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Abstract

We prove that in a regular category all reflexive and transitive relations
are symmetric if and only if every internal category is an internal groupoid.
In particular, these conditions hold when the category is n-permutable for
some n.

Let C be a regular category. It is well known that any internal preorder,
being a reflexive and transitive relation pR, r1, r2q on an object X of C , may be
considered as an internal category in C . In fact, a preorder is the same thing as
a thin category, an internal category of which the domain and codomain morph-
isms r1, r2 : R Ñ X are jointly monic. This internal category will be a groupoid
precisely when the given reflexive and transitive relation R is symmetric, so that
if in C every internal category is an internal groupoid, then all of its internal reflexive
and transitive relations are equivalence relations.

The converse implication is interesting due to its close relation with the fol-
lowing question: what conditions does a regular category need to satisfy for
all internal categories in it to be internal groupoids? One of the main results
of [6] gives a sufficient condition: the Mal’tsev property, that is, 2-permutability
RS “ SR of internal equivalence relations R, S on the same object. But when C
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is a variety, already the strictly weaker n-permutability condition (RSRS . . . “
SRSR . . . with n factors R or S on each side) is sufficient [15]. Furthermore—here
we follow a remark in [13]—a variety is n-permutable if and only if [7] all of its in-
ternal reflexive and transitive relations are equivalence relations (= congruences).
Altogether:

Proposition 1. If C is a variety of universal algebras, then the following conditions are
equivalent:

(i) all preorders in C are congruences;

(ii) all internal categories in C are internal groupoids;

(iii) C is n-permutable for some n ě 2.

This result is no longer true for regular categories. The number n in the third
condition is obtained through a construction on a free algebra, and it cannot be re-
placed by a purely categorical argument, as shows the following counterexample.

Example 1. Consider the product category

Perm “
ź

ně2

`

n-Perm
˘

“ 2-Perm ˆ 3-Perm ˆ ¨ ¨ ¨ ˆ n-Perm ˆ ¨ ¨ ¨

where, for n ě 2, we let n-Perm be the (n-permutable) variety of n-permutability
algebras with operations θ1, . . . , θn´1 for which the identities

$

’

&

’

%

θ1ps, t, tq “ s,

θips, s, tq “ θi`1ps, t, tq, for i P t1, . . . , n ´ 2u,

θn´1ps, s, tq “ t

hold.
It is easy to see that Perm is a regular category. It is also clear that in Perm, all

preorders are equivalence relations: each of its components lies in some variety
n-Perm, where it will be a congruence. On the other hand, there is no n ě 2 for
which the category Perm is n-permutable, since otherwise pn ` 1q-Perm would
be an n-permutable variety. Indeed, for any n there are examples of pn ` 1q-
permutable varieties which are not n-permutable [8, 14, 16, 10], and by forgetting
structure these counterexamples can be made to work here too.

On the other hand, the equivalence between the upper two conditions in the
proposition makes sense in general and, given any n-permutable category, we
may ask whether they hold or not. As it turns out, the situation is as good as
it could possibly be. The following characterization of n-permutability due to
Hagemann [9, 10] was recently extended from varieties to regular categories [11].

Hagemann’s Theorem. For a regular category C , and a natural number n ě 2, the
following conditions are equivalent:

(i) C has n-permutable congruences;
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(ii) R˝ ď Rn´1 for any internal reflexive relation R in C ;

(iii) Rn ď Rn´1 for any internal reflexive relation R in C .

This may now be used to obtain our main result.

Theorem 1. If C is a regular category, then the following conditions are equivalent:

(i) all reflexive and transitive relations in C are equivalence relations;

(ii) all internal categories in C are internal groupoids.

Furthermore, these conditions hold if C is n-permutable for some n ě 2.

Proof. We already recalled that the second condition is stronger than the first.
For (i) ñ (ii) it suffices to observe that the argument given by Carboni, Pedicchio
and Pirovano in the Mal’tsev context [6, Theorem 2.2] may be adapted to hold
in regular categories. Their proof uses difunctionality of internal relations where
we can use image factorisations.

Consider an internal category

M ˚ M m ,2 M
d ,2

c
,2 Oilr

where M ˚ M, the object of composable pairs txβ, γy | cβ “ dγu, denotes the pullback
of c and d, while the morphism m is the composition. The image of the span

M ˚ M
π1

v�✈✈
✈✈
✈✈
✈✈
✈

m

�(❍
❍❍

❍❍
❍❍

❍❍

M M

is a relation on M which we write S. Using generalized elements as in [5], it makes
sense to say as on page 103 of [6] that a couple of arrows xβ, αy : X Ñ M ˆ M is in
S if and only if there exists an arrow γ in M for which γ˝β “ α.

¨
β

�	☞☞
☞☞
☞☞
☞

¨ ¨
��

α

✷✷✷✷✷✷✷
2,

γ
❴ ❴ ❴ ❴

More explicitly, there should exist a morphism γ : Y Ñ M and a regular epi-
morphism p : Y Ñ X such that mxβp, γy “ αp. In fact, as we shall see below, when
m satisfies the left cancellation property, we may choose p “ 1X.

The relation S is not just reflexive as mentioned in [6], but it is also transitive.
Hence condition (i) tells us that S is an equivalence relation on M. Suppose in-
deed that α, β, δ : X Ñ M are such that xβ, αy and xδ, βy are in S. Then we have
γ and p as above, and also a morphism ǫ : Y1 Ñ M and a regular epimorphism
p1 : Y1 Ñ X with mxδp1, ǫy “ βp1. Taking the pullback

Z
q

,2

q1

��

Y

p

��
Y1

p1

,2 X
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of p and p1 and writing µ “ mxǫq1, γqy we may calculate

mxδp1q1, µy “ mxδp1q1, mxǫq1, γqyy “ mxmxδp1, ǫyq1, γqy

“ mxβp1q1, γqy “ mxβp, γyq “ αpq “ αp1q1

to see that xδ, αy is in S. It follows that S is transitive.
Consider the composites id and ic : M Ñ M. Given any α : X Ñ M, the pair

xidα, αy is in S. The symmetry of S gives us xα, idαy in S, which yields a general-
ized element ‚α of M such that ‚α˝α “ idα as above. Via an analogous argument
we obtain a generalized element α‚ of M satisfying α˝α‚ “ icα. More precisely,
‚α : Y Ñ X and mxαp, ‚αy “ idαp for some regular epimorphism p : Y Ñ X, while
α‚ : Y1 Ñ X and mxα‚, αp1y “ icαp1 for some regular epimorphism p1 : Y1 Ñ X.
Taking again the above pullback of p and p1,

‚αq “ mxicαp1q1, ‚αqy “ mxmxα‚q1, αp1q1y, ‚αqy

“ mxα‚q1, mxαp1q1, ‚αqyy “ mxα‚q1, idαp1q1y “ α‚q1

so α –
‚αq “ α‚q1 : Z Ñ M, together with the regular epimorphism pq : Z Ñ X,

is a two-sided inverse for α.
We can use this to show that the composition satisfies the left cancellation

property: γ˝β “ γ˝δ implies β “ δ. Given β, γ, δ : X Ñ M such that cβ “ cδ “ dγ,
consider γ : Y Ñ M and the corresponding regular epimorphism p : Y Ñ X. The
equality mxβ, γy “ mxδ, γy then implies

βp “ mxβp, idγpy “ mxβp, mxγp, γyy “ mxmxβ, γyp, γy

“ mxmxδ, γyp, γy “ mxδp, mxγp, γyy “ mxδp, idγpy “ δp,

so β “ δ as claimed.
The left cancellation property now allows us to lift the inverse α : Y Ñ M of

α : X Ñ M over the enlargement of domain p : Y Ñ X which comes with it to a
morphism α´1 : X Ñ M. To see this, consider the kernel relation pR, π1, π2q of p

R
π1 ,2

π2

,2 Y
p

,2

α �%❅
❅❅

❅❅
❅❅

❅ X

α´1

��
M

and note that

mxαπ1, αpπ1y “ icαpπ1 and mxαπ2, αpπ2y “ icαpπ2.

Since pπ1 “ pπ2 by definition, left cancellation gives απ1 “ απ2, so that the
morphism α : Y Ñ M does indeed lift over p.

We now let α : X Ñ M be 1M : M Ñ M. The inverse s “ α´1 “ 1´1
M : M Ñ M

is then a genuine inversion making the given internal category into a groupoid.
This finishes the proof of (i) ñ (ii).

For the final statement, suppose that R is a reflexive and transitive relation.
Then R˝ ď Rn´1 by Hagemann’s Theorem while Rn´1 ď R by transitivity of R.
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In stark contrast with the above result, recall that a regular category is Mal’tsev
if and only if every reflexive relation in it is an equivalence relation, while on the
other hand, the so-called Lawvere condition “all internal reflexive graphs are
internal groupoids” means that the category is naturally Mal’tsev [4, 12].

We have just analyzed the equivalence (A) in the picture

internal internal
=

groupoids categories
3;

(A)

s{ ♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

(B)

"*▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

internal internal
reflexive & transitive = equivalence

relations relations

internal internal
=

monoids groups

and its relation with n-permutability. It is also clear that in any regular category
which satisfies the equivalent conditions of Theorem 1, all internal monoids are
groups. One could now ask whether the implication (B) is also an equivalence
and what is the role of n-permutability here.

By Theorem 1.4.5 in [2], in a unital category, any internal monoid is commu-
tative. Thus we can already conclude two things:

(i) on the one hand, in a strongly unital category, any internal monoid is an
abelian group [2, Theorem 1.9.5];

(ii) on the other hand, if C is regular and unital and the equivalent conditions
of Theorem 1 hold, then in C all internal monoids are abelian groups.

So, any pointed Mal’tsev category, being strongly unital [2, Theorem 2.2.9], is
such that every internal monoid in it is an internal abelian group. The same
property holds for pointed Goursat (= 3-permutable) categories [3, Corollary 3.4],
even though these categories need not be (strongly) unital, as shows the follow-
ing counterexample.

Example 2. We consider the variety V of implication algebras, which are pI, ¨q
that satisfy

$

’

&

’

%

pxyqx “ x

pxyqy “ pyxqx

xpyzq “ ypxzq

where we write x ¨ y “ xy. It is shown in [14, 10] that V is 3-permutable. In
particular, V satisfies the equivalent conditions of Theorem 1. In order to prove
that V is not unital, we construct a punctual span

X
s

,2 Z
f

lr
g

,2 Y
t

lr

as in [2, Theorem 1.2.12] and such that the factorisation x f , gy : Z Ñ X ˆ Y is not a
regular epimorphism. Put X “ t1, 2u, Y “ t1, 3u and Z “ t1, 2, 3u with respective
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multiplication tables

¨ 1 2
1 1 2
2 1 1

,
¨ 1 3
1 1 3
3 1 1

and

¨ 1 2 3
1 1 2 3
2 1 1 3
3 1 2 1

,

take s and t to be the canonical inclusions and f : Z Ñ X and g : Z Ñ Y defined
respectively by

f p1q “ f p3q “ 1, f p2q “ 2

and
gp1q “ gp2q “ 1, gp3q “ 3.

Then x f , gy is not a surjection, because Z has three elements while X ˆ Y has four.

Internal monoids in n-permutable varieties are always abelian groups. The
proof uses arguments which are similar to the ones given in Proposition 5.3 of [15].
The technique used in [11] for transforming a varietal proof into a categorical one
does not work in this specific situation, because the varietal proof uses nested
operations.

Even in the context of varieties, implication (B) is generally not an equiva-
lence. In fact, in [1] there are examples of subtractive varieties [17] which are not
n-permutable for any n. On the other hand, it is well known and easy to prove
that in any subtractive variety, all internal monoids are abelian groups.

Let indeed W be a subtractive variety, so that it is pointed and admits a binary
term s satisfying spx, xq “ 0 and spx, 0q “ 0. Let pM, `q be a monoid in W . Then
for any x P M, the inverse of x is x‚ “ sp0, xq, so that pM, `q is an internal group.
It is also abelian:

x ` y “ spx ` y, 0q “ spx ` y, x ` x‚q “ spx, xq ` spy, x‚q

“ spy, x‚q ` spx, xq “ spy ` x, x‚ ` xq “ spy ` x, 0q “ y ` x.

Note that the addition of M is uniquely determined by x ` y “ spx, sp0, yqq.
We finish by giving a simple alternative counterexample.

Example 3. We let W be the free subtractive variety. Its objects—triples pX, s, 0q
which satisfy spx, xq “ 0 and spx, 0q “ x for all x P X—are called subtraction
algebras. Consider the set A “ t0, a, bu equipped with the operation s defined by
the table

s 0 a b
0 0 0 0
a a 0 0
b b 0 0

The internal relation R “ tp0, 0q, pa, aq, pb, bq, pa, bqu on the subtraction algebra A
is reflexive and transitive, but not symmetric. Hence (B) is not an equivalence.
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