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Abstract

We introduce a class of rings, namely the class of left or right p-nil rings,
for which the adjoint groups behave regularly. Every p-ring is close to being
left or right p-nil in the sense that it contains a large ideal belonging to this
class. Also their adjoint groups occur naturally as groups of automorphisms
of p-groups. These facts and some of their applications are investigated in
this paper.

1 Introduction

The study of groups modulo other algebraic structures has proved to be very use-
ful from the early days of group theory, namely in the context of Lie groups with
their associated Lie algebras, or in the context of representation theory which
provides a means of studying groups via linear algebra or more generally mod-
ule theory. One should mention other interesting tools such as the Mal’cev and
Lazard correspondences, and the Lie rings associated to the lower central series
(or their variants) of groups, we refer the reader to [10] for more information and
references. It is worth to note that some recent breakthroughs such as Zelmanov’s
solution of the restricted Burnside problem, or Shalev’s proof of the coclass con-
jecture A, are done by reducing the original problems to questions about Lie
algebras. Recall that the coclass of a p-group G of order pn and class c is equal to
n − c, and the coclass conjecture A (now a theorem) states that there is an integer
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f (p, r) depending on p and r such that any finite p-group G of coclass r has a
normal subgroup N of class at most 2 and index at most f (p, r). The interested
reader is referred to [13] for more details about the coclass theory.

On another side, ring theory arises naturally in studying the automorphisms
of abelian groups. Indeed, the automorphism group of an abelian group G is the
group of units of the ring of endomorphisms of G. This fact was used by Shoda
[17] in investigating the structure of such automorphism groups. While the pre-
ceding fact is no longer true if G is not abelian, H. Laue (see [12]) observed that
there is a general analogue which works for some subgroups of Aut(G).

If N is a subgroup of G, then we denote by EndN(G) the set of all endomor-
phisms u of G such that x−1 u(x) ∈ N, for all x ∈ G; in other words EndN(G)
is the set of all endomorphisms of G that leave N invariant and send each coset
of N to itself. We denote by AutN(G) the set of automorphisms of G that lie in
EndN(G). Clearly EndN(G) is a monoid under the usual composition of maps.
If N is normal and abelian, then it can be viewed as a G-module via conjugation
nx = x−1nx, x ∈ G and n ∈ N. A derivation of G into N is a mapping δ : G → N
such that δ(xy) = δ(x)yδ(y). The set Der(G, N) of these derivations is a ring
under the addition (δ1 + δ2)(x) = δ1(x)δ2(x), and the composition of maps as a
multiplication, that is (δ1δ2)(x) = δ2(δ1(x)), with δ1, δ2 ∈ Der(G, N) and x ∈ G.
Now, every endomorphism u ∈ EndN(G) defines a derivation δu(x) = x−1 u(x)
of G into N. And conversely, to each derivation δ ∈ Der(G, N) we can associate
an endomorphism u ∈ EndN(G), with u(x) = xδ(x).

On the other hand, for any (associative) ring R, one can define the circle oper-
ation x ◦ y = x+ y+ xy. The set of all elements of R forms a monoid with identity
element 0 ∈ R under this operation. This monoid is called the adjoint monoid of
the ring R, and the adjoint group R◦ of R is the group of invertible elements in
this monoid.

Proposition 1.1. (see [12, Lemma 3.1]) Under the above notation, the mapping u 7→ δu

is an isomorphism between the monoid EndN(G) and the adjoint monoid of the ring
Der(G, N). In particular it induces an isomorphism between the corresponding groups
of invertible elements.

This relation was applied by H. Laue in [12] to proving some analogues of
Shoda’s results. In [3], F. Catino and M. Miccoli showed that the main results
about IA-automorphisms of 2-generated metabelian groups can be derived in a
natural way from Laue’s relation, with a considerable gain of clarity. Note also
that it was used implicitly by A. Caranti and S. Mattarei (see [2]), to prove results
about the automorphisms of p-groups of maximal class. Excepting these papers,
and in spite of its interest and the considerable work devoted to the group auto-
morphisms, it seems that Laue’s relation was ignored completely in the existing
litterature.
The results of this paper may be seen as the fruit of further investigations of the
interplay between Rings and Group Automorphisms, summarized in Proposi-
tion 1.1.
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First, let us fix some notation. The letter p denotes a prime number. Having a
group G, γi = fli(G) and Zi = Zi(G) denote respectively the terms of the lower
and the upper central series of G. We denote by Ω{n}(G) the set of all elements

x ∈ G such that xpn
= 1, and Ωn(G) denotes the subgroup generated by Ω{n}(G).

By d(G) we denote the minimal number of generators of G, the (Prüfer) rank of
G is defined to be

rk(G) = sup{d(H), H a finitely generated subgroup of G},

and the exponent of G is denoted by exp(G).
As a special notation, P(G) will denote γ2(G)G4 if p = 2, and γ2(G)Gp if p > 2,
S(G) denotes Z(G) ∩ P(G). If G is a finite p-group then we denote by r and s the
integers defined by exp(G/G′) = pr and exp(Z(G)) = ps.

Let R be a ring. We say that R is left p-nil if every element x of order p (4 if
p = 2) in R+ is a left annihilator of R, that is px = 0 (4x = 0 if p = 2) implies
xy = 0, for all y ∈ R. We say that R is right p-nil if its opposite ring is left p-nil.
The ring R is said to be p-nil if it is left and right p-nil.

The first result shows that the p-power structure of the adjoint group of such
a ring R is very close to that of R+.

Theorem A. Let R be a p-ring. If R is left or right p-nil, then Ω{n}(R
◦) = Ωn(R+),

for every n ≥ 1. In particular we have Ωn(R
◦) = Ω{n}(R

◦).

It follows immediately that

Corollary A. Let R be a p-ring. If R is p-nil, then Ω1(R
◦) ≤ Z(R◦) (Ω2(R

◦) ≤
Z(R◦), for p = 2), in other words, R◦ is p-central.

Moreover if we assume that R is a finite p-ring and R+ can be generated by d
elements, then every subgroup of R◦ can be generated by d elements.

Theorem B. Let R be a finite p-ring. If R is left or right p-nil, then rk(R◦) = d(R+).
In particular, rk(R◦) = d(Ω1(R

◦)).

It is conjectured in ([4], see Remark (b) in the last paragraph) that rk(R◦) ≤
α. rk(R+), for any nilpotent finite p-ring R, with α = 2 if p = 2, and α = 1 if
p > 2 (actually this conjecture is formulated for the class of nil rings and the class
of radical periodic rings, whose additive groups have a finite rank, but from that
paper one can reduce it to the class of finite nilpotent p-rings). Thus Theorem B
confirmes this conjecture in the class of p-nil rings.
Note that particularly O. Dickenschied proved the above inequality for finite
nilpotent p-rings, with α = 3 if p = 2, and α = 2 if p > 2, using powerful p-
groups (see [4, Lemma 2.4]). The following corollary generalizes this to the class
of all finite p-rings, though with an alternative (self contained) proof.

Corollary B. Let be R a finite p-ring and P a p-sylow of R◦. Then rk(P) ≤ α. d(R+),
with α = 3 if p = 2, and α = 2 if p > 2.
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Let N be an abelian normal subgroup of a p-group G. It is straightforward to
see that the set of derivations in Der(G, N) that are trivial on Ω1(N) or Ω2(N) if
p = 2 (which in fact can be identified to the ring Der(G/Ω1(N), N) or
Der(G/Ω2(N), N) for p = 2) forms a left p-nil ring, it follows that the above the-
orems apply to the group of automorphisms acting trivially on G/N and Ω1(N)
(Ω2(N) if p = 2). However, we would be more interested to the case of the ring
Hom(G, S(G)) which is right p-nil. Essentially, this fact can be used to prove the
following.

Theorem C. Let G be a finite p-group of class c. Then the exponent of AutP(G)(G) does

not exceed pt2c−t, where t = min{r, s}. Moreover if G is generated by d elements then

exp(P) ≤ pt2c−t+d−1 if p > 2 and exp(P) ≤ pt2c−t+2d−1 if p = 2, for any p-subgroup
P of Aut(G).

As show the automorphism groups of elementary abelian p-groups, the p-
exponent of Aut(G) cannot in general be independent from the number of gener-
ators of G.

A slightly modified version of the following proposition was first proved (as
noted in [14, p. 111]) by Kargapolov (see [9]). Another different proof was given
by R. Baer and H. Heineken in [1]. In this paper we give another proof based on
a property of the right p-nil rings. It seems that this proof is more transparent,
however it gives just a slight improvement of the known bounds.

Proposition D. Let G be an abelian p-group of rank d and let d′ denote the rank of P(G).

Then every p-subgroup P of Aut(G) can be generated by dd′ + d2

4 elements if p > 2, and

by dd′ + 3d2−d
2 elements if p = 2. In particular for every such a P we have d(P) ≤ 5d2

4

if p > 2, and d(P) ≤ 5d2−d
2 if p = 2 .

D. Segal and A. Shalev generalized Proposition D to all the finite p-groups in
[18, Lemma 2.1] (we don’t know if such a generalization was established earlier).
This generalization was proved directly, without using the abelian case. By com-
bining the idea of the proof of [18, Lemma 2.1] and Proposition D, we obtain a
shorter proof which provides better bounds.

Corollary D. Let G be a finite p-group of rank k. Then every p-subgroup P of Aut(G)

can be generated by 9k2

4 elements if p > 2, and by 7k2−k
2 elements if p = 2.

The remaining part of this paper is divided into two sections, Section 2 is
devoted to studying the above class of rings and their adjoint groups. In Section
3 we shows how these rings can be used to investigate the automorphisms of
p-groups.



Adjoint groups of p-nil rings and p-group automorphisms 343

2 Adjoint groups of p-nil rings

Let us recall the definition.

Definition 2.1. Let R be a ring. We say that R is left p-nil if every element x of order p
( 4 if p = 2) in R+ is a left annihilator of R, that is px = 0 (4x = 0 if p = 2) implies
xy = 0, for all y ∈ R. We say that R is right p-nil if its opposite ring is left p-nil. The
ring R is said to be p-nil if it is left and right p-nil.

For instance, for any ring R, the subring S = pR (S = 4R if p = 2) is p-nil.
Also, it follows easily that the left and the right annihilators of Ω1(R

+) (Ω2(R
+)

if p = 2) are respectively right and left p-nil.
A ring R is said to be nilpotent of class n, if Rn+1 = 0 and n is the least non-
negative integer satisfying this. Here Rn+1 denotes the additive subgroup gener-
ated by all the products of n + 1 elements of R.

Theorem 2.2. Let R be a ring with an additive group of finite exponent pm. If R is left
or right p-nil, then R is nilpotent of class at most m. In particular the adjoint group R◦

is nilpotent of class at most m.

Proof. Assume that R is left p-nil. We claim that pm−n+1Rn = 0, for all n ≤ m + 1.
This is obvious for n = 1. Now if x ∈ Rn, then by induction pm−n+1x = 0. It
follows that pm−nx has order 1 or p, therefore (pm−nx)y = pm−n(xy) = 0, for all
y ∈ R. This shows that pm−nRn+1 = 0. Now, for n = m + 1 we have Rm+1 = 0,
which proves that R is nilpotent of class at most m. The result follows for R right
p-nil by a similar argument. The second assertion follows from ([11, Theorem
1.6.4]).

Remark. Note that the bound on the nilpotency class can be improved to m/2 + 1 for
the even prime. And the above theorem holds for p = 2, under the assumption that every
element x ∈ R satisfying 2x = 0 is a left or right annihilator of R.

Since it is obvious that a subring of a left (right) p-nil ring is left (right) p-nil,
it is not clear that this would be true for all the factor rings. The following lemma
shows that this holds for some factors.

Lemma 2.3. If R is a left (right, resp) p-nil ring, then the factor ring R/Ωn(R+) is left
(right, resp) p-nil for all n ≥ 1.

Proof. Assume that R is left p-nil.
Assume first that p > 2, and let be x ∈ R such that px ∈ Ωn(R+). Then pnx ∈
Ω1(R

+), and by assumption (pnx)y = pn(xy) = 0, for all y ∈ R. Therefore xy ∈
Ωn(R+), for all y ∈ R.
For p = 2, if x ∈ R such that 4x ∈ Ωn(R+), then 2nx ∈ Ω2(R

+), therefore
(2nx)y = 2n(xy) = 0, and so xy ∈ Ωn(R

+), for all y ∈ R.
The result follows similarly if R is right p-nil.
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Proof of Theorem A. We denote by x(k) the kth power of x in the adjoint group of
R.
Assume first that n = 1. For p > 2, we have px = 0 implies xi = 0 for i ≥ 2.
Hence

x(p) = ∑
i≥1

(

p

i

)

xi = px = 0,

and so x ∈ Ω{1}(R
◦). Conversely, if x(p) = 0 then

px = − ∑
i≥2

(

p

i

)

xi.

Let pm be the order of x in R+. If m ≥ 2, then pm−1x has order p, hence pm−1x2 =
0, and similarly we have pm−2xi = 0, for i ≥ 3. Now if we multiply the above
equation by pm−2, we obtain

pm−1x = − ∑
i≥2

(

p

i

)

pm−2xi = 0

This contradicts the definition of the order of x. Therefore m ≤ 1, and so x ∈
Ω1(R

+).
For p = 2, 2x = 0 implies 4x = 0, thus x2 = 0. It follows that x(2) = 2x + x2 = 0,

so x ∈ Ω{1}(R
◦). Conversely, if x(2) = 0 then 2x = −x2. Assume that x has order

2n
> 2 in R+, then 2n−2x2 = 0, thus 2n−1x = −2n−2x2 = 0, a contradiction. It

follows that 2x = 0.
Now we proceed by induction on n. If x ∈ Ωn(R+), then px ∈ Ωn−1(R

+).
This implies that x + Ωn−1(R

+) ∈ Ω1((R/Ωn−1(R
+))+). Lemma 2.3 and the

first step imply that x + Ωn−1(R
+) ∈ Ω{1}((R/Ωn−1(R

+))◦). Hence x(p) ∈

Ωn−1(R
+), and by induction x(p) ∈ Ω{n−1}(R

◦). Thus x ∈ Ω{n}(R
◦). It fol-

lows that Ωn(R+) ⊂ Ω{n}(R
◦). The inverse inclusion follows similarly.

Finally, the equality Ωn(R◦) = Ω{n}(R
◦) follows from the fact that (Ωn(R+))◦ is

a subgroup of R◦ and Ωn(R◦) is generated by Ω{n}(R
◦).

Before proving Theorem B, we need the following lemma.

Lemma 2.4. Let R be a left p-nil p-ring with an additive group of finite exponent. Let
U be the intersection of Ω1(R

+) with the right annihilator of R. Then U is a non-trivial
ideal and the factor ring R/U is left p-nil.

Proof. As R is nilpotent, let n denote the largest integer such that Rn 6= 0. Then
0 6= Ω1(R

n) lies in U, so U is not trivial.
Let be x, y ∈ R such that px ∈ U (4x ∈ U, for p = 2). Then z(px) = pzx = 0
(z(4x) = 4zx = 0, for p = 2) for all z ∈ R. As R is left p-nil, it follows that zxy = 0,
for all z ∈ R, hence xy is a right annihilator of R. Also we have px ∈ Ω1(R

+)
(px ∈ Ω2(R

+), for p = 2), so pxy = 0, thus xy ∈ U.

Proof of Theorem B. Since U+ = U◦, we shall denote both of them by U. We claim
that d(H) ≤ d(Ω1(H)), for any H ≤ R◦. Assume that R is left p-nil, and assume
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the result is true for any such ring of order < |R|. Also, we assume that the result
holds for any subgroup with order < |H|. We have HU/U ∼= H/H ∩ U is a
subgroup of R◦/U = (R/U)◦ , from our assumption and Lemma 2.4 it follows
that d(H/H ∩ U) ≤ d(Ω1(H/H ∩ U)). Now if H ∩ U � Φ(G), and since U ≤
Ω1(Z(R

◦)), we can find a maximal subgroup K ≤ H and a subgroup P of order p
in H ∩ U such that H ∼= K × P. By the minimality of H, we have d(H) = d(K) +
1 ≤ d(Ω1(K)) + 1 = d(Ω1(H)). Otherwise, we have d(H) = d(H/H ∩ U). Let
A be the subgroup of H such that A/H ∩ U = Ω1(H/H ∩ U). By induction, if
A < H then d(H) ≤ d(A/H ∩ U) ≤ d(A) ≤ d(Ω1(A)), and since Ω1(H) is
abelian, it follows that d(H) ≤ d(Ω1(A)) ≤ d(Ω1(H)).
Now we have to assume that H/H ∩ U = Ω1(H/H ∩ U) which is abelian. For
p = 2, we have H ≤ Ω2(R

◦), so H is abelian and we are done. For p > 2, we have
[H, H] ≤ H ∩U. Since H ∩U is central, it follows that H is nilpotent of class ≤ 2,

so H is regular (see [5, II.10]). We have pd(H) ≤ |H : Hp| = |Ω1(H)| = pd(Ω1(H)).
Finally, since Ω1(R

◦) is abelian, it follows that d(H) ≤ d(Ω1(H)) ≤ d(Ω1(R
◦)) =

d(R+).

Proof of Corollary B. First note that the ideal U = pR (4R if p = 2) is a left p-
nil p-ring, and (R/U)◦ ∼= R◦/U◦ (note that one can take U to be the left or the
right annihilator of Ω1(R

+), or Ω2(R
+) if p = 2). Let H be a p-subgroup of R◦.

Then d(H) ≤ d(H/H ∩ U◦) + d(H ∩ U◦). Theorem B implies that d(H ∩ U◦) ≤
d(U+) ≤ d(R+). On the other hand, H/H ∩ U◦ ∼= HU◦/U◦ is a subgroup of

R◦/U◦ ∼= (R/U)◦ , so pd(H/H∩U◦) ≤ |(R/U)◦ | ≤ |R/U|. Now, if p > 2 then

|R/U| = pd(R+), and if p = 2 then |R/U| = |R/2R||2R/4R| = pd(R+)pd((2R)+) ≤

p2 d(R+), the result follows.

3 Applications to p-group automorphisms

Note that we were motivated by the following result in introducing the class of
p-nil rings.

Proposition 3.1. Let G be a finite p-group, and let be S = Z(G) ∩ P(G). Then
(a) the ring Hom(G, S) is right p-nil;
(b) Ωn(AutS(G)) = Ω{n}(AutS(G)) = AutΩn(S)(G);

(c) the exponent of AutS(G) is ≤ pmin{r,s};
(d) AutS(G) is nilpotent of class at most min{r, s};
(e) the rank of AutS(G) is equal to d(G)d(S).

Proof. (a) Let be k, h ∈ Hom(G, S) such that ph = 0 (4h = 0 if p = 2). Hence Im(h)
is an abelian group of exponent p (4 if p = 2), so its kernel contains P(G), and
since S ≤ P(G) we have Im(k) ⊂ ker(h). It follows that h is a right annihilator of
the ring Hom(G, S).
Observe that the additive group Hom(G, S) = Hom(G/G′ , S) has exponent ≤

pmin{r,s} and rank d(G)d(S), now (b) and (c) follow from Theorem A, (d) follows
from Theorem 2.2, and (e) follows from Theorem B.
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A slight modification of the proof of Proposition 3.1 (d) together with the re-
mark that follows Theorem 2.2, yield a new proof of Theorem 4.8 in [8] which
asserts the following.

Corollary 3.2. If G is a finite p-group such that Z(G) ≤ Φ(G), then AutZ(G)(G) is

nilpotent of class at most min{r, s}, where exp(G/G′) = pr and exp(Z(G)) = ps.

It is interesting that Proposition 3.1 has a strong implication on the structure
of Aut(G), where G is an abelian p-group. For instance if p > 2, we are speaking
about the ring Hom(G, Gp) and about the automorphism group AutGp(G). The
quotient Aut(G)/ AutGp(G) can be embedded as a subgroup of GL(d, p), with

d = d(G). Thus AutGp(G) has index at most p(
d
2) in a p-sylow of Aut(G), that

is a p-sylow of Aut(G) contains a large normal subgroup having a very regular
structure.

Proof of Proposition D. We have K = AutP(G)(G) is the adjoint group of the ring

Hom(G, P(G)) = Hom(G, S(G)). Let P be a p-subgroup of Aut(G). We have
d(P) ≤ d(P/P ∩ K) + d(P ∩ K), since P ∩ K is a subgroup of K it follows from
Proposition 3.1 (e) that d(P ∩ K) ≤ dd′.
For p odd, P/P ∩ K ∼= PK/K is a p-subgroup of GL(d, p), and since every p-
subgroup of GL(d, p) can be generated by d2/4 (see [16]), it follows that d(P/P ∩
K) ≤ d2/4. Therefore d(P) ≤ dd′ + d2/4.
For p = 2, P/P ∩ K can be embedded as a 2-subgroup of Aut(G/G4), so we have

only to show that the 2-part of |Aut(A)| is at most 2
3d2−d

2 , for any abelian group A
of rank d and exponent 4. Indeed, Aut(A)/ AutA2(A) is a subgroup of GL(2, d),

so the order of one of its 2-sylow is at most 2
d2−d

2 . On the other hand AutA2(A)

is isomorphic to the adjoint group of Hom(A, A2), which has order 2d2
, the result

follows.

Proof of Corollary D. Let be P a p-subgroup of Aut(G), A a maximal abelian P-
invariant subgroup of G, and C = CP(A). It follows from the three subgroup
lemma applied in G⋊ P, that [C, G, A] = 1, thus [C, G] ≤ CG(A). It follows easily
from the maximality of A that CG(A) = A, thus C acts trivially on A and G/A, so
by Laue’s relation it can be embedded in the additive group Der(G/A, A), which
embeds in a direct sum of k copies of A. Thus rk(C) ≤ k2. Now, as P/C embeds
as a p-subgroup of Aut(A), the result follows at once from Proposition D.

The remainder of the paper is devoted to proving Theorem C.

Lemma 3.3. Let G be a finite p-group. Then Z(AutP(G)(G)) has exponent at most

pmin{r,s}.

Proof. Let be u ∈ Z(AutP(G)(G)). Since AutP(G)(G) contains Inn(G), we have u

commutes with Inn(G), thus x−1 u(x) ∈ Z(G) and so x−1 u(x) ∈ Z(G) ∩ P(G),
for all x ∈ G. It follows from Proposition 3.1 (c) that the order of u is at most

pmin{r,s}.
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Note that one can replace Z(AutP(G)(G)) in the above lemma by Z(P), where

P is p-sylow of Aut(G), for (at least) p > 2. Indeed, we claim that if u ∈ Z(P)
then x−1 u(x) ∈ Φ(G), for all x ∈ G. We have u is a p-automorphism that acts on
the p-group Ω1(Z(G) ∩ Φ(G)), so it fixes at least a non-trivial element z in this
group. Let M be a maximal subgroup of G, and let r : G → Zp be a homomor-

phism with kernel M. Consider the endomorphism h(x) = zr(x), for x ∈ G. Then
1 + h : x 7→ x h(x) is an automorphism of G lying in AutΦ(G)(G), so it lies in P.

It follows that u commutes with h, thus zr(x) = zr(u(x)), so x−1 u(x) ∈ M, for all
x ∈ G. This is true for any maximal subgroup M, and the claim follows.

In [15], H. Liebeck proved that the nilpotence class of AutΦ(G)(G), where G is

a finite p-group, can be bounded in terms of the class of G and r1(G) (as defined
bellow). The following Lemma extends Liebeck’s result. For a finite p-group G,

e(G) denotes the integer satisfying pe(G) = exp(G).

Lemma 3.4. Let G be a finite p-group of class c, let be r1 = r1(G) = ∑
c
i=1 e(γi/γi+1)

and s1 = s1(G) = ∑
c
i=1 e(Zi/Zi−1). Then AutΦ(G)(G) is nilpotent of class at most

min{r1, s1} − 1. In particular its class does not exceed tc − 1.

Recall first that the lower p-central series of a group G is defined by P1(G) = G
and by induction Pi+1(G) = Pi(G)p[Pi(G), G], i ≥ 1. And note that P2(G) =
Φ(G). The least integer n such that Pn+1(G) = 1 is the p-lower length of G, and
any central series of G having factors of exponent p, has length at least n.

Proof. By ([6, Theorem VIII.1.7]), if an automorphism u of G acts trivially on
G/ P2(G), then it acts trivially on each section Pi+1(G)/ Pi(G). Thus AutΦ(G)(G)
is a stability group of the lower p-series. It follows from a well known result
of Kaloujnine (see [5, Satz III.2.9]), that AutΦ(G)(G) is nilpotent of class at most
n − 1.
Now we have to connect the upper and the lower central series of G to the above
series. Define the p-series of an abelian p-group A of exponent pm by

1 < Apm−1
< ... < Ap

< A

This series has length m, and factors of exponent p. Using this definition one can
refine each factor of the lower and the upper central series, by its p-series. We
obtain two central series of G having factors of exponent p and their length are
respectively equal to r1(G) = ∑

c
i=1 e(γi/γi+1) and s1(G) = ∑

c
i=1 e(Zi/Zi−1). As

n ≤ min{r1, s1}, it follows that AutΦ(G)(G) is nilpotent of class at most

min{r1, s1} − 1.
Finally, by a well known result exp(Zi/Zi−1) ≤ exp(Z(G)) and exp(γi/γi+1) ≤
exp(G/γ2), it follows that r1(G) ≤ rc and s1(G) ≤ sc. Therefore AutΦ(G)(G) is

nilpotent of class at most min{r, s}c − 1 = tc − 1.

Proof of Theorem C. By Lemma 3.3, the exponent of the center of AutP(G)(G) is

≤ pt. It follows from Lemma 3.4 that the exponent of AutP(G)(G) is at most

(pt)tc−1 = pt2c−t.
Now let P be a p-sylow in Aut(G). As P/ AutP(G)(G) embeds as p-subgroup of
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Aut(G/ P(G)), it follows from a result of Horosevskii (see [7, Corollary 3.3]) that
the exponent of P/ AutP(G)(G) is bounded by pd−1 if p > 2 and by p2d−1 if p = 2.
The result follows.
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