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Abstract

We study the existence of a weak solution for a semilinear elliptic Dirich-
let boundary-value problem

Lu(x)− µug1(x) + h(u)g2(x) = f (x) in Ω,

u(x) = 0 on ∂Ω,

in a suitable weighted Sobolev space, where Ω = R
n\K, n ≥ 3 is an un-

bounded domain, and where K is a closure of some bounded domain in
R

n, n ≥ 3.

1 Introduction

Let Ω = R
n\K, n ≥ 3 be an unbounded domain with smooth boundary ∂Ω,

where K is a closure of some bounded domain in R
n. Let L be an elliptic operator

in the divergence form

Lu(x) = −
n

∑
i,j=1

Dj(aij(x)Diu(x)) with Dj =
∂

∂xj
, (1.1)

with coefficients aij ∈ L∞(Ω) and the matrix (aij) is symmetric and satisfy

λ|ξ|2 ≤
n

∑
i,j=1

aij(x)ξiξ j ≤ Λ|ξ|2, a.e., x ∈ Ω, (1.2)
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for all ξ ∈ R
n (λ > 0, Λ > 0). In this paper, we establish the existence results for

a class of semilinear elliptic BVP

Lu − µg1u + g2h(u) = f in Ω,

u = 0 on ∂Ω,
(1.3)

where µ ∈ R, gi(i = 1, 2), f are elements of some weighted spaces and h is
Lipschitzian and monotonic. The main tool used is a result by Browder [8] and
Minty [9] on monotone hemi-continuous operators. The study is inspired by a
problem in bounded domain given in the book by Zeidler [7]. Also, a degenerate
elliptic BVP studied by Cavalheiro [2] in a bounded domain, say U ⊂ R

n with
boundary ∂U. More precisely Cavalheiro [2] studied the following :

Suppose that L̃ be an elliptic operator in the divergence form as in (1.1), where
the coefficient matrix (aij) satisfies the degenerate ellipticity condition

λ|ξ|2ω(x) ≤
n

∑
i,j=1

aij(x)ξiξ j ≤ Λ|ξ|2ω(x), a.e., x ∈ U, (1.4)

for all ξ ∈ R
n, (λ > 0, Λ > 0). Here, ω be an A2-weight. For more details on

Ap-weight (1 ≤ p < ∞), we refer to [3, 10, 11].
Consider the BVP

L̃u − µug1 + h(u)g2 = f in U,

u = 0 on ∂U.
(1.5)

where µ ∈ R, h : R → R be a bounded and continuous function. Assume that
g1/ω ∈ L∞(U), g2/ω ∈ L2(U, ω) and f /ω ∈ L2(U, ω). Under these hypotheses
on the functions f , g1, g2, and h, the following proposition is due to Cavalheiro
[2].

Proposition 1.1. Suppose that µ > 0 not be an eigenvalue of

L̃u − µug1 = 0 in U, u = 0 on ∂U.

Then, the BVP (1.5), has a weak solution u ∈ W1,2
0 (U, ω).

In the Proposition 1.1 main tools used are compact embedding in weighted
Sobolev space and a result introduced by Hess [14] in 1972 (also found in the
book by Zeidler [7]). In the present paper, we study the elliptic BVP (1.3) in a
class of unbounded domain. Elliptic BVPs in unbounded domains present spe-
cific difficulties, primarily due to lack of compactness. Another difficulty in the
study of the elliptic BVPs is due to the non-availability of the Poincare-inequality

in the Sobolev spaces W
1,p
0 (Ω) for a general unbounded domain Ω. One of the

classical technique employed is approximating a solution on unbounded domain
say Ω by solutions on bounded subdomains of Ω under the assumption the suit-
able upper and lower solutions exist, as in Noussair and Swanson[5, 6]. Secondly,
the use of weighted-norm Sobolev spaces which admit compact embeddings, as
in Benci [16], Bongers, Heinz and Kupper [1]. In [12], Berger and Schechter have
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shown that a substitute for such embedding results can be obtained when Ω is
unbounded, by introducing appropriate weighted Lp norms. As a consequence,
to prove the existence of a weak solution to (1.3) we consider suitable weighted
Sobolev space defined on a specific class of domains in R

n, n ≥ 3. Where as the
restriction on the domain has yields us a required Hardy-type inequality. Also as
in [2], we do not need the hypothesis of boundedness of the nonlinear function h
and instead we have assumed h to be Lipschitzian and monotonic. The assump-
tions on h along with Hardy-type inequality helps us to establish the existence
result without use of compact embedding theorems.

Section 2 deals with preliminaries. Section 3 concerns with the main result is
about the existence of a weak solution of the BVP (1.3).

2 Preliminaries

Let G ⊂ R
n be a domain (not necessarily bounded) with a smooth boundary ∂G.

For a weight function ω(i.e., ω : G → R
+ be a locally integrable function with

0 < ω < ∞ a.e.,) we define the weighted p-norm

‖v‖p,G,ω =
(

∫

G
|v(x)|pω(x)dx

)1/p
, 1 ≤ p < ∞, (2.6)

and denote by Lp(G, ω) the space of all measurable functions v such that ‖v‖p,G,ω

is finite. For weight functions ω0 and ω1, the weighted Sobolev space
W1,p(G, ω0, ω1) is defined to be the space of all functions v ∈ Lp(G, ω0) such
that all weak derivatives ∂v/∂xi belong to Lp(G, ω1). In this space, the norm is
defined by

‖v‖1,p,G,ω0,ω1
=

{

∫

G
(|v|pω0 + |∇v|pω1) dx

}1/p
, (2.7)

where ∇v = (D1v, D2v, . . . , Dnv). It is known (cf.[4, 13]) that W1,p(G, ω0, ω1) is a
uniformly convex Banach space, provided

p > 1, ω−1
0 , ω−1

1 ∈ L
1

p−1

loc (G), (2.8)

and, moreover C∞
0 (G) ⊂ W1,p(G, ω0, ω1), if and only if

ω0, ω1 ∈ L1
loc(G). (2.9)

Under the assumptions (2.8) and (2.9), let W
1,p
0 (G, ω0, ω1) be the closure of C∞

0 (G)

with respect to the norm (2.7). We also note that W1,2(G, ω0, ω1) and

W1,2
0 (G, ω0, ω1), are Hilbert spaces. We denote the space W

1,p
0 (G, ω0, 1) by

W
1,p
0 (G, ω0). More details on weighted Sobolev spaces are found in [3, 4, 10, 11,

13, 15].
We say domain G belongs to class D if there exists a compact set K ⊂ R

n, such
that G = R

n\K. For G ∈ D, we set

a∗ = inf{|x|; x ∈ G}.
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We denote by D0,1 the set of all G ∈ D such that

G = R
n\K with K ∈ C0,1.

More details on the classes D0,1, C0,1 are given in the book by Opic and Kufner
[4, p.269,p.289]. Another important and useful tool for the study of partial differ-
ential equations in unbounded domains is the Hardy-type inequality. Let a∗ > 0
and further we assume G ∈ D[G ∈ D0,1] has the property that

x ∈ G implies tx ∈ G, for every t ≥ 1,

and such a class of domains is denoted by D∗[D
0,1
∗ ]. Moreover, the weight func-

tions ω0, ω1 are assumed to be radial, i.e of the form ω0(x) = ψ0(|x|), ω1(x) =
ψ1(|x|), where ψ0, ψ1 are defined on (0, ∞) and bounded from below and above
on each compact subinterval in (0, ∞). Let 1 < p < ∞ and p′ be defined by
1/p + 1/p′ = 1. Then, the following Hardy-type inequality holds(Theorem
21.8,[4]):

Proposition 2.1. (Hardy-type inequality) Assume that there are constants k, t0 > 0
such that

ψ0(t) ≥ k ψ1(t) t−p for a.e t > t0,

BR(ψ0(t)t
n−1, ψ1(t)t

n−1, p) < ∞,

where

BR(ψ0(t)t
n−1, ψ1(t)t

n−1, p) = sup
0<s<∞

‖(ψ0(t)t
n−1)1/p‖p,(0,s)‖(ψ1(t)t

n−1)−1/p‖p′,(s,∞).

Then, there is a constant C > 0 such that

‖v‖p,G,ω0
≤ C‖|∇v|‖p,G,ω1

(2.10)

holds for every v ∈ W1,p(G, ω0, ω1).

As a consequence of the Hardy-type inequality, we get the equivalence of the
norms

‖v‖1,p,G,ω0,ω1
and |v|0,1,p,G,ω1

=
(

∫

G
|∇v(x)|pω1(x)dx

)1/p

in W1,p(G; ω0, ω1).

Remark 2.2. Let G ∈ D∗ with a∗ > 0, n ≥ 3, ψ0(t) = t−2, ψ1(t) = 1, p = 2. We
note that

ψ0(t) ≥ t−2ψ1(t), for t > 0.

Also,

BR(ψ0(t)t
n−1, ψ1(t)t

n−1, 2) = sup
0<s<∞

‖(ψ0(t)t
n−1)1/2‖2,(0,s)‖(ψ1(t)t

n−1)−1/2‖2,(s,∞)

= sup
0<s<∞

‖(t−2tn−1)1/2‖2,(0,s)‖(t
n−1)−1/2‖2,(s,∞)

= sup
0<s<∞

‖t
n−3

2 ‖2,(0,s)‖t
1−n

2 ‖2,(s,∞)

= sup
0<s<∞

{

∫ s

0
tn−3dt ×

∫ ∞

s
t−n+1dt

}1/2
< ∞,
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and thus,
BR(|t|

−2tn−1, tn−1, 2) < ∞.

From (2.10) we have for p = 2, ω0(x) ≡ ψ0(|x|) = |x|−2, and ω1(x) ≡ ψ1(|x|) = 1

‖v‖2,G,|x|−2 ≤ C‖|∇v|‖2,G , v ∈ W1,2(G, ω). (2.11)

Definition 2.3. Let Ω ⊂ R
n be an open connected set. u ∈ W1,2

0 (Ω, ω) is called a
weak solution of (1.3) if
∫

Ω

n

∑
i,j=1

aij(x)Diu(x)Djφ(x)dx − µ
∫

Ω
u(x)g1(x)φ(x) dx +

∫

Ω
h(u(x))g2(x)φ(x)dx

=
∫

Ω
f (x)φ(x) dx, for all φ ∈ W1,2

0 (Ω, ω).

From [7], we quote :

Definition 2.4. Let B : X → X∗ be an operator on a real Banach space X.

(i) B is monotone iff
(

Bu − Bv|u − v
)

≥ 0 for all u, v ∈ X.

(ii) B is uniformly monotone iff
(

Bu − Bv|u − v
)

≥ a(‖u − v‖)‖u − v‖ for all u, v ∈ X.

where the continuous function a : R+ → R+ is strictly monotone increasing
with a(0) = 0 and a(t) → ∞ as t → ∞.

(iii) B is coercive iff

lim
‖u‖→∞

(Bu|u)

‖u‖
= ∞.

(iv) B is hemi-continuous iff
t 7→ 〈B(u + tv), w〉

is continuous on [0, 1] for all u, v, w ∈ X.

We have the following implications:
B is uniformly monotone implies B is monotone. Furthermore, we note that B is
uniformly monotone implies B is coercive.

In Definition 2.4(ii), we may choose the function a(t) = c|t|p−1 with p > 1 and
c > 0. In this case, we obtain

(

Bu − Bv|u − v
)

≥ c‖u − v‖p for all u, v ∈ X.

In section 3, we use the following result. We consider the operator equation

Au = b, u ∈ X. (2.12)

Theorem 2.5. (Browder-Minty(1963)) Assume that the operator A : X → X∗ is mono-
tone, hemi-continuous and coercive on the real, separable, reflexive Banach space X. Then,
for each b ∈ X∗, the equation (2.12) has a solution.

The proof of the Theorem 2.5 is found in [7, Theorem 26.A], Browder [8] and
Minty [9].
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3 The main result

Let Ω ⊂ R
n, n ≥ 3 be an unbounded domain of the type D0,1

∗ with a∗ > 0. The
advantage of choosing such domains is the availability of Hardy-type inequality
with suitable weights. In this section, we study the existence of a weak solution
of the BVP (1.3).

We need the following hypotheses for further study.

(F1) Suppose that ω = |x|−2, g1/ω ∈ L∞(Ω), g2/ω ∈ L∞(Ω), g2 ≥ 0 and
f /ω ∈ L2(Ω, ω);

(F2) Let h : R → R be a Lipschitz continuous function with Lipschitz constant
A and h(0) = 0;

(F3) Suppose that h satisfies, (h(ξ) − h(ξ′))(ξ − ξ′) ≥ 0, for all ξ, ξ′ ∈ R.

We define the operator B1 : W1,2
0 (Ω, ω)× W1,2

0 (Ω, ω) → R by

B1(u, φ) =
∫

Ω

n

∑
i,j=1

aij(x)Di(x)uDj(x)φ(x) dx − µ
∫

Ω
u(x)g1(x)φ(x) dx

+
∫

Ω
h(u(x))g2(x)φ(x) dx, for all u, φ ∈ W1,2

0 (Ω, ω)

and we define T : W1,2
0 (Ω, ω) → R by

T(φ) =
∫

Ω
f (x)φ(x)dx.

A function u ∈ W1,2
0 (Ω, ω) is a weak solution of (1.3) iff

B1(u, φ) = T(φ), for all φ ∈ W1,2
0 (Ω, ω). (3.13)

Below, we establish the existence of a weak solution of (1.3) under certain condi-
tions.

Theorem 3.1. Let Ω ⊂ R
n, n ≥ 3 be an unbounded domain of the type D0,1

∗ with
a∗ > 0. Assume that the hypotheses (F1)-(F3) hold. Suppose that

µC‖g1/ω‖∞,Ω < λ, µ > 0

and C is the constant arising out of inequality (2.11). Then, the problem (1.3) has a weak

solution u ∈ W1,2
0 (Ω, ω).

Proof. Idea of proof is such. First we write the BVP (1.3) as operator equation

u ∈ W1,2
0 (Ω, ω) : Bu = T in [W1,2

0 (Ω, ω)]∗, (3.14)

where T ∈ [W1,2
0 (Ω, ω)]∗, B : W1,2

0 (Ω, ω) → [W1,2
0 (Ω, ω)]∗ is monotone, hemi-

continuous and coercive. Further, we put Proposition 2.5 to this operator equa-
tion. For convenience, we have divided the proof into five steps.
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Step-1 : We note that, for some constant c, |aij(x)| ≤ c. Since h is Lipschitzian and

h(0) = 0, we get |h(u)| ≤ A|u|. For all u, φ ∈ W1,2
0 (Ω, ω), we have

|B1(u, φ)| ≤
∫

Ω

n

∑
i,j=1

|aij(x)||Diu(x)||Djφ(x)| dx + µ
∫

Ω
|u(x)||φ(x)||g1(x)| dx

+
∫

Ω
|g2(x)||h(u(x))||φ(x)| dx

≤ c
∫

Ω

n

∑
i,j=1

|Diu(x)||Djφ(x)| dx + µ
∫

Ω
|u(x)||φ(x)|

∣

∣

g1(x)

ω(x)

∣

∣ω(x) dx

+ A
∫

Ω

∣

∣

g2(x)

ω(x)

∣

∣|u(x)||φ(x)|ω(x) dx

≤ c
(

∫

Ω

n

∑
i=1

|Diu(x)|
2 dx

)1/2( ∫

Ω

n

∑
j=1

|Djφ(x)|
2 dx

)1/2

+ µ‖
g1

ω
‖∞,Ω

(

∫

Ω
|u(x)|2ω(x) dx

)1/2( ∫

Ω
|φ(x)|2ω(x) dx

)1/2

+ A‖
g2

ω
‖∞,Ω

(

∫

Ω
|u(x)|2ω(x) dx

)1/2( ∫

Ω
|φ(x)|2ω(x) dx

)1/2

≤ c |u|0,1,2,Ω|φ|0,1,2,Ω +
(

µ‖g1/ω‖∞,Ω + A‖g2/ω‖∞,Ω

)

‖u‖2,Ω,ω‖φ‖2,Ω,ω

≤
(

c + Cµ‖g1/ω‖∞,Ω + CA‖g2/ω‖∞,Ω

)

|u|0,1,2,Ω|φ|0,1,2,Ω. (3.15)

where, C is a constant arising out of the Hardy-type inequality (2.11). Now,
B1(u, .) is linear and bounded. Then, there exists an operator

B : W1,2
0 (Ω, ω) → [W1,2

0 (Ω, ω)]∗,

defined by (Bu| φ) = B1(u, φ) for all u, φ ∈ W1,2
0 (Ω, ω). Also, we have

|T(φ)| ≤
∫

Ω
| f (x)||φ(x)| dx

≤
∥

∥ f /ω
∥

∥

2,Ω,ω
‖φ‖2,Ω,ω

≤ C
∥

∥ f /ω
∥

∥

2,Ω,ω
|φ|0,1,2,Ω.

Then, problem (3.13) is equivalent to the operator equation

Bu = T, u ∈ W1,2
0 (Ω, ω). (3.16)

Step-2: We claim that B is hemi-continuous. That is,

t 7→ (B(u + tv)|φ)

is continuous on [0,1], for all u, v, φ ∈ W1,2
0 (Ω, ω). Let F : [0, 1]→ R defined by

F(t) = (B(u + tv)|φ) = B1(u + tv, φ), t ∈ [0, 1].

Suppose tn ∈ [0, 1] such that tn → a in [0, 1] as n → ∞. We show that F(tn) →
F(a) as n → ∞.
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We note that

|F(tn)− F(a)| =
∣

∣(B(u + tnv)|φ)− (B(u + av)|φ)
∣

∣

=
∣

∣B1(u + tnv, φ)− B1(u + av, φ)
∣

∣

=
∣

∣

∫

Ω

n

∑
i,j=1

aijDi(u + tnv)Djφdx − µ
∫

Ω
(u + tnv)φg1 dx

+
∫

Ω
h(u + tnv)φg2dx −

∫

Ω

n

∑
i,j=1

aijDi(u + av)Djφdx

+ µ
∫

Ω
(u + av)φg1 dx −

∫

Ω
h(u + av)φg2

∣

∣ dx

≤
∫

Ω

∣

∣

n

∑
i,j=1

aij{(Di(u + tnv)− Di(u + av)}Djφ
∣

∣ dx

+ µ
∫

Ω

∣

∣(tn − a)vφg1

∣

∣ dx +
∫

Ω

∣

∣(h(u + tnv)− h(u + av))φg2 dx
∣

∣

≤
∫

Ω

∣

∣

n

∑
i,j=1

aijDi((tn − a)v)Djφ
∣

∣ dx + µ||tn − a|
∫

Ω
|vφg1| dx

+ A
∫

Ω

∣

∣(u + tnv)− (u + av)
∣

∣

∣

∣φg2

∣

∣ dx

≤ |tn − a|
[

c
∫

Ω

n

∑
i,j=1

|Div||Djφ|dx + µ
∫

Ω
|v||φ||g1| dx

+ A
∫

Ω
|v||φ||g2|dx

]

≤ |tn − a|
[

c |v|0,1,2,Ω|φ|0,1,2,Ω + Cµ‖g1/ω‖∞,Ω|v|0,1,2,Ω|φ|0,1,2,Ω

+ CA‖g2/ω‖∞,Ω|v|0,1,2,Ω|φ|0,1,2,Ω

]

= |tn−a|
[

c + µC‖g1/ω‖∞,Ω + CA‖g2/ω‖∞,Ω

]

|v|0,1,2,Ω|φ|0,1,2,Ω. (3.17)

From (3.17), we note that F is continuous and as a consequence B turns out to be
hemi-continuous.
Step-3 : It follows from the hypotheses (F1) and (F3) that

g2(x)(h(u(x)) − h(v(x)))(u(x) − v(x)) ≥ 0, a.e., for all u, v ∈ W1,2
0 (Ω, ω).

Since µC‖g1/ω‖∞,Ω < λ, by (1.2), and the hypotheses (F1) and (F3), we obtain

B1(u, u − v)− B1(v, u − v) =
∫

Ω

n

∑
i,j=1

aij(Diu − Div)Dj(u − v)dx

− µ
∫

Ω
(u − v)2g1 dx +

∫

Ω
g2(h(u) − h(v))(u − v)dx

=
∫

Ω

n

∑
i,j=1

aijDi(u − v)Dj(u − v)dx − µ
∫

Ω
(u − v)2g1 dx

+
∫

Ω
g2(h(u) − h(v))(u − v)dx
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≥ λ
∫

Ω
|∇(u − v)|2dx − µ‖g1/ω‖∞,Ω

∫

Ω
(u − v)2ω dx

≥ λ
∫

Ω
|∇(u − v)|2dx − µC‖g1/ω‖∞,Ω

∫

Ω
|∇(u − v)|2ω dx

≥
(

λ − µC
∥

∥g1/ω
∥

∥

∞,Ω

)

|u − v|20,1,2,Ω ≥ 0,

for all u, v ∈ W1,2
0 (Ω, ω). Consequently, B is monotone.

Step-4 : By (F2), h(0) = 0 and by (F3), h(u)u ≥ 0, a.e., for all u ∈W1,2
0 (Ω, ω).

Since g2 ≥ 0, we have g2h(u)u ≥ 0, a.e., for all u ∈ W1,2
0 (Ω, ω). By (1.2) and the

hypotheses (F1) and (F3), we observe that

(Bu|u) = B1(u, u) =
∫

Ω

n

∑
i,j=1

aijDiuDjudx − µ
∫

Ω
ug1u dx +

∫

Ω
g2h(u)udx

≥ λ
∫

Ω
|Du|2dx − µ‖g1/ω‖∞,Ω

∫

Ω
u2ω dx +

∫

Ω
g2h(u)u dx,

≥
(

λ − µC
∥

∥g1/ω
∥

∥

∞,Ω

)

|u|20,1,2,Ω for all u, v ∈ W1,2
0 (Ω, ω).

Since µC‖g1/ω‖∞,Ω < λ, B is coercive.
Step-5 : We have B is hemi-continuous. Also, for µC ‖g1/ω‖∞,Ω < λ, B is

monotone, and coercive. Hence, for µC‖g1/ω‖∞,Ω < λ, by Theorem 2.5, BVP

(1.3) has a weak solution, say u ∈ W1,2
0 (Ω, ω).

Remark 3.2. The Theorem 3.1 also holds true when h is monotonically decreasing
with g2 ≤ 0.

In the following two results, we consider the cases µ < 0, µ > 0 and relax the
hypothesis µC‖g1/ω‖∞,Ω < λ under the restriction g1 does not change sign. The
proof is similar to the Theorem 3.1; we restrict ourselves to sketch the deviations
wherever needed.

Theorem 3.3. Assume that the hypotheses (F1)-(F3) hold. Suppose that g1 ≥ 0, µ < 0.

Then, the BVP (1.3) has a weak solution in W1,2
0 (Ω, ω).

Proof. In Step-1 of Theorem 3.1, we note the following change :

|B1(u, φ)| ≤
∫

Ω
|aij(x)||Diu(x)||Djφ(x)| dx + |µ|

∫

Ω
|u(x)||φ(x)||g1(x)| dx

+
∫

Ω
|g2(x)||h(u(x))||φ(x)| dx

≤
(

c + C|µ|‖g1/ω‖∞,Ω + CA‖g2/ω‖∞,Ω

)

|u|0,1,2,Ω|φ|0,1,2,Ω.

Also, by minor changes in Step-2 (in (3.17)) of Theorem 3.1, we note that the
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operator B is hemi-continuous. Since g1 ≥ 0, µ < 0, we observe that

B1(u, u − v)− B1(v, u − v) =
∫

Ω
aij(Diu − Div)Dj(u − v)dx

− µ
∫

Ω
(u − v)2g1 dx +

∫

Ω
(h(u) − h(v))(u − v)g2 dx

=
∫

Ω
aijDi(u − v)Dj(u − v)dx +

∫

Ω
(h(u) − h(v))(u − v)g2dx

≥ λ
∫

Ω
|∇(u − v)|2dx (By (1.2), and (F3))

≥ 0, for all u, v ∈ W1,2
0 (Ω, ω).

Consequently, B is monotone. By the hypotheses (F1), (F2) and (F3), we obtain

g2h(u)u ≥ 0, a.e., for all u ∈ W1,2
0 (Ω, ω). Since g1 ≥ 0, µ < 0, by (1.2) as in Step-4

of Theorem 3.1 we note that

(Bu|u) = B1(u, u) =
∫

Ω

n

∑
i,j=1

aij(x)Diu(x)Dju(x)dx

− µ
∫

Ω
u2(x)g1(x) dx +

∫

Ω
g2(x)h(u(x))u(x)dx

≥ λ
∫

Ω
|∇u|2dx +

∫

Ω
g2h(u)u dx

≥ λ|u|20,1,2,Ω for all u, v ∈ W1,2
0 (Ω, ω),

which shows that, B is coercive. Since B is monotone and hemi-continuous, and
coercive, by Theorem 2.5, the BVP (1.3)(with µ < 0 and g1 ≥ 0), has a weak

solution in W1,2
0 (Ω, ω).

Similarly, we have the following result :

Theorem 3.4. Assume the hypotheses (F1)-(F3). Suppose that g1 ≤ 0, µ > 0. Then,

(1.3) has a weak solution in W1,2
0 (Ω, ω)
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