut(D) fixes no point in D, then Cϕ is hypercyclic.
(2) If ϕ ∈ LFT(D) is a hyperbolic non-automorphism, then Cϕ is hypercyclic.

(3) Let ν(z) = (1 − |z|2)α for α ≤ 1 and z ∈ D. If ϕ ∈ LFT(D) is a parabolic
non-automorphism, then Cϕ is not hypercyclic.

Remark 1.3. In fact, (3) is a generalization of [18, Theorem 3.12]. We can use a
similar approach to show that only constant functions can be limit points of Cϕ

orbits when α < 1 and the orbit of f under Cϕ is bounded if α = 1. Thus Cϕ is not
hypercyclic in both cases.

Throughout the remainder of this paper, C will denote a positive constant, the
exact value of which will vary from one appearance to the next. The notation
A � B, A � B and A ≍ B mean that there may be different positive constants C
such that A ≤ CB, A ≥ CB and B/C ≤ A ≤ CB, respectively.

2 Preliminary results

In this section, we give some well-known lemmas which are needed in the proof
of main results.

Lemma 2.1. [24, Lemma 1] Assume 0 < α < ∞, and let f ∈ H∞
α . Then we have that

sup
z∈D

(1 − |z|2)α| f (z)| ≍ sup
z∈D

(1 − |z|2)α+1| f ′(z)|. (2.1)

Recall that two linear continuous operators T and S on a separable infinite
dimensional Banach space X are called quasiconjugate, if there exists a continu-
ous map φ on X with dense range such that T ◦ φ = φ ◦ S. Moreover, if φ can be
chosen to be a homeomorphism, then T and S are called conjugate. We have the
following result:

Lemma 2.2. [14, Proposition 2.24] Hypercyclicity is preserved under quasiconjugacy
and conjugacy.

Lemma 2.3. Let m be any positive integer and a ∈ C. If |a| ≥ 1, then the subspace of
all polynomials that vanish m times at a is dense in H∞

α,0.

Proof. This Lemma can be proved similarly to [18, Proposition 3.1], so we omit
the details.
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Lemma 2.4. [14, Theorem 3.12] (Hypercyclicity Criterion) Let T be a continuous
linear operator on a separable Banach space X. If there are two dense subsets X0 and Y0

in X, an increasing sequence {nk} of positive integers, and maps Snk
: Y0 → X, k ≥ 1,

satisfying,
(a) Tnk x → 0 for any x ∈ X0, as k → ∞, and
(b) Snk

y → 0 and Tnk Snk
y → y as k → ∞, for any y ∈ Y0,

then T is hypercyclic.

Lemma 2.5. Let α > 0, k ∈ N and 0 ≤ x ≤ 1. Let

Hk,α(x) = xk(1 − x2)α.

Then

max
0≤x≤1

Hk,α(x) = Hk,α(rk) =







1, k = 1;
(

2α
k+2α

)α(
k

k+2α

)k/2
, k > 1.

where

rk =







0, k = 1;
(

k
k+2α

)1/2
, k > 1.

Remark 2.6. Using lim
x→∞

(1 − 1
x )

x = 1
e , we obtain that

lim
k→∞

( k

k + 2α

)k/2
= e−α. (2.2)

The next statements is due to León and Müller.

Lemma 2.7. [14, Theorem 6.7] Let T be an operator on a complex Fréchet space X. If
x ∈ X is such that {λTnx, λ ∈ C, |λ| = 1, and n ∈ N0} is dense in X, then
orb(x, λT) is dense in X for each λ ∈ C with |λ| = 1.

In particular, for any λ ∈ C with |λ| = 1, T and λT have the same hypercyclic
vectors, that is,

HC(T) = HC(λT).

Lemma 2.8. [14, Proposition 5.1] Let T be a hypercyclic operator on a complex Banach
space X. Then we have the orbit of every x∗ 6= 0 in X∗ under the adjoint T∗ is unbounded.

3 Hypercyclicity

3.1 ϕ with an interior fixed point

In this section, we first show that the hypercyclicity of λCϕ is impossible if ϕ
has an interior fixed point. Although the proof for the following proposition is
similar to that of [10, Proposition 2.10], we will include a proof for the sake of
completeness.
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Proposition 3.1. Suppose ϕ ∈ S(D) with an interior fixed point on D. Suppose that
Cϕ : H∞

α,0 → H∞
α,0 is bounded. Then for each λ ∈ C, the operator λCϕ in not hypercyclic

on H∞
α,0.

Proof. Assume that p ∈ D is a fixed point of ϕ, so that ϕ(p) = p. Suppose f is the
hypercyclic vector for λCϕ and suppose also that for g ∈ H∞

α,0 there is a sequence

{nk} such that λnk C
nk
ϕ f tends to g in H∞

α,0. Since

|λnk C
nk
ϕ f (z)− g(z)| ≤ ‖λnk C

nk
ϕ f − g‖α

(1 − |z|2)α
(z ∈ D, k ≥ 1),

we have that the norm convergence in H∞
α,0 implies pointwise convergence; it

follows that
g(p) = lim

k→∞
λnk Cϕnk

f (p) = lim
k→∞

λnk f (ϕnk
(p)).

Since f (ϕnk
(p)) = f (p) for any k ∈ N, we obtain

g(p) = lim
k→∞

λnk f (p).

Thus, g(p) = 0 when |λ| < 1, that is not the case for every function g ∈ H∞
α,0. If

|λ| = 1, then |g(p)| = | f (p)|, that is neither the case for every g ∈ H∞
α,0. Finally, if

|λ| > 1, then g(p) is not even defined, unless f (p) = 0. But f (p) cannot be zero
for every hypercyclic vector, because the set of hypercyclic vectors is a residual
subset. Thus λCϕ is not hypercyclic on H∞

α,0. This completes the proof.

From Proposition 3.1, we need only to consider the cases where ϕ is a
hyperbolic-member of LFT(D) without interior fixed point or a parabolic member
of LFT(D).

3.2 Hyperbolic non automorphism

In this section we analyze the hypercyclicity of λCϕ in the case that ϕ is a hyper-
bolic non automorphism.

Theorem 3.2. Let ϕ ∈ S(D) be a hyperbolic non-automorphism and η its boundary
fixed point. Then λCϕ is hypercyclic on H∞

α,0 if and only if |λ| > ϕ′(η)α.

Proof. Necessity. Since hypercyclicity is invariant under similarity by Lemma 2.2,
we may suppose that the boundary fixed point is 1. First, we perform the change
of variables

σ(z) =
i(1 + z)

1 − z
,

that sends the unit disc to the upper half plane. Moreover, σ sends 1 to ∞ and
the exterior fixed point to a point p in the lower half plane. Upon conjugating
with an appropriate affine map in the upper half plane, we may suppose that p
is on the imaginary axis. Finally, coming back to the unit disk, σ−1 sends p to a
negative number a < −1. Therefore, we may suppose that ϕ has the expression

ϕ(z) =
(µa − 1)z + a(1 − µ)

(µ − 1)z + a − µ
, 0 < µ < 1. (3.1)
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Then we conjugate once more with

az − 1

a − z
,

that is an automorphism of the unit disk which fixes 1 and sends a to ∞. There-
fore, we may suppose that

ϕ(z) = µz + 1 − µ, with 0 < µ < 1.

Observe that ϕ′(1) = µ. Then the above inequality allows us to obtain the follow-
ing easy expression for its iterates

ϕn(z) = µnz + 1 − µn. (3.2)

Now let |λ| ≤ µα and consider any f ∈ H∞
α,0. By Lemma 2.1, it follows that

‖λnCϕn f‖α ≍ sup
z∈D

(1 − |z|2)α+1|λ|n| f ′(ϕn(z))||ϕ′
n(z)|

= sup
z∈D

(1 − |z|2)α+1|λ|n| f ′(ϕn(z))|µn

� sup
z∈D

(1 − |z|2)α+1

(1 − |ϕn(z)|2)α+1
|λ|nµn

� sup
z∈D

(1 − |z|)α+1

(1 − |ϕn(z)|)α+1
|λ|nµn

� sup
z∈D

(

1 − |z|
1 − (µn|z|+ 1 − µn)

)α+1

|λ|nµn

=

( |λ|
µα

)n

.

Then, for any f ∈ H∞
α,0, ‖λnCϕn f‖α is bounded if |λ| ≤ µα, which is a contra-

diction. This shows that the condition |λ| > µα is necessary.
Sufficiency. Suppose that |λ| > µα. We will use Lemma 2.4 (the Hypercyclicity

Criterion) to show the result. Let X0 be the set of all polynomials that vanish m
times at 1, where m will be determined later. Due to Lemma 2.3 the set X0 is dense
in H∞

α,0.

We fix p(z) = (1 − z)mq(z) ∈ X0 and denote p′(z) = (z − 1)m−1q1(z), where
q(z) and q1(z) are polynomials. By Lemma 2.1, it follows that

‖λnCϕn p‖α ≍ sup
z∈D

(1 − |z|2)α+1|λ|n|p′(ϕn(z))||ϕ′
n(z)|

= sup
z∈D

(1 − |z|2)α+1|λ|n|p′(ϕn(z))|µn

≤ |λ|nµn sup
z∈ϕn(D)

|p′(z)|.

Let C1 be the maximum of |q1(z)| on D. Since ϕn(D) is a disk of radius
(1 − 2µn)/2 which is interiorly tangent to the unit disk at 1, the maximum of
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|1 − z|m−1 on ϕn(D) is attained at ϕn(−1) = 1 − 2µn. Thus, it follows that

sup
z∈ϕn(D)

|p′(z)| ≤ 2m−1C1µ(m−1)n.

Thus we have that

‖λnCϕn p‖α � |λµm|n.

From the above inequality, we can choose m large enough to get |λµm| < 1 (just
take m > − log |λ|/ log µ). Thus, for every λ ∈ C, the iterates λnCϕn tend to zero
pointwise on X0 as n → ∞.

To verify hypothesis (b) of Lemma 2.4 (Hypercyclicity Criterion) we will use
(3.1) instead of (3.2). We are free to do so because both formulae induce conjugate
composition operators. Thus the iterates of ϕ−1 = ϕ−1 are

ϕ−n(z) =
(µ−na − 1)z + a(1 − µ−n)

(µ−n − 1)z + a − µ−n
, with 0 < µ < 1 and a < −1, (3.3)

where n ranges through all the non negative integers.
Define S = λ−1Cϕ−1

, that is, S f (z) = λ−1 f (ϕ−1(z)). Let Y0 be the set of all
polynomials that vanish m times at a, where m will be determined later. The set
Y required by the Hypercyclicity Criterion will be

Y =
∞
⋃

n=1

λ−nCn
ϕ−1

(Y0) =
∞
⋃

n=1

λ−nCϕ−n(Y0).

Obviously, λ−1Cϕ−1
takes Y into itself and it is a right inverse of λCϕ on Y. It is

obvious that Sn = λ−nCϕ−n . Next we show that Sn tends pointwise to zero on Y0,
then so does on Y.

Let ∆ denote the disk that touches tangentially the unit disk at 1 and passes
through the exterior fixed point a. In fact ϕ−n(D) is contained in ∆ for every n
and ϕ−n(D) approaches ∆ as n tends to ∞. We refer the interested reader to [10,
p. 30, Figure 1]. Let us fix p ∈ Y0. Then p(z) = (z − a)mq(z), where q(z) is a
polynomial. It follows that

‖λ−nCϕ−n p‖α ≍ sup
z∈D

(1 − |z|2)α+1|λ|−n|p′(ϕ−n(z))||ϕ′
−n(z)|

Since p′(z) = (z − a)m−1q1(z), where q1(z) is another polynomial, we obtain that

‖λ−nCϕ−n p‖α ≍ sup
z∈D

(1 − |z|2)α+1|λ|−n|ϕ−n(z)− a|m−1|q1(ϕ−n(z))||ϕ′
−n(z)|

≤ sup
z∈ϕ−n(D)

|q1(z)|

sup
z∈D

(1 − |z|2)α+1|λ|−n|ϕ−n(z)− a|m−1|(ϕ−n(z)− a)′|

≤ C2 sup
z∈D

(1 − |z|2)α+1|λ|−n|ϕ−n(z)− a|m−1|(ϕ−n(z)− a)′|

≍ ‖λ−n(ϕ−n(z)− a)m‖α
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where C2 = max
∆

|q1(z)|. The second inequality follows from the fact ϕ−n(D) ⊂ ∆

for every n and the last approximation is due to (2.1).
In the following we compute

‖(ϕ−n(z)− a)m‖α =

∥

∥

∥

∥

(a − 1)m(z − a)m

((µ−n − 1)z + a − µ−n)m

∥

∥

∥

∥

α

. (3.4)

Since the operator of multiplication by z− a is bounded on H∞
α,0, so is the operator

of multiplication by (z − a)m. Hence we have that

‖(ϕ−n(z)− a)m‖α �
∥

∥

∥

∥

1

((µ−n − 1)z + a − µ−n)m

∥

∥

∥

∥

α

. (3.5)

Since

1

(1 − x)m
=

∞

∑
k=0

Γ(k + m)

Γ(k + 1)Γ(m)
xk,

then

1

((µ−n − 1)z + a − µ−n)m
=

µmn

(aµn − 1)m

1
(

1 − µn−1
aµn−1z

)m

=
µmn

(aµn − 1)m

∞

∑
k=0

Γ(k + m)

Γ(k + 1)Γ(m)

(

µn − 1

aµn − 1

)k

zk,

we obtain

‖(ϕ−n(z)− a)m‖α � µmn

|aµn − 1|m
∞

∑
k=0

Γ(k + m)

Γ(k + 1)Γ(m)

∣

∣

∣

∣

µn − 1

aµn − 1

∣

∣

∣

∣

k

‖zk‖α. (3.6)

From Lemma 2.5 and (2.2) one gets

‖zk‖α = sup
z∈D

(1 − |z|2)α|z|k

=

(

2α

k + 2α

)α ( k

k + 2α

)
k
2

�
(

1

k + 1

)α

.

Thus it follows that

‖(ϕ−n(z)− a)m‖α � µmn

|aµn − 1|m
∞

∑
k=0

Γ(k + m)

Γ(k + 1)Γ(m)

∣

∣

∣

∣

µn − 1

aµn − 1

∣

∣

∣

∣

k 1

(k + 1)α
. (3.7)

By Stirling’s formula Γ(n + 1) ∼
√

2πn
(

n
e

)n
, we have that

‖(ϕ−n(z)− a)m‖α � µmn

|aµn − 1|m
∞

∑
k=0

km−α−1

∣

∣

∣

∣

µn − 1

aµn − 1

∣

∣

∣

∣

k

.
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On the other hand, for l > 0, Stirling’s formula shows that

∞

∑
k=1

kl−1|z|k ≍ 1

(1 − |z|)l
≍ 1

(1 − |z|2)l
.

Hence, if we choose m > α, we find that

‖(ϕ−n(z)− a)m‖α � µmn

|aµn − 1|m

(

1 −
∣

∣

∣

∣

µn − 1

aµn − 1

∣

∣

∣

∣

2
)α−m

=
µmn|aµn − 1|m−2α

((a2 − 1)µn + 2(1 − a))m−α

≤ µαn|aµn − 1|m−2α

((a2 − 1)µn + 2(1 − a))m−α
.

Since 0 < µ < 1 and a < −1 we have that

‖λ−nCϕ−n p‖ � |λ|−nµnα,

Since |λ|−1µα
< 1, it follows that the iterates of λ−1Cϕ−1

tend to zero pointwise on
Y0, consequently, so do on Y. Therefore all the hypotheses of the Hypercyclicity
Criterion are fulfilled, thus the conditions are also sufficient. This completes the
proof.

3.3 Parabolic automorphism

In this section we analyze the hypercyclicity of λCϕ in the case that ϕ is a parabolic
automorphism.

Theorem 3.3. Let ϕ be a parabolic automorphism of the unit disk. Then λCϕ is hyper-
cyclic on H∞

α,0 if and only if |λ| = 1.

Proof. Sufficiency. Suppose that |λ| = 1, from (1) of Theorem 1.2 and Lemma 2.7
we obtain that λCϕ is hypercyclic on H∞

α,0.
Necessity. As usual we may suppose that the fixed point is 1. The change of

variables

σ(z) =
i(1 + z)

1 − z

takes the unit disk onto the upper half plane. Thus ϕ satisfies the following for-
mula

ϕ(z) =
(2 − a)z + a

−az + 2 + a
with a 6= 0 and Rea = 0. (3.8)

It follows that

ϕn(z) =
(2 − na)z + na

−naz + 2 + na
, n ∈ N. (3.9)
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Now suppose that |λ| < 1. Let δ0 ∈ (H∞
α,0)

∗ be the point evaluation functional,
that is δ0( f ) = f (0), it follows that

|〈(λnCϕn)
∗δ0, f 〉| = |λn f (ϕn(0))| =

∣

∣

∣

∣

λn f

(

na

2 + na

)
∣

∣

∣

∣

� |λ|n
(

1 −
∣

∣

na
2+na

∣

∣

2
)α .

Since Re a = 0, it follows that |2 + na|2 = 4 + |na|2, so |2 + na|2 − |na|2 = 4, so
we have that

|〈(λnCϕn)
∗δ0, f 〉| � |λ|n|2 + na|2α

4α
→ 0, n → ∞. (3.10)

Combining (3.10) with Lemma 2.8, it follows that T is not hypercyclic. Similarly,
if |λ| > 1, then λ−1Cϕ−1

is not hypercyclic and, therefore, neither is λCϕ. Thus the
condition are necessary. This completes the proof.

3.4 Hyperbolic automorphism

Theorem 3.4. Let ϕ be a hyperbolic automorphism of the unit disk and η its attractive
fixed point. Then λCϕ is hypercyclic if and only if ϕ′(η)α

< |λ| < ϕ′(η)−α.

Proof. First, we obtain the expression for the iterates of ϕ. Without loss of gen-
erality we may suppose that ϕ has −1 and 1 as its fixed points. Moreover, we
may assume that 1 is the attractive fixed point. Employing again the change of
variables

σ(z) =
i(1 − z)

1 + z

that sends the unit disk onto the upper half plane, the fixed points 1 and −1 to
0 and ∞, respectively, and ϕ to the contraction map ϕ(w) = µw, 0 < µ < 1.
Coming back to the unit disk we have that

ϕ(z) =
(1 + µ)z + 1 − µ

(1 − µ)z + 1 + µ
with 0 < µ < 1,

from which we can easily obtain the following formula for the iterates

ϕn(z) =
(1 + µn)z + 1 − µn

(1 − µn)z + 1 + µn
, n ∈ N.

Observe that the derivative at the attractive fixed point 1 is ϕ′(1) = µ.
Necessity. Now for any f ∈ H∞

α,0, we have the following estimate,

‖λnCϕn f‖α = sup
z∈D

(1 − |z|2)α|λ|n| f (ϕn(z))|

� sup
z∈D

(

1 − |z|2
1 − |ϕn(z)|2

)α

|λ|n

= sup
z∈ϕn(D)

(

1 − |ϕ−n(z)|2
1 − |z|2

)α

|λ|n,
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By easy computation it follows that

1 − |ϕ−n(z)|2 =
4µn(1 − |z|2)

|(µn − 1)z + µn + 1|2 , (3.11)

where

ϕ−n(z) =
(1 + µ−n)z + 1 − µ−n

(1 − µ−n)z + 1 + µ−n
=

(µn + 1)z + µn − 1

(µn − 1)z + µn + 1
.

Since |(µn − 1)z + µn + 1| ≥ (µn + 1)− (1 − µn), we have that

‖λnCϕn f‖α ≤ sup
z∈ϕn(D)

(

4µn

|(µn − 1)z + µn + 1|2
)α

|λ|n

≤
(

4µn

|µn + 1 − (1 − µn)|2
)α

|λ|n

=
|λ|n
µnα

,

that remains bounded for |λ|µ−α ≤ 1. Therefore, if λCϕ is hypercyclic, then

|λ| > µα. In addition, the inverse operator λ−1Cϕ−1 must also be hypercyclic.

The attractive fixed point of ϕ−1 is −1 and ϕ′
−1(−1) = µ. Thus we must also

have |λ−1| > µα. Therefore, we obtain that µα
< |λ| < µ−α.

Sufficiency. We suppose that µα
< |λ| < µ−α. Let X0 be the set of all holomor-

phic functions on a neighborhood of D that vanish m times at 1, where m is to
be determined later on. By Lemma 2.3, the set X0 is dense in H∞

α,0. Let f ∈ X0 be
fixed. We have that

‖λnCϕn f‖α = sup
z∈D

(1 − |z|2)α|λ|n| f (ϕn(z))|.

Denote f (z) = (z − 1)mg(z), where g(z) is holomorphic in a neighborhood of D.
From (3.11) we get

‖λnCϕn f‖α ≤ max
z∈D

|g(z)| sup
z∈D

|λ|n(1 − |z|2)α|ϕn(z)− 1|m

� |λ|n sup
z∈ϕn(D)

(1 − |ϕ−n(z)|2)α|z − 1|m

≤ |λ|n sup
z∈ϕn(D)

µnα4α(1 − |z|2)α|1 − z|m
|(µn − 1)z + µn + 1|2α

.

Since 0 < µ < 1 and α > 0, an easy calculation shows that, for every positive
integer n,

|1 − z|2α

|(µn − 1)z + µn + 1|2α
≤ 1

(1 − µ)2α
(z ∈ D).
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Since 1 − |z| ≤ |1 − z|, it follows that

‖λnCϕn f‖α � |λn|µnα sup
z∈ϕn(D)

(1 − |z|2)α|1 − z|m
(1 − µ)2α|1 − z|2α

� |λn|µnα

(1 − µ)2α
sup

z∈ϕn(D)

(1 − |z|)α|1 − z|m
|1 − z|2α

� |λn|µnα

(1 − µ)2α
sup

z∈ϕn(D)

|1 − z|m
|1 − z|α .

If we choose m ≥ α, we have that

‖λnCϕn f‖α � |λ|nµnα

(1 − µ)2α
sup

z∈ϕn(D)

|1 − z|m−α

≤ |λ|nµnα2m−α

(1 − µ)2α
� |λ|nµnα → 0, n → ∞.

The last inequality holds due to |λ| < µ−α.
For the right inverse we take S = λ−1C−1

ϕ = λ−1Cϕ−1 and the set Y0 will be

the set of functions that are holomorphic on a neighborhood of D and that vanish
m times at −1. It is clear that Y0 is taken into itself by λ−1Cϕ−1 . As above, we

can show that λ−nCϕ−n tends pointwise to zero on Y0 whenever the hypothesis
on λ is satisfied. Thus the hypercyclicity of λCϕ follows from the Hypercyclicity
Criterion. This completes the proof.

4 Frequent hypercyclicity

The lower density of a subset A ⊂ N0 is defined as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N, n ∈ A}
N + 1

.

An operator T on a Fréchet space X is called frequently hypercyclic if there is
some x ∈ X such that, for any nonempty open subset U of X,

dens{n ∈ N0, Tnx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for T. We recall the follow-
ing Frequent Hypercyclic Criterion for an operator T.

Lemma 4.1. [14, Theorem 9.9] (Frequent Hypercyclic Criterion) Let X be a separable
F- space and ‖.‖ a complete F-norm on X defining its topology. Assume that T is an
operator on X satisfying the following property: there exist a dense subset X0 of X and a
mapping S : X0 → X0 such that

(i)
∞

∑
n=1

‖Tnx‖ converges for all x ∈ X0,

(ii) ∑
∞
n=1 ‖Snx‖ converges for all x ∈ X0,

(iii) TSx = x for all x ∈ X0.
Then T is frequently hypercyclic.
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Here, we recall that a series ∑
∞
n=1 xn in a Fréchet space is called uncondition-

ally convergent if for any bijection π : N → N the series ∑
∞
n=1 xπ(n)

converges.

An operator T on an F-space X is said to satisfy the Frequent Hypercyclicity
Criterion (in short, FHCC) provided that it possesses the property assumed in
above theorem.

Lemma 4.2. Let X be a separable F-space. Assume that T satisfies the FHCC, and that
R is an invertible operator on X. Then the operator RTR−1 is also frequently hypercyclic.

Before the main result in this section, we list some definitions. An operator T
on an F-space X turns to be hypercyclic if and only if it is topologically transitive,
that is, for any pair of non-empty open subsets U, V of X there exists some n ∈ N

such that Tn(U) ∩ V 6= ∅. Moreover, T is said to be topologically mixing if for
any pair of non-empty open subsets U, V of X there exist some N ∈ N such
that Tn(U) ∩ V 6= ∅ for all n ≥ N. It is obvious that every topologically mixing
operator is hypercyclic, but the converse is not true, see [8]. Besides, T is said
to be chaotic if it is hypercyclic and it has a dense set of periodic points (vectors
x ∈ X such that Tnx = x for some n ∈ N). For the above definitions, we refer the
interested reader to [14]. Moreover, we have the the following proposition.

Proposition 4.3. [14, Proposition 9.11] An operator on a separable Fréchet space that
satisfies the FHCC is also chaotic and mixing.

In the following, we only consider the frequent hypercyclicity of λCϕ acting
on H∞

α,0, where ϕ is a hyperbolic member of LFT(D) without interior fixed point.

Theorem 4.4. Let Cϕ : H∞
α,0 → H∞

α,0 be the composition operator induced by ϕ which
is a hyperbolic member of LFT(D) without interior fixed point. Then the following
statements are equivalent:

(a) λCϕ is frequently hypercyclic.
(b) λCϕ is topologically mixing.
(c) λCϕ is chaotic.
(d) λCϕ is hypercyclic.

Proof. The implications (a) ⇒ (b), (b) ⇒ (d), and (c) ⇒ (d) are trivial. Now
we denote T = λCϕ and suppose that T is hypercyclic. At this point we distin-
guish two cases.

Case1: ϕ is a hyperbolic non-automorphism. In this case, ϕ has two fixed
points, one on ∂D and the other outside D. Choose an automorphism σ of D

sending those points, respectively to 1 and a ∈ (−∞,−1). Then by Lemma 4.2,
we can assume the fixed points of ϕ are 1 and a. Thus the explicit expression of ϕ
is

ϕ(z) =
(µa − 1)z + a(1 − µ)

(µ − 1)z + a − µ
,

where a ∈ (−∞,−1), µ ∈ (0, 1) and, in fact, ϕ′(1) = µ. By Theorem 3.2, we
obtain that T = λCϕ is hypercyclic on H∞

α,0 if and only if |λ| > µα. Choose m ∈ N

satisfying m > − log |λ|/ log µ. Denote by X0 (Y0) the set of all polynomials that
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vanish at least m times at 1 (at a, resp.). Besides, we also define the inverse map
S = λ−1Cϕ−1. Similarly to the proof of Theorem 3.2, we have that

‖Tn f‖α � |λµm|n for all f ∈ X0

and

‖Sn f‖α �
(

µα

|λ|

)n

for all f ∈ Y0.

By the conditions m > − log |λ|/ log µ and |λ| > µα, we obtain that

∞

∑
n=1

‖Tn f‖α < ∞ and
∞

∑
n=1

‖Sn f‖α < ∞ for all f ∈ X0 ∩ Y0. (4.1)

Then we define Y :=
⋃∞

n=0 Sn(X0 ∩ Y0). Note that S is well-defined on Y, the
set Y is dense in H∞

α,0 and S-invariant, TS is the identity on Y and (4.1) is satisfied
for all f ∈ Y. Thus T satisfies the FHCC.

Case 2: ϕ is a hyperbolic automorphism. In this case, ϕ has two fixed points
η, η′ on ∂D. Without loss of generality, we assume that η is the attractive one.
Take any automorphism σ of D satisfying σ(η) = 1 and σ(η′) = −1. Then
ϕ0 := σ ◦ ϕ ◦ σ−1 is a hyperbolic automorphism of D with fixed points at 1,−1
such that 1 is the attractive point. By Lemma 4.2 we need only to show that λCϕ0

satisfies the FHCC. Thus we suppose that 1 and −1 are the fixed points of ϕ, the
point 1 being attractive. By the proof of Theorem 3.4, we have that the explicit
expression of ϕ is

ϕ(z) =
(1 + µ)z + 1 − µ

(1 − µ)z + 1 + µ
,

where µ ∈ (0, 1) and, in fact ϕ′(1) = µ. Besides, T = λCϕ is hypercyclic on H∞
α,0

if and only if µα
< |λ| < µ−α. Let us fix m ≥ α. Denote by X0 the set of all

holomorphic functions on a neighborhood of the closed disk D that vanish at
least m times at 1. Fix f ∈ X0, by Theorem 3.4 we obtain that

‖Tn f‖ � |λ|nµnα, for all f ∈ X0.

Since |λ| < µ−α, it follows that

∞

∑
n=1

‖Tn f‖ < ∞ for all f ∈ X0. (4.2)

On the other hand, take S := T−1 = λ−1C−1
ϕ = λ−1Cϕ−1 and consider the set Y0

of all holomorphic functions on a neighborhood of D that vanish at least m times
at −1. Observe that −1 is the attractive fixed point of ϕ−1 with (ϕ−1)′(−1) =
1/ϕ′(−1) = µ and that |λ| > µα. Thus we have that

∞

∑
n=1

‖Sn f‖ < ∞ for all f ∈ Y0. (4.3)
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If we set Y := X0 ∩ Y0, then Y is dense in Hα,0. It is obvious that (4.2) and (4.3)
hold for all f ∈ Y. In addition, TS is the identity and Y is S-invariant, because
ϕ−1 is conformal and fixes the points 1 and −1. Thus we obtain that T satisfies
the FHCC.

In the above two cases, T = λCϕ satisfies the FHCC, so by Proposition 4.3
we obtain that T is topologically mixing and chaotic. That is, (d) ⇒ (a), (d) ⇒
(b), and (d) ⇒ (c) hold. This completes the proof.

Open question: Assuming that ϕ is a parabolic automorphism, when is Cϕ fre-
quent hypercyclic on H∞

α,0?
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