Nielsen numbers of selfmaps of flat 3-manifolds*

Daciberg Gonçalves Peter Wong Xuezhi Zhao

Abstract

We compute the Nielsen number $N(f)$ of a self homeomorphism f of a three dimensional flat manifold. Furthermore, we determine the possible values of $N(f)$ when f is an arbitrary self-map.

1 Introduction

In the 1920s, J. Nielsen conjectured that for any homeomorphism $f: M \rightarrow M$ of a closed surface M there exists a map g, isotopic to f, so that g has exactly $N(f)=N(g)$ fixed points. Here, $N(f)$ is now known as the Nielsen number of f. This homotopy invariant is often a sharp lower bound for the minimal number of fixed points in the homotopy class of f (see e.g. [1, 12]). This conjecture was proven by Jiang [13], Ivanov [11] (for self-homotopy equivalences), and Jiang-Guo [14] using the Nielsen-Thurston classification of surface homeomorphisms. The Nielsen conjecture has been proven for homeomorphisms of manifolds of dimension greater than or equal to 5 [17], and for a large class of 3-manifolds including (after Thurston's geometrization theorem) all irreducible 3-manifolds [16]. Meanwhile, Nielsen numbers of surface maps have been studied using Fox Calculus and other methods of combinatorial group theory. In

[^0]particular, M. Kelly [18] outlined a method of calculating $N(f)$ for surface homeomorphisms using the work of M. Bestvina and M. Handel based on the theory of train tracks. He also gave algorithms for $N(f)$ for homeomorphisms of certain geometric 3-manifolds [19], including the Seifert manifolds.

The purpose of this work is to make explicit calculation of the Nielsen number of a self homeomorphism of a flat 3-manifold. In particular, for a flat 3-manifold X, we compute

$$
\operatorname{NSH}(X)=\{N(h) \mid h \in \operatorname{Home}(X)\} .
$$

Using appropriate group presentations for the fundamental groups of the ten flat 3-manifolds, we further analyze the possible values of $N(f)$ when f is an arbitrary selfmap. In section 2, we recall the ten 3-dimensional flat manifolds by listing their fundamental groups and their presentations. In section 3, we compute the Nielsen number of a self homeomorphism of the first five flat manifolds making use of the automorphisms of the 2-dimensional crystallographic group on which the fundamental group of the flat manifold projects. In section 4, we turn our attention to the remaining cases. In sections 5 and 6 , we compute $N(f)$ for arbitrary selfmaps f. For cases $2-5,9,10$, we use a particular fully invariant subgroup corresponding to the fundamental group of a torus or a Klein bottle that allows us to compute $N(f)$ using fiberwise techniques. We complete the computation of $N(f)$ for the remaining cases using different techniques. In the last section, we determine the flat manifolds for which the Jiang-type condition holds.

2 Flat 3-manifolds and Nielsen numbers

Every isometry of the Euclidean space \mathbb{R}^{n} is a rotation followed by a translation. More precisely, the group of isometries $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ is given by the semi-direct product $\mathbb{R}^{n} \rtimes O(n)$. A subgroup $\pi \subset \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ is a crystallographic group on \mathbb{R}^{n} if π is a discrete uniform subgroup. Moreover, π is called a Bieberbach group if in addition it is torsion free. Given a Bieberbach group π, the resulting quotient manifold \mathbb{R}^{n} / π is called a flat n-manifold. The group π has a normal maximal abelian subgroup Γ of finite index and Γ has rank n. The quotient $\Phi=\pi / \Gamma$ is called the holonomy group. For more details on flat manifolds, see [3] or [22, Ch.3].

There are a total of ten flat 3-manifolds whose fundamental groups are listed below, where the first six are orientable and the remaining four are non-orientable. The following presentations can be found in [22, pp.117-121].

1. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3} \mid \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\{1\}$.
2. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, t \mid \alpha_{1}=t^{2}, t \alpha_{2} t^{-1}=\alpha_{2}^{-1}, t \alpha_{3} t^{-1}=\alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2}$.
3. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, t \mid \alpha_{1}=t^{3}, t \alpha_{2} t^{-1}=\alpha_{3}, t \alpha_{3} t^{-1}=\alpha_{2}^{-1} \alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{3}$.
4. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, t \mid \alpha_{1}=t^{4}, t \alpha_{2} t^{-1}=\alpha_{3}, t \alpha_{3} t^{-1}=\alpha_{2}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{4}$.
5. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, t \mid \alpha_{1}=t^{6}, t \alpha_{2} t^{-1}=\alpha_{3}, t \alpha_{3} t^{-1}=\alpha_{2}^{-1} \alpha_{3}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{6}$.
6. $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, t_{1}, t_{2}, t_{3}\right| \alpha_{1} \alpha_{3}=t_{3} t_{2} t_{1}, \alpha_{i}=t_{i}^{2}, t_{i} \alpha_{j} t_{i}^{-1}=\alpha_{j}^{-1}$ for $i \neq j, \alpha_{i} \alpha_{j}=$ $\left.\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
$7^{\prime} .\left\langle t_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3} \mid t_{1}^{2}=\alpha_{1}, t_{1} \alpha_{2} t_{1}^{-1}=\alpha_{2}, t_{1} \alpha_{3} t_{1}^{-1}=\alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2}$. The isomorphism $t_{1} \mapsto \beta, \alpha_{2} \mapsto t, \alpha_{3} \mapsto \alpha$ gives the following alternate presentation
7. $\pi_{1}(K) \times \mathbb{Z}=\left\langle\alpha, \beta \mid \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle \times\langle t\rangle$ where K is the Klein bottle, with holonomy $\Phi=\mathbb{Z}_{2}$.
$8^{\prime} .\left\langle t_{1}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right| t_{1}^{2}=\alpha_{1}, t_{1} \alpha_{2} t_{1}^{-1}=\alpha_{2}, t_{1} \alpha_{3} t_{1}^{-1}=\alpha_{1} \alpha_{2} \alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq$ $i, j \leq 3\rangle$ with holonomy $\Phi=\mathbb{Z}_{2}$. The isomorphism $\alpha_{2} \mapsto(\alpha \beta)^{2}, \alpha_{3} \mapsto$ $(\alpha \beta)^{2} t, t_{1} \mapsto(\alpha \beta) t$ gives the following alternate presentation
8. $\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\alpha \beta\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2}$.
$9^{\prime} .\left\langle t_{1}, t_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right| t_{1}^{2}=\alpha_{1}, t_{2}^{2}=\alpha_{2}, t_{2} t_{1} t_{2}^{-1}=\alpha_{2} t_{1}, t_{1} \alpha_{2} t_{1}^{-1}=\alpha_{2}^{-1}, t_{1} \alpha_{3} t_{1}^{-1}=$ $\left.\alpha_{3}^{-1}, t_{2} \alpha_{1} t_{2}^{-1}=\alpha_{1}, t_{2} \alpha_{3} t_{2}^{-1}=\alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The isomorphism $\alpha_{3} \mapsto \alpha, t_{2} \mapsto \beta, t_{1} t_{2} \mapsto t$ gives the following alternate presentation
9. $\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\beta^{-1}\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

10'. $\left\langle t_{1}, t_{2}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right| t_{1}^{2}=\alpha_{1}, t_{2}^{2}=\alpha_{2}, t_{2} t_{1} t_{2}^{-1}=\alpha_{2} \alpha_{3} t_{1}, t_{1} \alpha_{2} t_{1}^{-1}=\alpha_{2}^{-1}, t_{1} \alpha_{3} t_{1}^{-1}=$ $\left.\alpha_{3}^{-1}, t_{2} \alpha_{1} t_{2}^{-1}=\alpha_{1}, t_{2} \alpha_{3} t_{2}^{-1}=\alpha_{3}^{-1}, \alpha_{i} \alpha_{j}=\alpha_{j} \alpha_{i}, 1 \leq i, j \leq 3\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The isomorphism $\alpha_{3} \mapsto \alpha^{-1}, t_{2} \mapsto \beta, t_{1} t_{2} \mapsto t$ gives the following alternate presentation
10. $\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\alpha \beta^{-1}\right\rangle$ with holonomy $\Phi=\mathbb{Z}_{2} \times$ \mathbb{Z}_{2}.

All of these 10 Bieberbach groups possess natural projections onto some 2-dimensional crystallographic groups. Cases 1 and 7 are straightforward as they project onto $G_{1}=\mathbb{Z} \times \mathbb{Z}$ (torus) and onto $G_{1}^{3}=\pi_{1}(K)$ (Klein bottle) respectively.

We shall use the notation of the 2-dimensional crystallographic groups as given by R. Lyndon in [21].

Case 2: $p: G \rightarrow G_{2}$ where

$$
G_{2}=\left\langle\alpha, \beta, \tau \mid \alpha \beta=\beta \alpha, \alpha^{\tau}=\alpha^{-1}, \beta^{\tau}=\beta^{-1}, \tau^{2}=1\right\rangle .
$$

and p is given by $\alpha_{1} \mapsto 1, \alpha_{2} \mapsto \alpha, \alpha_{3} \mapsto \beta, t \mapsto \tau$.
Case 3: $p: G \rightarrow G_{3}$ where

$$
G_{3}=\left\langle\alpha, \beta, \tau \mid \alpha \beta=\beta \alpha, \alpha^{\tau}=\alpha^{-1} \beta, \beta^{\tau}=\alpha^{-1}, \tau^{3}=1\right\rangle .
$$

and p is given by $\alpha_{1} \mapsto 1, \alpha_{2} \mapsto \beta^{-1}, \alpha_{3} \mapsto \alpha, t \mapsto \tau$.

Case 4: $p: G \rightarrow G_{4}$ where

$$
G_{4}=\left\langle\alpha, \beta, \tau \mid \alpha \beta=\beta \alpha, \alpha^{\tau}=\beta, \beta^{\tau}=\alpha^{-1}, \tau^{4}=1\right\rangle .
$$

and p is given by $\alpha_{1} \mapsto 1, \alpha_{2} \mapsto \alpha, \alpha_{3} \mapsto \beta, t \mapsto \tau$.
Case 5: $p: G \rightarrow G_{6}$ where

$$
G_{6}=\left\langle\alpha, \beta, \tau \mid \alpha \beta=\beta \alpha, \alpha^{\tau}=\beta, \beta^{\tau}=\alpha^{-1} \beta, \tau^{6}=1\right\rangle .
$$

and p is given by $\alpha_{1} \mapsto 1, \alpha_{2} \mapsto \alpha, \alpha_{3} \mapsto \beta, t \mapsto \tau$.
Case 6: $p: G \rightarrow G_{2}^{4}$ where

$$
G_{2}^{4}=\left\langle\alpha, \beta, \tau \mid \beta \alpha \beta^{-1}=\alpha^{-1}, \alpha^{\tau}=\alpha^{-1}, \beta^{\tau}=\alpha \beta^{-1}, \tau^{2}=1\right\rangle
$$

and p is given by $t_{1} \mapsto \beta^{-1}, t_{2} \mapsto \tau, t_{3} \mapsto \tau \beta, \alpha_{1} \mapsto \beta^{-2}, \alpha_{2} \mapsto 1, \alpha_{3} \mapsto \alpha$.
Case 8: $p: G \rightarrow G_{1}=\mathbb{Z} \times \mathbb{Z}=\langle\tau\rangle \times\langle b\rangle$ where p is given by $\alpha \mapsto 1$, $\beta \mapsto b, t \mapsto \tau$.

Case 9: $p: G \rightarrow G_{2}^{2}$ where

$$
G_{2}^{2}=\left\langle\alpha, \beta, \tau \mid \beta \alpha \beta^{-1}=\alpha^{-1}, \alpha^{\tau}=\alpha, \beta^{\tau}=\beta^{-1}, \tau^{2}=1\right\rangle
$$

and p is given by $\alpha \mapsto \alpha, \beta \mapsto \beta, t \mapsto \tau$.
Case 10: First, the isomorphism $\alpha \mapsto \alpha, \beta \mapsto \beta, t \mapsto t \beta$ gives the group the following presentation

$$
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha^{-1}, t \beta t^{-1}=\alpha \beta^{-1}\right\rangle .
$$

$p: G \rightarrow G_{2}^{4}$ where

$$
G_{2}^{4}=\left\langle\alpha, \beta, \tau \mid \beta \alpha \beta^{-1}=\alpha^{-1}, \alpha^{\tau}=\alpha^{-1}, \beta^{\tau}=\alpha \beta^{-1}, \tau^{2}=1\right\rangle
$$

and p is given by $\alpha \mapsto \alpha, \beta \mapsto \beta, t \mapsto \tau$.
Let M^{n} be a flat manifold with fundamental group π. Then there exists a maximal abelian normal subgroup Γ such that $\pi / \Gamma=\Phi$ (the holonomy) is finite. Given a selfmap $f: M \rightarrow M$, there exist lifts $D_{*} f$ on the $|\Phi|$-fold cover T^{n} whose fundamental group is Γ, for each $D \in \Phi$. There is an averaging formula for the Nielsen number [20] given by

$$
\begin{equation*}
N(f)=\frac{1}{|\Phi|} \sum_{D \in \Phi}\left|\operatorname{det}\left(1-\left(D_{*} f\right)_{\sharp}\right)\right| . \tag{2.1}
\end{equation*}
$$

There is an alternate way of computing $N(f)$ when M is fibered over S^{1}. Consider the fibration $N \hookrightarrow M \xrightarrow{p} S^{1}$ where N is a closed surface. Given a fiberpreserving map $f: M \rightarrow M$ inducing $\bar{f}: S^{1} \rightarrow S^{1}$, we can compute $N(f)$ as follows. Let $\gamma=\operatorname{deg} \bar{f}$. If $\gamma=1$, then $\bar{f} \sim 1_{S^{1}}$ so that \bar{f} is homotopic to a fixed point free map. It follows that f is deformable to be fixed point free and thus $N(f)=0$. If $\gamma \neq 1$, then $N(\bar{f})=|1-\gamma|$. Without loss of generality, we may assume that \bar{f} has exactly $|1-\gamma|$ fixed points each of which is its own fixed point class. The fixed point classes of $\left.f\right|_{p^{-1}(\bar{x})}: p^{-1}(\bar{x}) \rightarrow p^{-1}(\bar{x})$ inject into the fixed point classes of f for each $\bar{x} \in$ Fix \bar{f}. In fact, we have

$$
\begin{equation*}
N(f)=\sum_{\bar{x} \in F i x \bar{f}} N\left(\left.f\right|_{p^{-1}(\bar{x})}\right) . \tag{2.2}
\end{equation*}
$$

This fiberwise technique and in particular the formula (2.2) will be useful in section 5 when we compute $N(f)$ for arbitrary selfmaps in most cases.

3 Nielsen numbers of self homeomorphisms: Cases 1-5

3.1 Case 1.

This flat manifold is the 3-torus T^{3}. Every homeomorphism $f: T^{3} \rightarrow T^{3}$ induces on the fundamental group a linear map $\varphi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ and the Nielsen number is $N(f)=|\operatorname{det}(1-\varphi)|$. It is easy to see that $\operatorname{NSH}(M)=\mathbb{N} \cup\{0\}$.

Next, we use the formula (2.1) to determine the values of the Nielsen numbers of homeomorphisms for Cases $2,3,4$, and 5 .

It is well known that the center $\mathcal{Z}(G)$ of a crystallographic group G coincides with the fixed point group $\left(\mathbb{Z}^{n}\right)^{\Phi}$ where \mathbb{Z}^{n} is the translation subgroup and Φ is the holonomy group. In Case 2 , the holonomy \mathbb{Z}_{2} is generated by t so that $\left(\mathbb{Z}^{3}\right)^{\Phi}$ is the subgroup of the elements fixed by the automorphism induced by t. From the presentation of G for Case 2 , the automorphism induced by t is given by $\alpha_{1} \mapsto \alpha_{1}, \alpha_{2} \mapsto \alpha_{2}^{-1}, \alpha_{3} \mapsto \alpha_{3}^{-1}$. In other words, the automorphism is given by a diagonal integral matrix which has 1 as eigenvalue with one dimensional eigenspace. We now conclude that $\mathcal{Z}(G)=\left\langle\alpha_{1}\right\rangle$.

For each of the Cases 3,4, and 5, a similar argument shows that $\operatorname{Kerp}=\left\langle\alpha_{1}\right\rangle=$ $\mathcal{Z}(G)$. Thus, for every $\varphi \in \operatorname{Aut}(G)$ for each G in Cases 2-5, φ is represented by an array of the form

$$
\varphi=\left[\begin{array}{ll}
\kappa & * \\
0 & A
\end{array}\right]
$$

where $\kappa= \pm 1$ and A is a 3×3 array representing the induced automorphism $\bar{\varphi}: G / \mathcal{Z}(G) \rightarrow G / \mathcal{Z}(G)$.

Write φ to be the array

$$
\varphi=\left[\begin{array}{llll}
\kappa & x & y & z \\
0 & a & c & r \\
0 & b & d & s \\
0 & \epsilon & \delta & \gamma
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

Here the columns are the exponents of the generators $\alpha_{1}, \alpha_{2}, \alpha_{3}, t$ of their images under φ since every word can be written in the normal form $\alpha_{1}^{n_{1}} \alpha_{2}^{n_{2}} \alpha_{3}^{n_{3}} t^{n}$. Furthermore, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ generate a maximal abelian normal subgroup Γ in G so that the lift (or restriction to Γ) φ^{\prime} is represented by the array

$$
\varphi^{\prime}=\left[\begin{array}{lll}
\kappa & x & y \\
0 & a & c \\
0 & b & d
\end{array}\right]
$$

If a homeomorphism f has an induced automorphism φ on the fundamental group, the averaging formula (2.1) yields

$$
\begin{equation*}
N(f)=\frac{1}{|\Phi|} \sum_{0 \leq i<|\Phi|}\left|\operatorname{det}\left(1-\theta\left(t^{i}\right) \varphi^{\prime}\right)\right| \tag{3.1}
\end{equation*}
$$

where $\theta(t)$ denotes the action of t. In the Cases $2-5, t$ acts trivially on α_{1} so that $\theta\left(t^{i}\right) \varphi^{\prime}$ is also represented by an array of the form

$$
\theta\left(t^{i}\right) \varphi^{\prime}=\left[\begin{array}{cc}
\kappa & * \\
0 & A_{i}
\end{array}\right] .
$$

for some 2×2 array $\overline{A_{i}}$. Thus, when $\kappa=1$, $\left|\operatorname{det}\left(1-\theta\left(t^{i}\right) \varphi^{\prime}\right)\right|=0$ for all i, $0 \leq i<|\Phi|$. For such homeomorphisms f, we have $N(f)=0$. For the rest of this section, we consider automorphisms where $\kappa=-1$.

3.2 Case 2.

This group projects onto G_{2}. It follows from $[6,7]$ that φ can be represented by an array of the form

$$
\varphi=\left[\begin{array}{cccc}
-1 & x & y & z \\
0 & a & c & r \\
0 & b & d & s \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

with $a d-b c= \pm 1$. Now the lifts of φ are of the form (in fact, matrices)

$$
\varphi^{\prime}=\left[\begin{array}{ccc}
-1 & x & y \\
0 & a & c \\
0 & b & d
\end{array}\right] \quad \text { and } \quad \theta(t) \varphi^{\prime}=\left[\begin{array}{ccc}
-1 & x & y \\
0 & -a & -c \\
0 & -b & -d
\end{array}\right] .
$$

Let

$$
\bar{A}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

A straightforward calculation using the averaging formula (3.1) shows that if $\operatorname{det} \bar{A}=-1$ then the Nielsen number $N(f)=2|\operatorname{Tr} \bar{A}|$, where $\operatorname{Tr} X$ denotes the trace of a matrix X. If $\operatorname{det} \bar{A}=1$ then $N(f)=2|\operatorname{Tr} \bar{A}|$ if $|\operatorname{Tr} \bar{A}| \geq 2$ or else $N(f)=4$. Thus, for any homeomorphism f, we have $\operatorname{NSH}(M)=2 \mathbb{N} \cup\{0\}$.

3.3 Case 3.

This group projects onto G_{3}. It follows from [6, 7] that the automorphism A has one of the following two forms:

$$
\text { (i) } A=\left[\begin{array}{ccc}
a & -b & r \\
b & a+b & s \\
0 & 0 & 1
\end{array}\right] \quad \text { or } \quad \text { (ii) } \quad A=\left[\begin{array}{ccc}
a & b+a & r \\
b & -a & s \\
0 & 0 & 2
\end{array}\right] \text {. }
$$

The maximal abelian subgroup Γ is generated by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ with quotient the holonomy $\Phi=\mathbb{Z}_{3}$. Moreover, the restriction of φ on Γ is given by the matrix

$$
\varphi^{\prime}=\left[\begin{array}{ccc}
-1 & x & y \\
0 & a & -b \\
0 & b & a+b
\end{array}\right] \quad \text { or } \quad \varphi^{\prime}=\left[\begin{array}{ccc}
-1 & x & y \\
0 & a & b+a \\
0 & b & -a
\end{array}\right]
$$

Note that $\varphi\left(\alpha_{1}\right)=\alpha_{1}^{-1}$. Since $\alpha_{1}=t^{3}$, it follows that $\varphi(t)=\alpha_{1}^{z} \alpha_{2}^{r} \alpha_{3}^{s} t^{-1}=\alpha_{1}^{z} \alpha_{2}^{r} \alpha_{3}^{s} t^{2}$ so that

$$
\varphi^{\prime}=\left[\begin{array}{ccc}
-1 & x & y \\
0 & a & b+a \\
0 & b & -a
\end{array}\right]
$$

Now, from [7], we have

$$
\left[\begin{array}{cc}
a & b+a \\
b & -a
\end{array}\right] \in\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right]\right\}
$$

Now a straightforward calculation shows that $\operatorname{det}\left(1-\varphi^{\prime}\right)=\operatorname{det}\left(1-\theta(t) \varphi^{\prime}\right)=$ $\operatorname{det}\left(1-\theta\left(t^{2}\right) \varphi^{\prime}\right)=0$. Hence such automorphisms also yield $N(f)=0$. We conclude that $\operatorname{NSH}(M)=\{0\}$. Hence, by [16], every homeomorphism of this flat manifold is isotopic to a fixed point free homeomorphism.

3.4 Case 4.

This groups projects onto G_{4}. It follows from $[6,7]$ that the automorphism A has one of the following two forms:

$$
\text { (i) } A=\left[\begin{array}{ccc}
a & -b & r \\
b & a & s \\
0 & 0 & 1
\end{array}\right] \quad \text { or } \quad \text { (ii) } \quad A=\left[\begin{array}{ccc}
a & b & r \\
b & -a & s \\
0 & 0 & 3
\end{array}\right] \text {. }
$$

Note that $\varphi\left(\alpha_{1}\right)=\alpha_{1}^{-1}$. Since $\alpha_{1}=t^{4}$, it follows that $\varphi(t)=\alpha_{1}^{z} \alpha_{2}^{r} \alpha_{3}^{s} t^{3}$ so that only (ii) can occur. Furthermore, we have

$$
\text { (ii) } \bar{A}=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right] \in\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\right\} \text {. }
$$

Here,

$$
\theta(t)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \theta\left(t^{2}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad \theta\left(t^{3}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Now a straightforward calculation using the averaging formula shows that $N(f)=0$. Thus we conclude that for any homeomorphism f, we have $N(f)=0$ or $\operatorname{NSH}(M)=\{0\}$.

3.5 Case 5.

This group projects onto G_{6}. It follows from [6, 7] that the automorphism A has one of the following two forms:

$$
\text { (i) } A=\left[\begin{array}{ccc}
a & -b & r \\
b & a+b & s \\
0 & 0 & 1
\end{array}\right] \quad \text { or } \quad \text { (ii) } \quad A=\left[\begin{array}{ccc}
a & a+b & r \\
b & -a & s \\
0 & 0 & 5
\end{array}\right] \text {. }
$$

Note that $\varphi\left(\alpha_{1}\right)=\alpha_{1}^{-1}$. Since $\alpha_{1}=t^{6}$, it follows that $\varphi(t)=\alpha_{1}^{z} \alpha_{2}^{r} \alpha_{3}^{s} t^{5}$ so that only (ii) can occur. Furthermore, we have
(ii) $\bar{A}=\left[\begin{array}{cc}a & a+b \\ b & -a\end{array}\right] \in\left\{\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\right.$,

$$
\left.\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\right\}
$$

Here,

$$
\begin{gathered}
\theta(t)=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right) \quad \theta\left(t^{2}\right)=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right) \quad \theta\left(t^{3}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
\theta\left(t^{4}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad \theta\left(t^{5}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

Now a straightforward calculation using the averaging formula shows that $N(f)=0$. Thus we conclude that for any homeomorphism f, we have $N(f)=0$ or $\operatorname{NSH}(M)=\{0\}$.

4 Nielsen numbers: remaining cases 6-10

In this section, we compute the Nielsen numbers of self-homeomorphisms of flat manifolds in the remaining 5cases, 6-10.

4.1 Case 6.

Lemma 4.1. Each element in G can be written as the form $t_{1}^{p_{1}} \alpha_{2}^{p_{2}} t_{3}^{p_{3}}$.
Proof. By definition of holonomy, the subgroup of G generated by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ has index 4 in G. Thus, each element of G must be in one of the forms: $\alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}$, $t_{1} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}, t_{3} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}$ and $t_{1} t_{3} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}$. Clearly, $\alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}=t_{1}^{2 p_{1}} \alpha_{2}^{p_{2}} t_{3}^{2 p_{3}}$, and $t_{1} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}=t_{1}^{2 p_{1}+1} \alpha_{2}^{p_{2}} t_{3}^{2 p_{3}}$. By using the relation: $t_{3} \alpha_{j} t_{3}^{-1}=\alpha_{j}^{-1}, j=1,2$. We obtain:

$$
t_{3} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}=\alpha_{1}^{-p_{1}} \alpha_{2}^{-p_{2}} t_{3} \alpha_{3}^{p_{3}}=t_{1}^{-2 p_{1}} \alpha_{2}^{-p_{2}} t_{3}^{2 p_{3}+1}
$$

and

$$
t_{1} t_{3} \alpha_{1}^{p_{1}} \alpha_{2}^{p_{2}} \alpha_{3}^{p_{3}}=t_{1} \alpha_{1}^{-p_{1}} \alpha_{2}^{-p_{2}} t_{3} \alpha_{3}^{p_{3}}=t_{1}^{1-2 p_{1}} \alpha_{2}^{-p_{2}} t_{3}^{2 p_{3}+1}
$$

Note that $t_{2}=t_{3} t_{1}$. Lemma 4.1 says that every group element has such normal form. In particular, a straightforward calculation yields

$$
t_{3}^{t} t_{1}^{a}= \begin{cases}t_{1}^{a} t_{3}^{t}, & \text { if } a \text { is even and } t \text { is even } \\ t_{1}^{-a} t_{3}^{t}, & \text { if } a \text { is even and } t \text { is odd } \\ t_{1}^{a} t_{3}^{-t}, & \text { if } a \text { is odd and } t \text { is even } \\ t_{1}^{-a} \alpha_{2}^{-1} t_{3}^{-t}, & \text { if } a \text { is odd and } t \text { is odd }\end{cases}
$$

Now for any $\varphi \in \operatorname{Aut}(G)$, using the generators t_{1}, α_{2} and t_{3}, we can represent φ by a 3×3 array of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & t
\end{array}\right] .
$$

We now compute $\varphi\left(t_{1}^{2}\right)$ under all possible cases for the parities of the pair (a, ϵ).

Type	a	ϵ	$\varphi\left(t_{1}^{2}\right)=\varphi\left(\alpha_{1}\right)$
(I)	even	even	$t_{1}^{2 a} \alpha_{2}^{2 b} t_{3}^{2 \epsilon}$
(II)	even	odd	$t_{3}^{2 \epsilon}$
(III)	odd	even	$t_{1}^{2 a}$
(IV)	odd	odd	$\alpha_{2}^{-2 b-1}$

Similarly, we compute $\varphi\left(t_{3}^{2}\right)$ under all possible cases for the parities of the pair (r, t).

Type	r	t	$\varphi\left(t_{3}^{2}\right)=\varphi\left(\alpha_{3}\right)$
$\left(\mathrm{I}^{\prime}\right)$	even	even	$t_{1}^{2 r} \alpha_{2}^{2 s} t_{3}^{2 t}$
$\left(\mathrm{II}^{\prime}\right)$	even	odd	$t_{3}^{t^{2 t}}$
$\left(\right.$ III' $\left.^{\prime}\right)$	odd	even	t_{1}^{22}
$\left(\mathrm{IV}^{\prime}\right)$	odd	odd	$\alpha_{2}^{-2 s-1}$

If Type (I) occurs, we consider the relation $\varphi\left(t_{1} t_{3}^{2} t_{1}^{-1}\right)=\varphi\left(t_{3}^{-2}\right)$. With a and ϵ both even, $\varphi\left(t_{1}\right)=t_{1}^{a} \alpha_{2}^{b} \epsilon_{3}^{\epsilon}$ lies in the maximal abelian subgroup generated by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ so that $\varphi\left(t_{1}\right)$ commutes with $\varphi\left(t_{3}^{2}\right)=\varphi\left(\alpha_{3}\right)$. It follows that $\varphi\left(t_{3}^{2}\right)=$ $\varphi\left(t_{3}^{-2}\right)$ and so $\varphi\left(t_{3}\right)=1$, a contradiction to the fact that φ is an automorphism and t_{3} is a generator. Likewise, if Type ($\left.\mathrm{I}^{\prime}\right)$ occurs then the relation $\varphi\left(t_{3} t_{1}^{2} t_{1}^{-1}\right)=\varphi\left(t_{1}^{-2}\right)$ leads to $\varphi\left(t_{1}\right)=1$, a contradiction.

Next, we consider the case Type (II) and Type (II'). Then the relation $\varphi\left(t_{1} t_{3}^{2} t_{1}^{-1}\right)=\varphi\left(t_{3}^{-2}\right)$ becomes

$$
\begin{aligned}
t_{1}^{a} \alpha_{2}^{b} t_{3}^{\epsilon} t_{3}^{2 t} t_{3}^{-\epsilon} \alpha_{2}^{-b} t_{1}^{-a} & =t_{3}^{-2 t} \\
\Rightarrow t_{3}^{2 t} & =t_{3}^{-2 t} \quad \Rightarrow t=0
\end{aligned}
$$

This is a contradiction to the assumption that t is odd.
Consider the case Type (III) and Type (III'). Then the relation $\varphi\left(t_{3} t_{1}^{2} t_{3}^{-1}\right)=$ $\varphi\left(t_{1}^{-2}\right)$ becomes

$$
\begin{aligned}
t_{1}^{r} \alpha_{2}^{s} t_{3}^{t} t_{1}^{2 a} t_{3}^{-t} \alpha_{2}^{-s} t_{1}^{-r} & =t_{1}^{-2 a} \\
\Rightarrow t_{1}^{2 a} & =t_{1}^{-2 a} \quad \Rightarrow a=0 .
\end{aligned}
$$

This is a contradiction to the assumption that a is odd.
Consider the case Type (IV) and Type (IV'). Then the relation $\varphi\left(t_{1} t_{3}^{2} t_{1}^{-1}\right)=$ $\varphi\left(t_{3}^{-2}\right)$ becomes

$$
\begin{aligned}
t_{1}^{a} \alpha_{2}^{b} t_{3}^{\epsilon} \alpha_{2}^{-2 s-1} t_{3}^{-\epsilon} \alpha_{2}^{-b} t_{1}^{-a} & =\alpha_{2}^{2 s+1} \\
\Rightarrow \alpha_{2}^{-2 s-1} & =\alpha_{2}^{2 s+1} \quad \Rightarrow 2 s+1=0
\end{aligned}
$$

This is not possible since s is an integer.
Thus, we only need to consider six possible cases below which we compute $\varphi\left(\alpha_{2}\right)=\varphi\left(t_{2}^{2}\right)=\varphi\left(t_{3} t_{1}\right)^{2}$.

Type	$\varphi\left(t_{3} t_{1}\right)^{2}=\left(t_{1}^{r} \alpha_{2}^{s} t_{3}^{t} t_{1}^{a} \alpha_{2}^{b} t_{3}^{\epsilon}\right)^{2}$
(II) and (III')	$\alpha_{2}^{-2 s-2 b-1}$
(II) and (IV')	$t_{1}^{2(r-a)}$
(III) and (II')	$\alpha_{2}^{2(s+b)+1}$
(III) and (IV')	$t_{3}^{2(\epsilon-t)}$
(IV) and (II')	$t_{1}^{2(r-a)}$
(IV) and (III')	$t_{3}^{2(\epsilon-t)}$

If we denote by φ^{\prime} the restriction of φ on the maximal subgroup generated by α_{1}, α_{2} and α_{3}, then we have the following

Automorphism Types

Type	(II) and (III')	(II) and (IV)	(III) and (II)	(III) and (IV)	(IV) and (II)	IV) and (III')
φ^{\prime}	[([${ }^{0}$	

The holonomy $\Phi=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is generated by the images of t_{1} and t_{3}. Their actions of α_{i} are given by the following matrices:

$$
\theta_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \theta_{2}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \theta_{3}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

Now a straightforward calculation together with the average formula for $N(f)$, we conclude that in all six cases we have $N(f)=0$ or 2 so that $\operatorname{NSH}(M)=\{0,2\}$ for any homeomorphism.

4.2 Case 7.

The group is $\pi_{1}(K) \times \mathbb{Z}$. Moreover, we have the following presentation

$$
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\beta\right\rangle
$$

The center of G is $\mathcal{Z}(G)=\left\langle\beta^{2}\right\rangle \times\langle t\rangle$. Let $\varphi \in \operatorname{Aut}(G)$. Using the generators α, β, t, we can represent φ by a 3×3 array of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

Since $t \in \mathcal{Z}(G), \varphi(t) \in \mathcal{Z}(G)$. It follows that $r=0$ and s is even. Now

$$
\varphi\left(\beta^{2}\right)=\alpha^{c} \beta^{d} t^{\delta} \alpha^{c} \beta^{d} t^{\delta}=\alpha^{c} \alpha^{(-1)^{d} c} \beta^{2 d} t^{2 \delta} \quad \in \mathcal{Z}(G)
$$

and thus $c+(-1)^{d} c=0$ and so d must be odd. Thus,

$$
\varphi=\left[\begin{array}{ccc}
a & c & 0 \\
b & 2 q+1 & 2 k \\
\epsilon & \delta & \gamma
\end{array}\right] .
$$

Next, we have $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$. It follows that

$$
\begin{aligned}
\alpha^{c} \beta^{2 q+1} \delta^{\delta} \alpha^{a} \beta^{b} \epsilon^{\epsilon} t^{-\delta} \beta^{-2 q-1} \alpha^{-c} & =t^{-\epsilon} \beta^{-b} \alpha^{-a} \\
\alpha^{c} \beta^{2 q+1} \alpha^{a} \beta^{b} \beta^{-2 q-1} \alpha^{-c} t^{\epsilon} & =\beta^{-b} \alpha^{-a} t^{-\epsilon} \quad \text { hence } \epsilon=0 \\
\alpha^{c} \alpha^{-a} \beta^{b} \alpha^{-c} & =\beta^{-b} \alpha^{-a} \\
\beta^{b} \alpha^{c-a} \beta^{b} & =\alpha^{c-a} \quad \Rightarrow \quad \alpha^{(-1)^{b}(c-a)} \beta^{2 b}=\alpha^{c-a}
\end{aligned}
$$

It follows that $b=0$. In other words, $\varphi(\alpha)=\alpha^{a}$. Since φ is an automorphism, we have $a= \pm 1$. Now, we have

$$
\varphi=\left[\begin{array}{ccc}
\pm 1 & c & 0 \\
0 & 2 q+1 & 2 k \\
0 & \delta & \gamma
\end{array}\right]
$$

From the calculation above, we have $\varphi\left(\beta^{2}\right)=\beta^{4 q+2} t^{2 \delta}$. Now the subgroup generated by α, β^{2}, t is a maximal abelian subgroup Γ and the quotient G / Γ is the holonomy group $\Phi=\left\langle\bar{\beta} \mid \bar{\beta}^{2}=1\right\rangle \cong \mathbb{Z}_{2}$. The restriction of φ on Γ is given by the matrix

$$
\varphi^{\prime}=\left[\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & 2 q+1 & 2 k \\
0 & 2 \delta & \gamma
\end{array}\right]
$$

Since φ^{\prime} is an automorphism, we have $\operatorname{det} \varphi^{\prime}=(2 q+1) \gamma-4 \delta k= \pm 1$. It follows that γ must be odd. The action of Φ on Γ sends α to α^{-1} and is trivial on β^{2} and t. Thus, it induces another lift $D_{*} \varphi^{\prime}$ given by

$$
D_{*} \varphi^{\prime}=\left[\begin{array}{ccc}
\mp 1 & 0 & 0 \\
0 & 2 q+1 & 2 k \\
0 & 2 \delta & \gamma
\end{array}\right] .
$$

A straightforward calculation shows that

$$
N(f)=\frac{1}{2}(0+2|2 q(\gamma-1)-4 \delta k|)=|2 q(\gamma-1)-4 \delta k|=| \pm 1-\gamma-2 q|
$$

where

$$
f_{\sharp}=\varphi=\left[\begin{array}{ccc}
\pm 1 & c & 0 \\
0 & 2 q+1 & 2 k \\
0 & \delta & \gamma
\end{array}\right]
$$

with γ an odd integer. In particular, $N(f)$ must be even. In fact, we have $\operatorname{NSH}(M)=$ $2 \mathbb{N} \cup\{0\}$.

4.3 Case 8.

The group is $\pi_{1}(K) \rtimes \mathbb{Z}$. Moreover, we have the following presentation

$$
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\alpha \beta\right\rangle .
$$

Note that α, β^{2}, t generate an index 2 abelian subgroup in G and hence is the maximal abelian subgroup whose quotient group \mathbb{Z}_{2} is the holonomy. Let $\varphi \in$ $\operatorname{Aut}(G)$. Using the generators α, β, t, we can represent φ by a 3×3 array of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

Since $\varphi\left(t \beta t^{-1}\right)=\varphi(\alpha \beta)$, we have

$$
\begin{equation*}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{a} \beta^{b} t^{\epsilon} \alpha^{c} \beta^{d} t^{\delta} . \tag{4.2}
\end{equation*}
$$

Using the group relations, (4.2) can be rewritten as

$$
w_{1} t^{\delta}=w_{2} t^{\epsilon+\delta}
$$

where w_{1}, w_{2} are words in α and β. It follows that $\epsilon=0$.
Note that $t^{x} \beta=\alpha^{x} \beta t^{x}$ so that $t^{x} \beta^{y} t^{-x}=\left(\alpha^{x} \beta\right)^{y}$. Moreover, $\alpha^{x} \beta \alpha^{x} \beta=\beta^{2}$.
Since $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$, we have

$$
\begin{align*}
\alpha^{c} \beta^{d} t^{\delta} \alpha^{a} \beta^{b} t^{-\delta} \beta^{-d} \alpha^{-c} & =\beta^{-b} \alpha^{-a} \\
\Rightarrow \alpha^{c} \beta^{d} \alpha^{a}\left(\alpha^{\delta} \beta\right)^{b} \beta^{-d} \alpha^{-c+a} & =\beta^{-b} . \tag{4.3}
\end{align*}
$$

Case (i): b even
In this case, (4.3) yields

$$
\begin{aligned}
\alpha^{c} \beta^{d} \alpha^{a} \beta^{b-d} \alpha^{-c+a} & =\beta^{-b} \\
\Rightarrow \alpha^{c} \alpha^{(-1)^{d}} \beta^{b} \alpha^{-c+a} & =\beta^{-b} \\
\Rightarrow \alpha^{c+(-1)^{d} a+(-1)^{b}(-c+a)} \beta^{b} & =\beta^{-b} \quad \Rightarrow b=0 .
\end{aligned}
$$

Case (ii): b odd
In this case, (4.3) yields

$$
\begin{aligned}
\alpha^{c} \beta^{d} \alpha^{a} \beta^{b-1} \alpha^{\delta} \beta \beta^{-d} \alpha^{-c+a} & =\beta^{-b} \\
\Rightarrow \alpha^{c} \alpha^{(-1)^{d} a} \beta^{b+d-1} a f^{\delta} \beta^{1-d} \alpha^{-c+a} & =\beta^{-b} \\
\Rightarrow \alpha^{c+(-1)^{d} a+(-1)^{b+d-1} \delta} \beta^{b} \alpha^{-c+a} & =\beta^{-b} \\
\Rightarrow \alpha^{w} \beta^{b} & =\beta^{-b} \\
\text { for some } w & \Rightarrow b=0 \text { a contradiction since } b \text { is odd. }
\end{aligned}
$$

Thus, we conclude that $b=0$. Now, φ is an automorphism and $\varphi(\alpha)=\alpha^{a}$. It follows that $a= \pm 1$.

Since $\varphi\left(t_{\alpha} t^{-1}\right)=\alpha$, we have

$$
\begin{align*}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{a} t^{-\gamma} \beta^{-s} \alpha^{-r} & =\alpha^{a} \\
\Rightarrow \alpha^{r} \beta^{s} \alpha^{a} \beta^{-s} \alpha^{-r} & =\alpha^{a} \tag{4.4}\\
\Rightarrow \alpha^{r} \alpha^{(-1)^{s}} \alpha^{-r} & =\alpha^{a} \quad \Rightarrow(-1)^{s} a=a \quad \Rightarrow s \text { is even. }
\end{align*}
$$

Suppose $a=-1$ so that

$$
\varphi=\left[\begin{array}{ccc}
-1 & c & r \\
0 & d & s \\
0 & \delta & \gamma
\end{array}\right]
$$

where s is even. Now (4.3) yields $c-(-1)^{d}-c-1=0$ so that d must be odd. (Note that d is also odd when $a=1$.)

The equality (4.2) becomes

$$
\begin{aligned}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r} & =\alpha^{-1} \alpha^{c} \beta^{d} t^{\delta} \\
\Rightarrow \alpha^{r} \beta^{s} \alpha^{c} t^{\gamma} \beta^{d} t^{-\gamma} t^{\delta} \beta^{-s} \alpha^{-r} & =\alpha^{c-1} \beta^{d} t^{\delta} \\
\Rightarrow \alpha^{r} \beta^{s} \alpha^{c}\left(\alpha^{\gamma} \beta\right)^{d} t^{\delta} \beta^{-s} \alpha^{-r} & =\alpha^{c-1} \beta^{d} t^{\delta} \\
\Rightarrow \alpha^{r} \alpha^{(-1)^{s} c} \beta^{s} \beta^{d-1} \alpha^{\gamma} \beta t^{\delta} \beta^{-s} \alpha^{-r} & =\alpha^{c-1} \beta^{d} t^{\delta} \quad \text { since } d \text { is odd } \\
\Rightarrow \alpha^{r+c} \beta^{s+d-1} \alpha^{\gamma} \beta\left(\alpha^{\delta} \beta\right)^{-s} \alpha^{-r} & =\alpha^{c-1} \beta^{d} \quad \text { since } s \text { is even } \\
\Rightarrow \alpha^{r+c} \beta^{s+d-1} \alpha^{\gamma} \beta \beta^{-s} \alpha^{-r} & =\alpha^{c-1} \beta^{d} \quad \text { since } s \text { is even } \\
\Rightarrow \alpha^{r+c} \alpha^{(-1)^{s+d-1} \gamma} \beta^{d} \alpha^{-r} & =\alpha^{c-1} \beta^{d} \\
\Rightarrow \alpha^{r+c} \alpha^{\gamma} \alpha^{(-1)^{d}(-r)} \beta^{d} & =\alpha^{c-1} \beta^{d} \\
\Rightarrow r+c+\gamma-(-1)^{d} r & =c-1 \quad \Rightarrow \gamma=-1-2 r \quad \text { since } d \text { is odd. }
\end{aligned}
$$

It follows that γ must be odd.
Let φ^{\prime} denote the restriction of φ on the maximal abelian subgroup generated by α, β^{2} and t. A straightforward calculation show that

$$
\varphi^{\prime}=\left[\begin{array}{ccc}
\pm 1 & -\delta & r \\
0 & d & s / 2 \\
0 & 2 \delta & \gamma
\end{array}\right]
$$

The other lift $D_{*} \varphi^{\prime}$ induced by the holonomy action is given by

$$
D_{*} \varphi^{\prime}(w)=\beta \varphi^{\prime}(w) \beta^{-1}
$$

Again, a straightforward calculation yields

$$
D_{*} \varphi^{\prime}=\left[\begin{array}{ccc}
\mp 1 & 3 \delta & -r-(-1)^{s / 2} \gamma \\
0 & d & s / 2 \\
0 & 2 \delta & \gamma
\end{array}\right]
$$

Thus, if $a=1$ then $\operatorname{det}\left(1-\varphi^{\prime}\right)=0$ while $\operatorname{det}\left(1-D_{*} \varphi^{\prime}\right)=2[(1-d)$ $(1-\gamma)-\delta s]$. The averaging formula shows that $N(f)=|1-(d+\gamma)+(\pm 1)|$ is even. Similarly, if $a=-1$ then $\operatorname{det}\left(1-\varphi^{\prime}\right)=2[(1-d)(1-\gamma)-\delta s]$ while $\operatorname{det}\left(1-D_{*} \varphi^{\prime}\right)=0$. Again using the averaging formula yields that $N(f)$ is even. In fact, all even non negative integers can occur as $N(f)$ and hence $\operatorname{NSH}(M)=$ $2 \mathbb{N} \cup\{0\}$

4.4 Case 9.

The isomorphism $\alpha \mapsto \alpha, \beta \mapsto \beta, t \mapsto t \beta$ gives the group G the following presentation

$$
\begin{equation*}
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha^{-1}, t \beta t^{-1}=\beta^{-1}\right\rangle . \tag{4.5}
\end{equation*}
$$

This group is the mapping torus $\pi_{1}(K) \rtimes_{\varphi} \mathbb{Z}$ where $\varphi(\alpha)=\alpha^{-1}$ and $\varphi(\beta)=\beta^{-1}$. Here K denotes the Klein bottle. Using the calculation in [7] and the fact that this group projects onto the group G_{2}^{2}, the normal subgroup $\pi_{1}(K)$ is characteristic. In fact, the corresponding flat manifold M is a Klein bottle bundle over the unit circle S^{1}. Given a homeomorphism f, it induces the following commutative diagram at the fundamental group level.

Choose a homeomorphism \bar{f} with induced automorphism $\bar{\varphi}$. Then the following diagram is commutative, up to homotopy.

This implies that there is a homotopy $\bar{H}: M \times[0,1] \rightarrow S^{1}$ from $p \circ f$ to $\bar{f} \circ p$. The Covering Homotopy Property for the fibration $p: M \rightarrow S^{1}$ yields a homotopy $H: M \times[0,1] \rightarrow M$ covering \bar{H} from f to \hat{f}. It follows that the diagram (4.6) gives rise to the following commutative diagram.

Since \bar{f} is a self homeomorphism of the unit circle, $N(\bar{f})=0$ or 2 . If $N(\bar{f})=0$, it follows that $N(f)=0$. Suppose $N(\bar{f})=2$. We may assume that \bar{f} has exactly two fixed points at $z=1$ and at $z=-1$. The corresponding fiber maps are f^{\prime} and $f^{\prime \prime}$ respectively. It is easy to see that the fixed subgroups Fixf f_{\sharp}^{\prime} and Fixf $f_{\sharp}^{\prime \prime}$ are both trivial so that the fixed point classes of f^{\prime} and of $f^{\prime \prime}$ inject into the set of fixed point classes of \hat{f} (or f). Since there are only four isomorphism classes of automorphisms of $\pi_{1}(K)$, we may assume without loss of generality that the map f^{\prime} induces the automorphism $\alpha \mapsto \alpha, \beta \mapsto \alpha \beta^{-1}$ or $\beta \mapsto \beta^{-1}$ while $f^{\prime \prime}$ induces the automorphism $\alpha \mapsto \alpha, \beta \mapsto \alpha \beta$ or $\beta \mapsto \beta$. By computing the Nielsen number of f^{\prime} and $f^{\prime \prime}$, we see that $N\left(f^{\prime}\right)=2$ while $N\left(f^{\prime \prime}\right)=0$. Hence, we conclude that $\operatorname{NSH}(M)=\{0,2\}$.

4.5 Case 10.

This case is similar to Case 9 . This group is the mapping torus $\pi_{1}(K) \rtimes_{\varphi} \mathbb{Z}$ where $\varphi(\alpha)=\alpha^{-1}$ and $\varphi(\beta)=\alpha \beta^{-1}$. Thus G has the following presentation

$$
\begin{equation*}
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha^{-1}, t \beta t^{-1}=\alpha \beta^{-1}\right\rangle \tag{4.7}
\end{equation*}
$$

Let $\eta \in \operatorname{Aut}(G)$ be given by the following array

$$
\eta=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

Since $\eta\left(\beta \alpha \beta^{-1}\right)=\eta\left(\alpha^{-1}\right)$, we have

$$
\alpha^{c} \beta^{d} t^{\delta} \alpha^{a} \beta^{b} t^{\epsilon} t^{-\delta} \beta^{-d} \alpha^{-c}=t^{-\epsilon} \beta^{-b} \alpha^{-a}
$$

This equality can be rewritten as $w_{1} t^{\epsilon}=w_{2} t^{-\epsilon}$ where w_{i} are words in α and β. Thus, $\epsilon=0$. Similarly, $\eta\left(t \beta t^{-1}\right)=\eta\left(\alpha \beta^{-1}\right)$, we have

$$
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{a} \beta^{b} t^{\epsilon} t^{-\delta} \beta^{-d} \alpha^{-c} .
$$

This equality can be rewritten as $\tilde{w}_{1} t^{\delta}=\tilde{w}_{2} t^{\epsilon-\delta}$ where \tilde{w}_{i} are words in α and β. It follows that $\epsilon=2 \delta$ so that $\delta=0$. Since $\epsilon=0=\delta$, this shows that $\pi_{1}(K)$ is characteristic. Now we use the same arguments as in Case 9 to conclude that $\operatorname{NSH}(M)=\{0,2\}$ for every homeomorphism f of the flat manifold M.

5 Nielsen numbers of arbitrary selfmaps: Cases 2-5,9,10

In the previous two sections, with the exception of cases 9 and 10 for which we used fiberwise techniques to compute $N(f)$ for self homeomorphisms, we employed the average formula (3.1) in terms of the Nielsen numbers of the associated lifts to the universal cover \mathbb{R}^{3}. For arbitrary selfmaps, it is more manageable to classify these maps up to fiberwise homotopy since for all but two of the ten cases, the flat manifold M fibers over S^{1} with typical fiber N corresponding to a fully invariant subgroup of $\pi_{1}(M)$. Thus, we can apply fiberwise techniques. For cases $2-5, N=T^{2}$ is the 2-torus. For cases 9 and $10, N=K$ is the Klein bottle.

For each of the cases 2-5, the crystallographic group G is isomorphic to a mapping torus of the form $\left\langle\alpha_{2}, \alpha_{3} \mid \alpha_{2} \alpha_{3}=\alpha_{3} \alpha_{2}\right\rangle \rtimes_{\theta_{i}}\langle t\rangle$ where $i=2,3,4,5$ for each case i and

$$
\theta_{2}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \theta_{3}(t)=\left[\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right], \quad \theta_{4}(t)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \theta_{5}(t)=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]
$$

Moreover, the automorphisms $\theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}$ have finite orders of $2,3,4$, and 6 respectively. Every endomorphism of G will be given by a 3×3 array of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

where the columns represent the images of α_{2}, α_{3}, and t under φ in terms of the generators $\alpha_{2}, \alpha_{3}, t$.

The relations defining (i) $t \alpha_{2} t^{-1}$ and (ii) $t \alpha_{3} t^{-1}$ yield two relations of the form $w t^{m}=w^{\prime} t^{n}$ where w, w^{\prime} are words in α_{2}, α_{3}. More precisely, we have the following:
Case 2: (i) $w_{1} t^{\epsilon}=w_{1}^{\prime} t^{-\epsilon}$ and (ii) $w_{2} t^{\delta}=w_{2}^{\prime} t^{-\delta}$. It follows that $\epsilon=0=\delta$.
Case 3: (i) $w_{1} t^{\epsilon}=w_{1}^{\prime} t^{-\delta}$ and (ii) $w_{2} t^{\delta}=w_{2}^{\prime} t^{-\epsilon-\delta}$. It follows that $\epsilon=0=\delta$.
Case 4: (i) $w_{1} t^{\epsilon}=w_{1}^{\prime} t^{\delta}$ and (ii) $w_{2} t^{\delta}=w_{2}^{\prime} t^{-\epsilon}$. It follows that $\epsilon=0=\delta$.
Case 5: (i) $w_{1} t^{\epsilon}=w_{1}^{\prime} t^{\delta}$ and (ii) $w_{2} t^{\delta}=w_{2}^{\prime} t^{-\epsilon+\delta}$. It follows that $\epsilon=0=\delta$.
Thus every endomorphism of G is of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
0 & 0 & \gamma
\end{array}\right]
$$

so that $N=\pi_{1}\left(T^{2}\right)=\left\langle\alpha_{2}, \alpha_{3} \mid \alpha_{2} \alpha_{3}=\alpha_{3} \alpha_{2}\right\rangle$ is fully invariant.
For cases 9 and 10, the crystallographic group G is isomorphic to $\langle\alpha, \beta| \beta \alpha \beta^{-1}=$ $\left.\alpha^{-1}\right\rangle \rtimes_{\theta_{i}}\langle t\rangle$ where $i=9,10$ and

$$
\theta_{9}(t)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \theta_{10}(t)=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] .
$$

Here each of θ_{9}, θ_{10} is represented by a 2×2 array where the columns are the images of α, β under the action θ_{i}.
Case 9: Given an endomorphism φ, the relation $\varphi\left(t \beta t^{-1}\right)=\varphi\left(\beta^{-1}\right)$ yields

$$
\begin{aligned}
& \alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r}=t^{-\delta} \beta^{-d} \alpha^{-c} \\
\Rightarrow & w_{1} t^{\delta}=w_{1}^{\prime} t^{-\delta}
\end{aligned}
$$

for some words w_{1}, w_{1}^{\prime} in α, β. It follows that $\delta=0$.
Similarly the relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$ yields

$$
\begin{aligned}
& \alpha^{c} \beta^{d} \alpha^{a} \beta^{b} t^{\epsilon} \beta^{-d} \alpha^{-c}=t^{-\epsilon} \beta^{-b} \alpha^{-a} \\
\Rightarrow & w_{2} t^{\epsilon}=w_{2}^{\prime} t^{-\epsilon},
\end{aligned}
$$

for some words w_{2}, w_{2}^{\prime} in α, β. It follows that $\epsilon=0$.
Case 10: Given an endomorphism φ, similar to Case 9 above, the relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$ yields $\epsilon=0$. Now, the relation $\varphi\left(t \beta t^{-1}\right)=\varphi\left(\alpha \beta^{-1}\right)$ yields

$$
\begin{aligned}
& \alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{a} \beta^{b} t^{-\delta} \beta^{-d} \alpha^{-c} \\
\Rightarrow & w_{1} t^{\delta}=w_{1}^{\prime} t^{-\delta}
\end{aligned}
$$

for some words w_{1}, w_{1}^{\prime} in α, β. It follows that $\delta=0$.
Furthermore, for both cases 9 and 10, the relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$ yields

$$
\begin{aligned}
\alpha^{c} \beta^{d} \alpha^{a} \beta^{b} \beta^{-d} \alpha^{-c} & =\beta^{-b} \alpha^{-a} \\
\Rightarrow \alpha^{c}\left(\alpha^{(-1)^{d} a}\right)\left(\alpha^{(-1)^{b}(-c)}\right) \beta^{b} \alpha^{a} \beta^{-b} & =\beta^{-2 b} \\
\Rightarrow \alpha^{c}\left(\alpha^{(-1)^{d} a}\right)\left(\alpha^{(-1)^{b}(-c)}\right)\left(\alpha^{(-1)^{b} a}\right) & =\beta^{-2 b} .
\end{aligned}
$$

This implies that $b=0$.
Thus for cases 9 and 10, every endomorphism is of the form

$$
\varphi=\left[\begin{array}{lll}
a & c & r \tag{5.1}\\
0 & d & s \\
0 & 0 & \gamma
\end{array}\right]
$$

so that $N=\pi_{1}(K)=\left\langle\alpha, \beta \mid \beta \alpha \beta^{-1}=\alpha^{-1}\right\rangle$ is fully invariant.
We are now ready to compute $N(f)$ for an arbitrary selfmap in the cases 2-5, 9,10.

5.1 Case 2

Using fiberwise techniques, it follows from (2.2) that the Nielsen number of a selfmap f is given by

$$
N(f)=\sum_{i=0}^{|1-\gamma|-1}\left|\operatorname{det}\left(I-\theta^{i}(B)\right)\right|
$$

Here, f induces on the fundamental group the endomorphism given by

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
0 & 0 & \gamma
\end{array}\right]
$$

with $\operatorname{deg} \bar{f}=\gamma$ where $\bar{f}: S^{1} \rightarrow S^{1}$ is the induced map on the base of the fibration $T^{2} \rightarrow M \rightarrow S^{1}$. The matrix B is the restriction $\left.\varphi\right|_{\mathbb{Z}^{2}}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\theta=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ is of order 2.

The relation $\varphi\left(t \alpha_{3} t^{-1}\right)=\varphi\left(\alpha_{3}^{-1}\right)$ yields

$$
\begin{align*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{c} \alpha_{3}^{d} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r} & =\alpha_{3}^{-d} \alpha_{2}^{-c} \\
\Rightarrow \alpha_{2}^{r} \alpha_{3}^{s} \alpha_{2}^{(-1)^{\gamma} c} \alpha_{3}^{(-1)^{\gamma} d} \alpha_{3}^{-s} \alpha_{2}^{-r} & =\alpha_{3}^{-d} \alpha_{2}^{-c} . \tag{5.2}
\end{align*}
$$

This implies that (1) γ is odd or $c=0$ and (2) γ is odd or $d=0$.
Similarly, the relation $\varphi\left(t \alpha_{2} t^{-1}\right)=\varphi\left(\alpha_{2}^{-1}\right)$ yields

$$
\begin{align*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{r} \alpha_{2}^{a} \alpha_{3}^{b} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r} & =\alpha_{3}^{-b} \alpha_{2}^{-a} \\
\Rightarrow \alpha_{2}^{r} \alpha_{3}^{s} \alpha_{2}^{(-1)^{r} a} \alpha_{3}^{(-1)^{r} b} \alpha_{3}^{-s} \alpha_{2}^{-r} & =\alpha_{3}^{-d} \alpha_{2}^{-c} . \tag{5.3}
\end{align*}
$$

This implies that (1) γ is odd or $a=0$ and (2) γ is odd or $b=0$. Thus, if γ is even then $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and hence $N(f)=|1-\gamma|$.

Suppose γ is odd then $B=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}-a & -c \\ -b & -d\end{array}\right]$. It follows that $\operatorname{det}(I-B)=1+a d-b c-(a+d)$ and $\operatorname{det}(I-\theta B)=1+a d-b c+(a+d)$. When γ is odd, $|1-\gamma|$ is even. (1) If $|1+a d-b c| \geq|a+d|$ then we have

$$
\begin{aligned}
N(f) & =\frac{|1-\gamma|}{2}(|\operatorname{det}(I-B)|+|\operatorname{det}(I-\theta B)|) \\
& =|1-\gamma| \cdot|1+a d-b c| .
\end{aligned}
$$

(2) Otherwise, we have

$$
N(f)=|1-\gamma| \cdot|a+d| .
$$

5.2 Case 3

In this case,

$$
\theta=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right], \quad \theta^{2}=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]
$$

and $\theta^{3}=I$.
The relation $\varphi\left(t \alpha_{2} t^{-1}\right)=\varphi\left(\alpha_{3}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{a} \alpha_{3}^{b} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d} \tag{5.4}
\end{equation*}
$$

and $\varphi\left(t \alpha_{3} t^{-1}\right)=\varphi\left(\alpha_{2}^{-1} \alpha_{3}^{-1}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{c} \alpha_{3}^{d} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{-a-c} \alpha_{3}^{-b-d} . \tag{5.5}
\end{equation*}
$$

Suppose $\gamma \equiv 0 \bmod 3$. Then (5.4) implies that $a=c$ and $b=d$; (5.5) implies that $c=-a-c, d=b-d \Rightarrow a=b=c=d=0$. Thus $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $N(f)=|1-\gamma|$.

Suppose $\gamma \equiv 1 \bmod 3$. Then (5.4) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{3}^{a}\left(\alpha_{2}^{-1} \alpha_{3}^{-1}\right)^{b} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d}
$$

This implies that $-b=c, a-b=d$ and (5.5) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{3}^{c}\left(\alpha_{2}^{-1} \alpha_{3}^{-1}\right)^{d} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{-a-c} \alpha_{3}^{-b-d} .
$$

This implies that $-d=-a-c, c-d=-b-d$. It follows that $B=\left[\begin{array}{ll}a & -b \\ b & a-b\end{array}\right]$ so that $\operatorname{det}(I-B)=1+a^{2}+b^{2}-a b-2 a+b$. Moreover, we have $\theta B=\left[\begin{array}{cc}-b & -a+b \\ a-b & -a\end{array}\right]$ and $\theta^{2} B=\left[\begin{array}{cc}-a+b & a \\ -a & b\end{array}\right]$. Now, we have $\operatorname{det}(I-\theta B)=1+a^{2}+b^{2}-a b+a+b$ and $\operatorname{det}\left(I-\theta^{2} B\right)=1+a^{2}+b^{2}-a b+a-2 b$.

It is straightforward to show that $\operatorname{det}(I-B), \operatorname{det}(I-\theta B)$ and $\operatorname{det}\left(I-\theta^{2} B\right)$ have the same sign. Thus, we conclude that

$$
N(f)=\left(1+a^{2}+b^{2}-a b\right) \cdot|1-\gamma|
$$

Suppose $\gamma \equiv 2 \bmod 3$. Similar calculations show that $B=\left[\begin{array}{cc}a & -a+b \\ b & -a\end{array}\right]$, $\theta B=\left[\begin{array}{cc}-b & a \\ a-b & b\end{array}\right]$ and $\theta^{2} B=\left[\begin{array}{cc}b-a & -b \\ -a & a-b\end{array}\right]$. It follows that $\operatorname{det}(I-B)=\operatorname{det}(I-\theta B)=$ $\operatorname{det}\left(I-\theta^{2} B\right)=1-a^{2}-b^{2}+a b$. Thus,

$$
N(f)=\left|1-a^{2}-b^{2}+a b\right| \cdot|1-\gamma| .
$$

5.3 Case 4

In this case,

$$
\theta=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \theta^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \theta^{3}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and $\theta^{4}=I$.
The relation $\varphi\left(t \alpha_{2} t^{-1}\right)=\varphi\left(\alpha_{3}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{a} \alpha_{3}^{b} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d} \tag{5.6}
\end{equation*}
$$

and $\varphi\left(t \alpha_{3} t^{-1}\right)=\varphi\left(\alpha_{2}^{-1}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{c} \alpha_{3}^{d} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{-a} \alpha_{3}^{-b} . \tag{5.7}
\end{equation*}
$$

Note that $t^{2} \alpha_{2} t^{-2}=\alpha_{2}^{-1}$ and $t^{2} \alpha_{3} t^{-2}=\alpha_{3}$. When γ is even, we have $t^{\gamma} \alpha_{3} t^{-\gamma}=$ α_{3}. Thus (5.6) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{2}^{(-1)^{(r / 2)}} \alpha_{3}^{b} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d}
$$

which then implies that $b=d$ and $(-1)^{(\gamma / 2)} a=c$. Now (5.7) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{2}^{(-1)^{(r / 2)} c} \alpha_{3}^{d} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{3}^{-b} \alpha_{2}^{-a}
$$

which then implies that $d=-b$ and $(-1)^{(\gamma / 2)} c=-a$. It follows that $b=d=0$ and $c=a=0$ so that $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Hence, we have

$$
N(f)=|1-\gamma| .
$$

When $\gamma \equiv 1 \bmod 4$, (5.6) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{3}^{a} \alpha_{2}^{-b} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d}
$$

which implies that $a=d$ and $-b=c$. It follows that $B=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. It is straightforward to see that $\operatorname{det}(I-B)=(1-a)^{2}+b^{2}, \operatorname{det}(I-\theta B)=(1+b)^{2}+a^{2}$, $\operatorname{det}\left(I-\theta^{2} B\right)=(1+a)^{2}+b^{2}$, and $\operatorname{det}\left(I-\theta^{3} B\right)=(1-b)^{2}+a^{2}$. Thus

$$
N(f)=|1-\gamma| \cdot\left(1+a^{2}+b^{2}\right) .
$$

When $\gamma \equiv 3 \bmod 4$, (5.6) becomes

$$
\alpha_{2}^{r} \alpha_{3}^{s} \alpha_{3}^{-a} \alpha_{2}^{-b} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d}
$$

which then implies that $c=-b$ and $d=-a$. It follows that $B=\left[\begin{array}{ll}a & -b \\ b & -a\end{array}\right]$. It is straightforward to see that $\operatorname{det}(I-B)=1-a^{2}+b^{2}, \operatorname{det}(I-\theta B)=(1+b)^{2}-a^{2}$, $\operatorname{det}\left(I-\theta^{2} B\right)=1-a^{2}+b^{2}$, and $\operatorname{det}\left(I-\theta^{3} B\right)=(1-b)^{2}-a^{2}$. It is not difficult to see that $\operatorname{det}(I-B), \operatorname{det}\left(I-\theta^{i} B\right)$, for $i=1,2,3$, are either all non-positive or all non-negative. Thus

$$
N(f)=|1-\gamma| \cdot\left|1-a^{2}+b^{2}\right| .
$$

5.4 Case 5

In this case,

$$
\begin{aligned}
& \theta=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right], \quad \theta^{2}=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right], \quad \theta^{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \\
& \theta^{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right], \quad \theta^{5}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

and $\theta^{6}=I$.
The relation $\varphi\left(t \alpha_{2} t^{-1}\right)=\varphi\left(\alpha_{3}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{a} \alpha_{3}^{b} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c} \alpha_{3}^{d} \tag{5.8}
\end{equation*}
$$

and $\varphi\left(t \alpha_{3} t^{-1}\right)=\varphi\left(\alpha_{2}^{-1} \alpha_{3}\right)$ yields

$$
\begin{equation*}
\alpha_{2}^{r} \alpha_{3}^{s} t^{\gamma} \alpha_{2}^{c} \alpha_{3}^{d} t^{-\gamma} \alpha_{3}^{-s} \alpha_{2}^{-r}=\alpha_{2}^{c-a} \alpha_{3}^{d-b} . \tag{5.9}
\end{equation*}
$$

Suppose $\gamma \equiv 0 \bmod 6$. Then (5.8) implies that $a=c, b=d$ and (5.9) implies that $c=c-a, d=d-b$. It follows that $a=b=c=d=0$ and hence $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Suppose $\gamma \equiv 1 \bmod 6$. Then (5.8) implies that $-b=c, a+b=d$ and (5.9) implies that $-d=c-a, c+d=d-b$. It follows that $B=\left[\begin{array}{cc}a & -b \\ b & a+b\end{array}\right]$.

Suppose $\gamma \equiv 2 \bmod 6$. Then (5.8) implies that $-a-b=c, a=d$ and (5.9) implies that $-c-d=c-a, c=d-b$. It follows that $a=b=c=d=0$ and hence $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Suppose $\gamma \equiv 3 \bmod 6$. Then (5.8) implies that $-a=c,-b=d$ and (5.9) implies that $-c=c-a,-d=d-b$. It follows that $a=b=c=d=0$ and hence $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Suppose $\gamma \equiv 4 \bmod 6$. Then (5.8) implies that $b=c,-a-b=d$ and (5.9) implies that $d=c-a,-c-d=d-b$. It follows that $a=b=c=d=0$ and hence $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Suppose $\gamma \equiv 5 \bmod 6$. Then (5.8) implies that $a+b=c,-a=d$ and (5.9) implies that $c+d=c-a,-c=d-b$. It follows that $B=\left[\begin{array}{cc}a & a+b \\ b & -a\end{array}\right]$.

Therefore, $N(f)=|\gamma-1|$ if $\gamma \equiv 0,2,3,4 \bmod 6$.
If $\gamma \equiv 1 \bmod 6$. Then we have

$$
\begin{aligned}
\operatorname{det}(I-B) & =1+a^{2}+b^{2}-2 a-b+a b, \\
\operatorname{det}(I-\theta B) & =1+a^{2}+b^{2}-a+b+a b, \\
\operatorname{det}\left(I-\theta^{2} B\right) & =1+a^{2}+b^{2}+a+2 b+a b, \\
\operatorname{det}\left(I-\theta^{3} B\right) & =1+a^{2}+b^{2}+2 a+b+a b, \\
\operatorname{det}\left(I-\theta^{4} B\right) & =1+a^{2}+b^{2}+a-b+a b, \\
\operatorname{det}\left(I-\theta^{5} B\right) & =1+a^{2}+b^{2}-a-2 b+a b .
\end{aligned}
$$

It is easy to see that $\operatorname{det}(I-B), \operatorname{det}\left(I-\theta^{i} B\right)$ for $i=1, \ldots, 5$ are either all nonnegative or all non-positive. It is straightforward to show that (3.1) yields

$$
N(f)=|\gamma-1| \cdot\left(1+a^{2}+b^{2}+a b\right)
$$

If $\gamma \equiv 5 \bmod 6$. Then we have

$$
\begin{aligned}
\operatorname{det}(I-B)=1-a^{2}-b^{2}-a b= & \operatorname{det}(I-\theta B)=\operatorname{det}\left(I-\theta^{2} B\right)= \\
& \operatorname{det}\left(I-\theta^{3} B\right)=\operatorname{det}\left(I-\theta^{4} B\right)=\operatorname{det}\left(I-\theta^{5} B\right) .
\end{aligned}
$$

It is straightforward to show that (3.1) yields

$$
N(f)=|\gamma-1| \cdot\left|1-a^{2}-b^{2}-a b\right| .
$$

5.5 Case 9

Every endomorphism is of the form (5.1). Thus, the relation $\varphi\left(t_{\alpha} t^{-1}\right)=\varphi(\alpha)$ yields

$$
\begin{align*}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{a} t^{-\gamma} \beta^{-s} \alpha^{-r} & =\alpha^{a} \\
\Rightarrow \alpha^{(-1)^{s} a} & =\alpha^{a} \tag{5.10}\\
\Rightarrow(-1)^{s} a & =a .
\end{align*}
$$

The relation $\varphi\left(t \beta t^{-1}\right)=\varphi\left(\beta^{-1}\right)$ yields

$$
\begin{align*}
& \alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{-\gamma} \beta^{-s} \alpha^{-r}=\beta^{-d} \alpha^{-c} \\
& \Rightarrow \alpha^{r+(-1)^{s} c+(-1)^{\left[(-1)^{\gamma d]}\right.}(-r)} \beta^{(-1)^{\gamma} d}=\alpha^{(-1)^{d}(-c)} \beta^{-d} \tag{5.11}\\
& \Rightarrow r+(-1)^{s} c+(-1)^{\left[(-1)^{\gamma} d\right]}(-r)=(-1)^{d}(-c) \quad \text { and } \quad(-1)^{\gamma} d=-d .
\end{align*}
$$

When γ is even, (5.10) implies that s is even or $a=0$. Similarly, (5.11) implies that $d=0$ and also s is odd or $a=0$. Now, if s is even then $c=0$ and if s is odd then $a=0$. Thus, these relations yield that φ has one of the following form:

$$
\varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & 0 & \text { even } \\
0 & 0 & \text { even }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & 0 & \text { odd } \\
0 & 0 & \text { even }
\end{array}\right]
$$

When γ is odd, similar calculations show that φ has one of the following form:

$$
\varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & \text { even } & \text { odd } \\
0 & 0 & \text { odd }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & \text { even } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right]
$$

when d is even and

$$
\varphi=\left[\begin{array}{ccc}
a & c & 0 \\
0 & \text { odd } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
0 & c & c \\
0 & \text { odd } & \text { odd } \\
0 & 0 & \text { odd }
\end{array}\right]
$$

when d is odd.
Thus, if $\varphi=\left[\begin{array}{ccc}0 & 0 & r \\ 0 & 0 & \text { even } \\ 0 & 0 & \text { even }\end{array}\right]$ or $\varphi=\left[\begin{array}{ccc}0 & c & r \\ 0 & 0 & \text { odd } \\ 0 & 0 & \text { even }\end{array}\right]$ then (2.2) yields $N(f)=$ $|\gamma-1|$.

If $\varphi=\left[\begin{array}{ccc}0 & c & r \\ 0 & \text { even } & \text { odd } \\ 0 & 0 & \text { odd }\end{array}\right]$ then $|\gamma-1|$ is even, $B=\left[\begin{array}{ll}0 & c \\ 0 & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}0 & c \\ 0 & -d\end{array}\right]$. Now, (2.2) yields

$$
N(f)=(|d-1|+|d+1|) \cdot \frac{|\gamma-1|}{2}= \begin{cases}d \cdot|\gamma-1|, & \text { if } d \geq 1 \tag{5.12}\\ |\gamma-1|, & \text { if } d=0 \\ (-d) \cdot|\gamma-1|, & \text { if } d<0\end{cases}
$$

In fact, the Nielsen number is given by (5.12) for the following types of endomorphisms:

$$
\varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & \text { even } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right] \text { with } B=\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right] \text { and } \theta B=\left[\begin{array}{cc}
0 & 0 \\
0 & -d
\end{array}\right] \text { or } \varphi=\left[\begin{array}{ccc}
0 & c & c \\
0 & \text { odd } & \text { odd } \\
0 & 0 & \text { odd }
\end{array}\right]
$$ with $B=\left[\begin{array}{ll}0 & c \\ 0 & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}0 & c \\ 0 & -d\end{array}\right]$.

Finally, for the type $\varphi=\left[\begin{array}{ccc}a & c & 0 \\ 0 & \text { odd } & \text { even } \\ 0 & 0 & \text { odd }\end{array}\right]$ with $B=\left[\begin{array}{ll}a & c \\ 0 & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}a & c \\ 0 & -d\end{array}\right]$, (2.2) yields

$$
N(f)= \begin{cases}(|a(d-1)|+|a(d+1)|) \cdot \frac{|\gamma-1|}{2}, & \text { if } a \neq 0 ; \\ (|d-1|+|d+1|) \cdot \frac{|\gamma-1|}{2}, & \text { if } a=0 .\end{cases}
$$

5.6 Case 10

Every endomorphism is of the form (5.1). Thus, the relation $\varphi\left(t \alpha t^{-1}\right)=\varphi(\alpha)$ yields

$$
\begin{align*}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{a} t^{-\gamma} \beta^{-s} \alpha^{-r} & =\alpha^{a} \\
\Rightarrow \alpha^{(-1)^{s} a} & =\alpha^{a} \tag{5.13}\\
\Rightarrow(-1)^{s} a & =a .
\end{align*}
$$

This implies that s is even or $a=0$.
The relation $\varphi\left(t \beta t^{-1}\right)=\varphi\left(\alpha \beta^{-1}\right)$ yields

$$
\begin{equation*}
\alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{a} \beta^{-d} \alpha^{-c} . \tag{5.14}
\end{equation*}
$$

The relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$ yields

$$
\alpha^{c}\left(\alpha^{(-1)^{d} a}\right)\left(\alpha^{(-c)}\right)\left(\alpha^{a}\right)=1 .
$$

This implies that d is odd or $a=0$.
Straightforward calculations similar to those in Case 9 show that an endomorphism of G is of one of the following types:

$$
\varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & \text { even } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & 0 & \text { even } \\
0 & 0 & \text { even }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
2 r+\gamma & c & r \\
0 & \text { odd } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right]
$$

when s is even or

$$
\varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & \text { even } & \text { odd } \\
0 & 0 & \text { odd }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{lcc}
0 & c & r \\
0 & 0 & \text { odd } \\
0 & 0 & \gamma
\end{array}\right]
$$

when s is odd.
If $\varphi=\left[\begin{array}{ccc}0 & 0 & r \\ 0 & \text { even } & \text { even } \\ 0 & 0 & \text { odd }\end{array}\right]$ then d is even, $B=\left[\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}0 & 0 \\ 0 & -d\end{array}\right]$. In fact, for all non-negative integer i, we have $\theta^{i} B=\theta^{i+2} B$. It follows from (2.2) that

$$
N(f)=(|d-1|+|d+1|) \cdot \frac{|\gamma-1|}{2}= \begin{cases}d \cdot|\gamma-1|, & \text { if } d \geq 1 \tag{5.15}\\ |\gamma-1|, & \text { if } d=0 \\ (-d) \cdot|\gamma-1|, & \text { if } d<0\end{cases}
$$

Similarly, if $\varphi=\left[\begin{array}{ccc}0 & c & r \\ 0 & \text { even } & \text { odd } \\ 0 & 0 & \text { odd }\end{array}\right]$ then d is even, $B=\left[\begin{array}{ll}0 & c \\ 0 & d\end{array}\right]$ and $\theta B=\left[\begin{array}{cc}0 & c \\ 0 & -d\end{array}\right]$. For all non-negative integer i, we have $\theta^{i} B=\theta^{i+2} B$. Thus, the Nielsen number $N(f)$ is given by (5.15).

If

$$
\varphi=\left[\begin{array}{ccc}
0 & 0 & r \\
0 & 0 & \text { even } \\
0 & 0 & \text { even }
\end{array}\right] \quad \text { or } \quad \varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & 0 & \text { odd } \\
0 & 0 & \gamma
\end{array}\right],
$$

then $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ such that $N(f)=|\gamma-1|$.
Finally, for type

$$
\begin{gathered}
\varphi=\left[\begin{array}{ccc}
2 r+\gamma & c & r \\
0 & \text { odd } & \text { even } \\
0 & 0 & \text { odd }
\end{array}\right], \\
B=\left[\begin{array}{cc}
2 r+\gamma & c \\
0 & d
\end{array}\right], \quad \theta B=\left[\begin{array}{cc}
2 r+\gamma & c+1 \\
0 & -d
\end{array}\right], \ldots
\end{gathered}
$$

such that

$$
\theta^{i} B=\left[\begin{array}{cc}
2 r+\gamma & c+i \\
0 & (-1)^{i} d
\end{array}\right] .
$$

Since γ is odd, $|\gamma-1|$ is even. Since d is odd, it follows from (2.2) that

$$
N(f)=(|2 r+\gamma||d-1|+|2 r+\gamma||-d-1|) \cdot \frac{|\gamma-1|}{2}=|(2 r+\gamma) d(\gamma-1)| .
$$

6 Nielsen numbers of arbitrary selfmaps: Remaining Cases $1,7,8$, and 6

In this section, we compute $N(f)$ for arbitrary selfmaps f on flat 3-manifolds in the four remaining cases. Case 1 is well-known. For case 7 and 8 , the flat manifold is a S^{1}-bundle over the torus T^{2} and every self-map is fiber-preserving since the
subgroup corresponding to S^{1} is fully-invariant. Moreover, the formula (2.2) is also valid in these situations and therefore can be used to compute $N(f)$. For case 6, we shall use (3.1) for the computation of the Nielsen number.

6.1 Case 1

The corresponding flat manifold is the 3-torus T^{3} with fundamental group \mathbb{Z}^{3}. Given a selfmap f inducing an endomorphism φ on fundamental group, it is well-known that $N(f)=0$ if $\operatorname{det}(I-\varphi)=0$ and $N(f)=|\operatorname{det}(I-\varphi)|$ otherwise.

6.2 Case 7

In this case, G has the following presentation

$$
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\beta\right\rangle
$$

Let φ be an endomorphism given by the following 3×3 array

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & \gamma
\end{array}\right]
$$

where the columns are the images under φ of the generators α, β, t. The relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi\left(\alpha^{-1}\right)$ yields

$$
\begin{align*}
& \alpha^{c} \beta^{d} \hbar^{\delta} \alpha^{a} \beta^{b} \epsilon^{\epsilon} t^{-\delta} \beta^{-d} \alpha^{-c}=t^{-\epsilon} \beta^{-b} \alpha^{-a} \\
\Rightarrow & \alpha^{c} \beta^{d} \alpha^{a} \beta^{b} \beta^{-d} \alpha^{-c} t^{\epsilon}=\beta^{-b} \alpha^{-a} t^{-\epsilon} \quad \text { thus } \epsilon=0 \\
\Rightarrow & \alpha^{c} \beta^{d} \alpha^{a} \beta^{b} \beta^{-d} \alpha^{-c}=\beta^{-b} \alpha^{-a} \\
\Rightarrow & \alpha^{c} \alpha^{(-1)^{d} a} \beta^{b} \alpha^{-c}=\beta^{-b} \alpha^{-a} \tag{6.1}\\
\Rightarrow & \alpha^{c} \alpha^{(-1)^{d} a} \alpha^{(-1)^{b}(-c)} \beta^{b}=\alpha^{(-1)^{b}(-a)} \beta^{-b} \quad \text { thus } \quad b=0 \\
\Rightarrow & \alpha^{c+(-1)^{d} a-c}=\alpha^{(-a)} \Rightarrow(-1)^{d} a=-a .
\end{align*}
$$

This implies that d is odd or $a=0$.
The relation $\varphi\left(t \beta t^{-1}\right)=\varphi(\beta)$ yields

$$
\begin{align*}
& \alpha^{r} \beta^{s} t^{\gamma} \alpha^{c} \beta^{d} t^{\delta} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{c} \beta^{d} t^{\delta} \\
\Rightarrow & \alpha^{r} \beta^{s} \alpha^{c} \beta^{d} \beta^{-s} \alpha^{-r}=\alpha^{c} \beta^{d} . \tag{6.2}
\end{align*}
$$

Suppose d is even so $a=0$. Moreover, β^{d} commutes with α so (6.2) becomes

$$
\alpha^{r} \beta^{s} \alpha^{c} \beta^{-s} \alpha^{-r}=\alpha^{c}
$$

This implies that s is even or $c=0$. Thus, when d is even, we have
(i) $\varphi=\left[\begin{array}{ccc}0 & c & r \\ 0 & \text { even } & \text { even } \\ 0 & \delta & \gamma\end{array}\right] \quad$ or \quad (ii) $\varphi=\left[\begin{array}{ccc}0 & 0 & r \\ 0 & \text { even } & \text { odd } \\ 0 & \delta & \gamma\end{array}\right]$.

Suppose d is odd. Then the relation $\varphi\left(\beta \alpha \beta^{-1}\right)=\varphi(\alpha)$ yields

$$
\begin{align*}
& \alpha^{r} \beta^{s} t^{\gamma} \alpha^{a} t^{-\gamma} \beta^{-s} \alpha^{-r}=\alpha^{a} \\
\Rightarrow & \alpha^{r} \beta^{s} \alpha^{a} \beta^{-s} \alpha^{-r}=\alpha^{a} \tag{6.3}\\
\Rightarrow & (-1)^{s} a=a .
\end{align*}
$$

This implies that s is even or $a=0$. Now, (6.2) becomes

$$
\begin{aligned}
& \alpha^{r} \beta^{s} \alpha^{c} \beta^{-s} \beta^{d} \alpha^{-r}=\alpha^{c} \beta^{d} \\
\Rightarrow & \alpha^{r} \alpha^{(-1)^{s}} \beta^{d} \alpha^{-r}=\alpha^{c} \beta^{d} \\
\Rightarrow & \alpha^{r} \alpha^{(-1)^{s} c} \alpha^{(-1)^{d}(-r)} \beta^{d}=\alpha^{c} \beta^{d} \\
\Rightarrow & r+(-1)^{s} c+(-1)^{d}(-r)=c .
\end{aligned}
$$

Now d is odd, so we have $2 r+(-1)^{s} c=c$. It follows that if s is even then $r=0$ and if s is odd then $r=c$.

Thus, when d is odd, we have
(iii) $\varphi=\left[\begin{array}{ccc}a & c & 0 \\ 0 & \text { odd } & \text { even } \\ 0 & \delta & \gamma\end{array}\right]$
or
(iv) $\varphi=\left[\begin{array}{ccc}0 & c & c \\ 0 & \text { odd } & \text { odd } \\ 0 & \delta & \gamma\end{array}\right]$.

For the cases $(i),(i i),(i v)$, the Nielsen number is $N(f)=|(1-d)(1-\gamma)-\delta s|$. For case $(i i i)$, since d is odd and s is even, $|(1-d)(1-\gamma)-\delta s|$, which is the Nielsen number of the map \bar{f} on the base T^{2}, must be even. Since the base torus has fundamental group generated by β and t whereas the fiber S^{1} has fundamental group generated by α, the action of $\pi_{1}\left(T^{2}\right)$ on the fiber is induced by the relation $\beta \alpha \beta^{-1}=\alpha^{-1}$. It follows that we have

$$
N(f)=(|1-a|+|1+a|) \cdot \frac{|(1-d)(1-\gamma)-\delta s|}{2} .
$$

6.3 Case 8

In this case, G has the following presentation

$$
G=\left\langle\alpha, \beta, t \mid \beta \alpha \beta^{-1}=\alpha^{-1}, t \alpha t^{-1}=\alpha, t \beta t^{-1}=\alpha \beta\right\rangle .
$$

Calculations similar to those in Case 7 show that any endomorphism is of one of the following types:

When d is even, we have

$$
\text { (i) } \quad \varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & \text { even } & \text { even } \\
0 & \delta & \gamma
\end{array}\right] \quad \text { or } \quad \text { (ii) } \quad \varphi=\left[\begin{array}{ccc}
0 & c & r \\
0 & \text { even } & \text { odd } \\
0 & -2 c & \gamma
\end{array}\right] \text {. }
$$

When d is odd, we have
(iii) $\varphi=\left[\begin{array}{ccc}0 & c & \frac{1}{2}(2 c-\delta-\gamma) \\ 0 & \text { odd } & \text { odd } \\ 0 & \delta & \gamma\end{array}\right] \quad$ or \quad (iv) $\quad \varphi=\left[\begin{array}{ccc}2 r+\gamma & c & r \\ 0 & \text { odd } & \text { even } \\ 0 & \delta & \gamma\end{array}\right]$.

For the cases $(i),(i i),(i i i)$, the Nielsen number is $N(f)=|(1-d)(1-\gamma)-\delta s|$. For case (iv), similar arguments as in Case 7 show that

$$
N(f)=(|1-2 r-\gamma|+|1+2 r+\gamma|) \cdot \frac{|(1-d)(1-\gamma)-\delta s|}{2}
$$

6.4 Case 6

In this final case, we make use of the calculations already done in subsection 4.1. For any endomorphism φ, the restriction φ^{\prime} on the maximal abelian subgroup is of one of the six forms as in (4.1) or $\varphi^{\prime}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. For this latter type of endomorphisms, $N(f)=1$. We now compute the Nielsen number of a selfmap which induces an endomorphism φ given by

$$
\varphi=\left[\begin{array}{lll}
a & c & r \\
b & d & s \\
\epsilon & \delta & t
\end{array}\right]
$$

where the columns are the images under φ of the generators t_{1}, α_{2}, t_{3}. We will make use of the restriction φ^{\prime} of φ to the maximal abelian subgroup and φ^{\prime} can be represented by a 3×3 matrix where the columns are images under φ^{\prime} of the generators $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

Suppose φ^{\prime} is of type (II) and (III'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}0 & 0 & r \\ 0 & -2 s-2 b-1 & 0 \\ \epsilon & 0 & 0\end{array}\right]$. It follows that

$$
\begin{aligned}
\operatorname{det}\left(I-\varphi^{\prime}\right) & =(2+2 s+2 b)(1-r \epsilon), \\
\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right) & =(2 s+2 b)(-1-r \epsilon), \\
\operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right) & =(2 s+2 b)(-1-r \epsilon), \\
\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right) & =(2+2 s+2 b)(1-r \epsilon) .
\end{aligned}
$$

It follows that

$$
N(f)=\frac{1}{4}(4|1+s+b||1-r \epsilon|+4|s+b||1+r \epsilon|) .
$$

Suppose φ^{\prime} is of type (II) and (IV'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}0 & r-a & 0 \\ 0 & 0 & -2 s-1 \\ \epsilon & 0 & 0\end{array}\right]$. It follows that

$$
\begin{aligned}
\operatorname{det}\left(I-\varphi^{\prime}\right)=1-(a-r) \epsilon(2 s+1)=\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right) & = \\
& \operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right)=\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right)
\end{aligned}
$$

It follows that

$$
N(f)=|1-(a-r) \epsilon(2 s+1)| .
$$

Suppose φ^{\prime} is of type (III) and (II'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & 2(s+b)+1 \\ 0 & 0 & t\end{array}\right]$. It follows that

$$
\begin{aligned}
\operatorname{det}\left(I-\varphi^{\prime}\right) & =(1-a)(1-t)(-2(s+b)) \\
\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right) & =(1-a)(1+t)(2+2(s+b)) \\
\operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right) & =(1+a)(1-t)(2+2(s+b)) \\
\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right) & =(1+a)(1+t)(-2(s+b))
\end{aligned}
$$

It follows that

$$
\begin{array}{r}
N(f)=\frac{1}{4}(|(1-a)(1-t)(-2(s+b))|+|(1-a)(1+t)(2+2(s+b))|+ \\
|(1+a)(1-t)(2+2(s+b))|+|(1+a)(1+t)(-2(s+b))|)
\end{array}
$$

Suppose φ^{\prime} is of type (III) and (IV'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & 0 & -2 s-1 \\ 0 & \epsilon-t & 0\end{array}\right]$. It follows that

$$
\begin{aligned}
\operatorname{det}\left(I-\varphi^{\prime}\right) & =(1-a)(1-(2 s+1)(t-\epsilon)), \\
\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right) & =(1-a)(1-(2 s+1)(t-\epsilon)), \\
\operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right) & =(1+a)(1+(2 s+1)(t-\epsilon)), \\
\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right) & =(1+a)(1+(2 s+1)(t-\epsilon)) .
\end{aligned}
$$

It follows that

$$
N(f)=\frac{1}{4}(2|(1-a)(1-(2 s+1)(t-\epsilon))|+2|(1+a)(1+(2 s+1)(t-\epsilon))|) .
$$

Suppose φ^{\prime} is of type (IV) and (II'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}0 & r-a & 0 \\ -2 b-1 & 0 & 0 \\ 0 & 0 & t\end{array}\right]$. It follows that

$$
\begin{aligned}
\operatorname{det}\left(I-\varphi^{\prime}\right) & =(1-(a-r)(2 b+1))(1-t), \\
\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right) & =(1+(a-r)(2 b+1))(1+t), \\
\operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right) & =(1-(a-r)(2 b+1))(1-t), \\
\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right) & =(1+(a-r)(2 b+1))(1+t) .
\end{aligned}
$$

It follows that

$$
N(f)=\frac{1}{4}(2|(1-(a-r)(2 b+1))(1-t)|+2|(1+(a-r)(2 b+1))(1+t)|) .
$$

Suppose φ^{\prime} is of type (IV) and (III'), that is, $\varphi^{\prime}=\left[\begin{array}{ccc}0 & 0 & r \\ -2 b-1 & 0 & 0 \\ 0 & \epsilon-t & 0\end{array}\right]$. It follows that

$$
\begin{aligned}
& \operatorname{det}\left(I-\varphi^{\prime}\right)=1-r(2 b+1)(t-\epsilon)=\operatorname{det}\left(I-\theta_{1} \varphi^{\prime}\right)= \\
& \operatorname{det}\left(I-\theta_{2} \varphi^{\prime}\right)=\operatorname{det}\left(I-\theta_{3} \varphi^{\prime}\right) .
\end{aligned}
$$

It follows that

$$
N(f)=|1-r(2 b+1)(t-\epsilon)| .
$$

7 Jiang-type condition

Recall that a space M is of Jiang-type or M satisfies the Jiang-type condition, if for any selfmap $f: M \rightarrow M$, either $L(f)=0 \Rightarrow N(f)=0$ or $L(f) \neq 0 \Rightarrow$ $N(f)=R(f)$. Here, $L(f), N(f), R(f)$ denote the Lefschetz, Nielsen, and Reidemeister numbers of f respectively. A group G is said to have property R_{∞} if for all $\varphi \in \operatorname{Aut}(G), R(\varphi)=\infty$.

In [5], flat and nilmanifolds whose fundamental groups possess property R_{∞} were constructed. In particular, it was shown that for any $n \geq 5$, there is a compact nilmanifold of dimension n such that every homeomorphism is isotopic to a fixed point free homeomorphism. This is due to the fact that nilmanifolds are known to be of Jiang-type and by constructing finitely generated nilpotent groups with R_{∞} property, such a nilmanifold has the property that every self homeomorphism f must have $N(f)=0$. It is therefore natural to ask whether there exists manifold M that is not of Jiang-type but $N(f)=0$ for every self homeomorphism f (see Remark 7.1). In this section, we determine which of the flat 3-manifolds are of Jiang-type.

For Case 1, the 3-torus, it is well-known that the Jiang type condition is satisfied.

For Case 2, the flat manifold is a torus bundle over S^{1}. Consider the fiberwise homeomorphism which induces on the fundamental group of the base the homomorphism given by multiplication by -1 and on the fundamental group of the fiber the automorphism given by the matrix

$$
B=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]
$$

The Lefschetz number of this map restricted to one fiber has value -2 but the Lefschetz number restricted to the other fiber, by routine calculation, is 6 . Therefore the indices of the Nielsen classes have different values, i.e., 2 classes have index -1 and 6 classes have index +1 . Now, consider a homeomorphism which induces on the fundamental group of the base the homomorphism given by multiplication by -1 and on the fundamental group of the fiber the automorphism given by the matrix

$$
B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The Lefschetz number of this map restricted to one fiber is 0 but the Lefschetz number restricted to the other fiber, by routine calculation, is 4 . This implies that the Nielsen number is 4 but the Reidemeister number is infinite. Therefore the Jiang type condition does not hold.

For Cases 3-5, none of these manifolds is of Jiang type. For Case 3 (section 5.2), consider the map inducing $\gamma \equiv 1 \bmod 3$ with $a=1$ and $b=0$ so that $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. In this case, $\operatorname{det}(I-B)=0$ so that $R(f)=\infty$. For Case 4 (section 5.3), consider the map inducing $\gamma \equiv 3 \bmod 4$ with $a=0$ and $b=1$ so that $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. In this case, $\operatorname{det}\left(I-\theta^{3} B\right)=0$ so that $R(f)=\infty$. For Case 5 (section 5.4), consider the map inducing $\gamma \equiv 1 \bmod 6$ with $a=1$ and $b=0$ so that $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. In this case, $\operatorname{det}(I-B)=0$ so that $R(f)=\infty$. Thus, we conclude that the Jiang type condition does not hold in general in any of these three cases.

For the remaining Cases 6-10, each of these flat manifolds is not of Jiang-type. For Case 6, one can choose a self-homeomorphism (see section 4.1 and section 6.4) of type (II), (III') with $r=\epsilon=1, s=0, b=-1$ so that $N(f)=2=|L(f)|$ but $R(f)=\infty$. For Cases 7-8 (see sections 4.2-4.3), there exist homeomorphisms f so that $N(f)=|L(f)| \neq 0$ but $R(f)=\infty$. Similarly for Cases $9-10$, see sections 4.4-4.5.

For convenience, we summarize our results in the following table:

G	NSH (M)	Jiang Type
1	$\mathbb{N} \cup\{0\}$	Yes
2	$2 \mathbb{N} \cup\{0\}$	No
3	$\{0\}$	No
4	$\{0\}$	No
5	$\{0\}$	No
6	$\{0,2\}$	No
7	$2 \mathbb{N} \cup\{0\}$	No
8	$2 \mathbb{N} \cup\{0\}$	No
9	$\{0,2\}$	No
10	$\{0,2\}$	No

Remark 7.1. Based upon our calculations, the flat manifolds in Cases 3-5 have the property that they are not of Jiang-type but every self-homeomorphism has zero Nielsen number while $N(f)=|L(f)|$ (see e.g. [9, 10]) and their fundamental groups have property R_{∞} (see [8]).

References

[1] R.F. Brown, "The Lefschetz Fixed Point Theorem," Scott Foresman, Illinois, 1971.
[2] J. Buckley, Automorphisms groups of isoclinic p-groups, J. London Math. Soc., 12 (1975), 37-44.
[3] L. Charlap, "Bieberbach Groups and Flat Manifolds," Springer, New York, 1986.
[4] H. S. M. Coxeter and W. O. J. Moser, "Generators and relations for discrete groups," Ergebnisse der Mathematik und ihrer Grenzgebiete Fourth edition, Springer-Verlag, Berlin, 14 (1980).
[5] D. Gonçalves and P. Wong, Twisted conjugacy classes in nilpotent groups, J. Reine Angew. Math. 633 (2009), 11-27.
[6] D. Gonçalves and P. Wong, Twisted conjugacy for virtually cyclic groups and crystallographic groups, in: Combinatorial and Geometric Group Theory, Trends in Mathematics, Birkhäuser, 2010, 119-147.
[7] D. Gonçalves and P. Wong, Automorphisms of the two dimensional crystallographic groups, Comm. Alg., 42 (2014), 909-931.
[8] K. Dekimpe and P. Penninckx, The finiteness of the Reidemeister number of morphisms between almost-crystallographic groups. J. Fixed Point Theory Appl. 9 (2011), 257-283.
[9] K. Dekimpe, B. De Rock, and P. Penninckx, The Anosov theorem for infranilmanifolds with a 2-perfect holonomy group. Asian J. Math. 15 (2011), 539548.
[10] K. Dekimpe, B. De Rock, and W. Malfait, The Anosov relation for Nielsen numbers of maps of infra-nilmanifolds. Monatsh. Math. 150 (2007), 1-10.
[11] N. Ivanov, Nielsen numbers of self-maps of surfaces, J. Sov. Math. 26 (1984), 1636-1641.
[12] B. Jiang, "Lectures on Nielsen Fixed Point Theory," Contemp. Math. v.14, Amer. Math. Soc., 1983
[13] B. Jiang, Fixed points of surface homeomorphisms, Bull.(New Series) Amer. Math. Soc. 5 (1981), 176-178.
[14] B. Jiang and J. Guo, Fixed points of surface diffeomorphisms, Pacific J. Math. 160 (1993), 67-89.
[15] B. Jiang and S. Wang, Lefschetz numbers and Nielsen numbers for homeomorphisms on aspherical manifolds, Topology - Hawaii (K.H. Dovermann, ed.), World Sci. Publ. Co., Singapore, 1992, pp. 119-136.
[16] B. Jiang, S. Wang, and Y.-Q. Wu, Homeomorphisms of 3-manifolds and the realization of Nielsen number, Comm. Anal. Geom. 9 (2001), 825-878.
[17] M. Kelly, The Nielsen number as an isotopy invariant, Topology and its Applications 62 (1995), Pages 127-143.
[18] M. Kelly, Computing Nielsen numbers of surface homeomorphisms, Topology 35 (1996), 13-25.
[19] M. Kelly, Nielsen numbers and homeomorphisms of geometric 3-manifolds, Topology Proceedings 19 (1994), 149-160.
[20] S.W. Kim, J.B. Lee, and K.B. Lee, Averaging formula for Nielsen numbers, Nagoya Math. J. 178 (2005), 37-53.
[21] R. Lyndon, "Groups and Geometry," LMS Lecture Note Series 101, Cambridge University Press, 1985 (reprinted with corrections 1986).
[22] J. Wolf, "Spaces of Constant Curvature,", Publish or Perish, Inc., Berkeley, 1977.

Dept. de Matemática - IME - USP,
Caixa Postal 66.281 - CEP 05314- 970,
São Paulo - SP, Brasil; FAX: 55-11-30916183
email:dlgoncal@ime.usp.br
Department of Mathematics, Bates College, Lewiston, ME 04240, U.S.A.; FAX: 1-207-7868331
email:pwong@bates.edu
Institute of mathematics and interdisciplinary science, Capital Normal University,
Beijing 100048, China; FAX: 86-10-68900950
email:zhaoxve@mail.cnu.edu.cn

[^0]: *This work was initiated during the first and second authors' visit to Capital Normal University during June 14-27, 2011. The first author was supported in part by Projeto Tematico Topologia Algebrica Geometrica e Differencial 2008/57607-6. The third author was supported in part by the NSF of China (10931005) and a project of Beijing Municipal Education Commission (PHR201106118).

 Received by the editors in January 2013 - In revised form in July 2013.
 Communicated by Y. Félix.
 2010 Mathematics Subject Classification : Primary: 55M20; Secondary: 20H15.
 Key words and phrases : Nielsen numbers, Automorphisms, outer automorphisms, crystallographic groups.

