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Abstract

In the present paper, we find new bounds on the modulii of the third
and fourth Taylor-Maclaurin’s coefficients of bi-starlike functions of order ρ and
strongly bi-starlike functions of order β. Our estimates on the third coefficient
improve upon earlier estimates found in [D.A. Brannan, T.S. Taha, On some
classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour
(Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21,
1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science
Limited, Oxford, 1988, pp. 53-60].

1 Introduction and definitions

Let A be the class of analytic functions f (z) in the open unit disk

U = {z : z ∈ C and |z| < 1}

and represented by the normalized series:

f (z) = z +
∞

∑
n=2

anzn (z ∈ U). (1.1)

We denote by S the family of univalent functions in A. (see, for details,[5, 15]).
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For f ∈ S the inverse function f−1 is defined by

f−1( f (z)) = z (z ∈ U)

and

f ( f−1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1

4
) [5].

Further more,

f−1(w) = w − a2w2 + (2a2
2 − a3)w

3 − (5a3
2 − 5a2a3 + a4)w

4 + · · · (|w| < r0( f )).
(1.2)

The function f ∈ A is said to be bi-univalent in U if (i) f ∈ S and (ii) f−1(w)
has an univalent analytic continuation to |w| < 1. Let σ denote the class of bi-
univalent analytic functions in U. Initial pioneering work on the class σ were
done in [3, 9, 11]. Recently, Srivastava et al.[14] exhibited some interesting ex-
amples of functions in the class σ. We add that the family of functions defined
by

λ(eλz − 1) (λ ∈ C, |λ| = 1; z ∈ U)

are univalent in the larger disc |z| < π and their inverse functions are univalent
in U. Therefore, these functions are also bi-univalent. For a brief history on the
developments regarding the class σ see [7].
Earlier Brannan and Taha (cf [4], also see [16]) introduced two interesting sub-
classes of the function class σ, in analogy to the subclasses of strongly starlike
functions of order β and starlike functions of order ρ of the class S . We thus have
the following definitions.

Definition 1.1. [4] The function f (z), given by (1.1), is said to be in the class

S⋆β
σ (0 < β ≤ 1), the class of strongly bi-starlike functions of order β, if each of the

following conditions are satisfied:

f ∈ σ,

∣

∣

∣

∣

arg

(

z f ′(z)
f (z)

)
∣

∣

∣

∣

<
βπ

2
(z ∈ U) (1.3)

and
∣

∣

∣

∣

arg

(

wg′(w)

g(w)

)
∣

∣

∣

∣

<
βπ

2
(w ∈ U), (1.4)

where the function g is the analytic continuation of f−1(w) to U.

Definition 1.2. [4] The function f (z), given by (1.1), is said to be in the class S⋆

σ(ρ),
the class of bi-starlike functions of order ρ (0 ≤ ρ < 1) if each of the following
conditions are satisfied:

f ∈ σ, ℜ
(

z f ′(z)
f (z)

)

> ρ (z ∈ U) (1.5)

and

ℜ
(

wg′(w)

g(w)

)

> ρ (w ∈ U). (1.6)
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Example 1.3. The following considerations show that the family of functions de-

fined by f (z) = z+ a2z2 (z ∈ U), are members of the class S⋆

σ(ρ) if |a2| ≤ 1−ρ
4(2−ρ)

.

Direct verification shows that f is a univalent starlike function of order ρ. More
over, we have

g−1(w) =
−1 +

√
1 + 4a2w

2a2
= w +

∞

∑
n=2

Anwn (w ∈ U), (1.7)

where

An =
1

2

(

1
2
n

)

4nan−1
2 (n = 2, 3, . . . ).

Therefore,
∞

∑
n=2

(

n − ρ

1 − ρ

)

|An|

≤
∞

∑
n=2

4n−1

1 − ρ

(

n − ρ

n

)

{

(n − 1)− 1
2

n − 1

}{

(n − 2)− 1
2

n − 2

}

· · ·
{

1 − 1
2

1

}

|a2|n−1

≤ 1

1 − ρ

∞

∑
n=2

4n−1|a2|n−1

≤ 1

1 − ρ

∞

∑
n=2

4n−1 (1 − ρ)n−1

4n−1(2 − ρ)n−1

≤ 1

2 − ρ

(

1 +
∞

∑
n=1

(

1 − ρ

2 − ρ

)n
)

= 1.

This shows that g−1is a univalent starlike function of order ρ. Therefore,
f ∈ S⋆

σ(ρ).

We shall also need the class P of analytic functions p(z) of the form:

p(z) = 1 +
∞

∑
k=1

ckzk (z ∈ U)

and satisfying ℜ(p(z)) > 0 (z ∈ U). The class P is popularly named after
Carathéodory.

Brannan and Taha [4] found estimates for the second and third Taylor-Maclau-

rin’s coefficients of the functions f in the classes S⋆β
σ and S⋆

σ(ρ). That is:

|a2| ≤
2β

√

1 + β
( f ∈ S⋆β

σ ) and |a2| ≤
√

2(1 − ρ) ( f ∈ S⋆

σ(ρ)). (1.8)

Similarly,

|a3| ≤ 2β ( f ∈ S⋆β
σ ) and |a3| ≤ 2(1 − ρ) ( f ∈ S⋆

σ(ρ)). (1.9)

Srivastava et al. [14] introduced and investigated two novel subclasses of σ
and found non-sharp bounds for functions in these classes. As a follow up of the
work in [14] , at present there is renewed interest in the study of the class σ and
its many new subclasses. For example see [1, 2, 6, 7, 8, 10, 12, 13, 17, 18].

In this note we improve upon the bound on |a3|, ( f ∈ S⋆β
σ ) of Brannan and Taha

[4] given at (1.9). We also find estimates for |a4| when f ∈ S⋆β
σ and S⋆

σ(ρ).
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2 Coefficient bounds for the function class S⋆β
σ

We state and prove the following:

Theorem 2.1. If the function f (z) in S⋆β
σ is given by (1.1), then

|a3| ≤
{

β (0 < β ≤ 1
3),

4β2

1+β (1
3 ≤ β ≤ 1)

(2.1)

and

|a4| ≤



















































2β
3

(

1 − 2
3

16β2−3β−1
3
√

1+β

)

(0 < β <
3+

√
73

32 ),

2β
3

(

1 + 2
3

16β2−3β−1
3
√

1+β

)

(3+
√

73
32 ≤ β <

2
5),

2β
3

(

15β
5β+4 +

2
3

16β2−3β−1
3
√

1+β

)

(2
5 ≤ β ≤ 1).

(2.2)

Proof. Let f (z) ∈ S⋆β
σ (0 < β ≤ 1). Then by Definition 1.1, we have

z f ′(z)
f (z)

= [Q(z)]β (2.3)

and
wg′(w)

g(w)
= [P(w)]β , (2.4)

respectively, where Q(z) and P(w) belong to the class P and have the forms:

Q(z) = 1 + c1z + c2z2 + c3z3 + · · · (z ∈ U)

and
P(w) = 1 + l1w + l2w2 + l3w3 + · · · (w ∈ U).

By equating the coefficients of
z f ′(z)

f (z)
with the coefficients of [Q(z)]β , we get

a2 = βc1, (2.5)

2a3 − a2
2 = βc2 +

β(β − 1)

2
c2

1 (2.6)

and

3a4 − 3a2a3 + a3
2 = βc3 + β(β − 1)c1c2 +

β(β − 1)(β − 2)

6
c3

1. (2.7)

Similarly, by equating the coefficients of
wg′(w)

g(w)
and [P(w)]β , we have

a2 = −βl1, (2.8)
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3a2
2 − 2a3 = βl2 +

β(β − 1)

2
l2
1 (2.9)

and

−(10a3
2 − 12a2a3 + 3a4) = βl3 + β(β − 1)l1l2 +

β(β − 1)(β − 2)

6
l3
1 . (2.10)

The relations (2.5) and (2.8), together give

l1 = −c1. (2.11)

We shall obtain a refined estimate on |c1| for use in the estimates of |a3| and |a4|.
For this purpose we first add (2.6) with (2.9); then use the relations (2.11) and get
the following:

2a2
2 = β(c2 + l2) + β(β − 1)c2

1.

Putting a2 = βc1 from (2.5), we have after simplification:

c2
1 =

c2 + l2
1 + β

. (2.12)

By applying the familiar inequalities |c2| ≤ 2 and |l2| ≤ 2 we get:

|c1| ≤
√

4

1 + β
=

2
√

1 + β
. (2.13)

To find a bound on |a3| we wish express a3 in terms of the coefficients of the
functions P(w) and Q(z). For this we substract (2.9) from (2.6) and get

4a3 = 4a2
2 + β(c2 − l2) +

β(β − 1)

2
(c2

1 − l2
1).

The relation c2
1 = l2

1 from (2.11), reduces the above expression to

4a3 = 4a2
2 + β(c2 − l2). (2.14)

Next putting that a2 = βc1 and using (2.12), we obtain

4a3 = 4β2c2
1 + β(c2 − l2)

= 4β2

(

c2 + l2
1 + β

)

+ β(c2 − l2)

=
β

1 + β
[(5β + 1)c2 + (3β − 1)l2] .

Therefore, the inequalities |c2| ≤ 2 and |l2| ≤ 2 give the following:

4|a3| ≤







2β
1+β (5β + 1 + 1 − 3β) = 4β (0 < β ≤ 1

3),
2β

1+β (5β + 1 + 3β − 1) =
16β2

1+β (1
3 ≤ β ≤ 1)
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which simplifies to:

|a3| ≤
{

β (0 < β ≤ 1
3),

4β2

1+β (1
3 ≤ β ≤ 1).

This is precisely the assertion of (2.1).
We shall next find an estimate on |a4|. At first we shall derive a relation con-

necting c1, c2, c3, l2 and l3. To this end, we first add the equations (2.7) and (2.10)
and get

−9a3
2 + 9a2a3 = β(c3 + l3) + β(β − 1)(c1c2 + l1l2) +

β(β − 1)(β − 2)

6
(c3

1 + l3
1).

By putting l1 = −c1 the above expression reduces to the following:

−9a3
2 + 9a2a3 = β(c3 + l3) + β(β − 1)c1(c2 − l2). (2.15)

Substituting a3 = a2
2 +

β
4 (c2 − l2) from (2.14) into (2.15) we get after simplification:

9βa2

4
(c2 − l2) = β(c3 + l3) + β(β − 1)c1(c2 − l2).

Since a2 = βc1, (see 2.5) we have

9β2

4
c1(c2 − l2) = β(c3 + l3) + β(β − 1)c1(c2 − l2).

Or equivalently:

c1(c2 − l2) =
4(c3 + l3)

5β + 4
. (2.16)

We wish to express a4 in terms of the first three coefficients of P(w) and Q(z).
Now substracting (2.15) from (2.12), we get

6a4 = −11a3
2 + 15a2a3 + β(c3 − l3) + β(β − 1)(c1c2 − l1l2)+

β(β − 1)(β − 2)

6
(c3

1 − l3
1).

Observing that l1 = −c1 we have c3
1 − l3

1 = 2c3
1 and therefore

6a4 = −9a3
2 + 9a2a3 − 2a3

2 + 6a2a3 + β(c3 − l3)+

β(β − 1)c1(c2 + l2) +
β(β − 1)(β − 2)

3
c3

1.

We replace −9a3
2 + 9a2a3 by the right hand side of (2.15), put a3 = β2c2

1 +
β
4 (c2 − l2)

(see (2.14)) and a2 = βc1. This gives

6a4 = β(c3 + l3) + β(β − 1)c1(c2 − l2)− 2β3c3
1 + 6βc1

(

β2c2
1 +

β

4
(c2 − l2)

)

+ β(c3 − l3) + β(β − 1)c1(c2 + l2) +
β(β − 1)(β − 2)

3
c3

1

= 2βc3 +
β(5β − 2)

2
c1(c2 − l2) + β(β − 1)c1(c2 + l2) +

13β3 − 3β2 + 2β

3
c3

1.
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Next, replacing c1(c2 − l2) by the expression in the right hand side of (2.16) and
c2

1 by (2.12) we finally get

6a4 = 2βc3 +
β(5β − 2)

2

4(c3 + l3)

5β + 4
+ β(β − 1)c1(c2 + l2)+

13β3 − 3β2 + 2β

3
c1
(c2 + l2)

1 + β

= 2βc3 +
2β(5β − 2)

5β + 4
(c3 + l3) +

16β3 − 3β2 − β

3(1 + β)
c1(c2 + l2)

= β

[

4(5β + 1)

5β + 4
c3 +

2(5β − 2)

5β + 4
l3 +

16β2 − 3β − 1

3(1 + β)
c1(c2 + l2)

]

.

This gives

|a4| ≤
β

6

{∣

∣

∣

∣

4(5β + 1)

5β + 4

∣

∣

∣

∣

|c3|+
∣

∣

∣

∣

2(5β − 2)

5β + 4

∣

∣

∣

∣

|l3|+
∣

∣

∣

∣

16β2 − 3β − 1

3(1 + β)

∣

∣

∣

∣

|c1||(c2 + l2)|
}

.

We observe that β0 = 3+
√

73
32 and β1 = 3−

√
73

32 are the roots of the quadratic poly-

nomial 16β2 − 3β − 1, out of which β1 < 0. Therefore,

|a4| ≤







































β
6

[

4(5β+1)
5β+4 |c3|+ 2(2−5β)

5β+4 |l3| − 16β2−3β−1
3(1+β)

|c1||(c2 + l2)|
]

(0 < β <
3+

√
73

32 ),

β
6

[

4(5β+1)
5β+4 |c3|+ 2(2−5β)

5β+4 |l3|+ 16β2−3β−1
3(1+β)

|c1||(c2 + l2)|
]

(3+
√

73
32 ≤ β <

2
5),

β
6

[

4(5β+1)
5β+4 |c3|+ 2(5β−2)

5β+4 |l3|+ 16β2−3β−1
3(1+β)

|c1||(c2 + l2)|
]

(2
5 ≤ β ≤ 1).

By applying the inequalities |cn| ≤ 2, |ln| ≤ 2 (n = 2, 3) and the estimate (2.13)
for |c1| we have:

|a4| ≤



















































2β
3

[

1 − 2
3

16β2−3β−1
3
√

1+β

]

(0 < β <
3+

√
73

32 ),

2β
3

[

1 + 2
3

16β2−3β−1
3
√

1+β

]

(3+
√

73
32 ≤ β <

2
5),

2β
3

[

15β
5β+4 +

2
3

16β2−3β−1
3
√

1+β

]

(2
5 ≤ β ≤ 1).

We get the assertion (2.2). The proof of Theorem 2.1 is, thus, completed.

We next find an estimate for |a4| for the function class S⋆

σ(ρ).

Theorem 2.2. Let f (z), given by (1.1), be in the class S⋆

σ(ρ). Then

|a4| ≤







2(1−ρ)
3

[

1 + 2
√

2(1 − ρ)
]

(0 ≤ ρ ≤ 1
2)

2(1−ρ)
3 [1 + 4(1 − ρ)] (1

2 ≤ ρ < 1).
(2.17)
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Proof. Let f (z) ∈ S⋆
σ(ρ) (0 ≤ ρ < 1). Then by Definition 1.2, we get that

z f ′(z)
f (z)

= ρ + (1 − ρ)Q1(z) (2.18)

and
wg′(w)

g(w)
= ρ + (1 − ρ)P1(w) (2.19)

respectively, where ℜ(Q1(z)) > 0,

Q1(z) = 1 + c1z + c2z2 + · · · (z ∈ U)

and ℜ(P1(w)) > 0,

P1(w) = 1 + l1w + l2w2 + · · · (w ∈ U).

As in the proof of Theorem 2.1, by suitably comparing coefficients in (2.18) and
(2.19) we get

a2 = (1 − ρ)c1, (2.20)

2a3 − a2
2 = (1 − ρ)c2, (2.21)

3a4 − 3a2a3 + a3
2 = (1 − ρ)c3 (2.22)

and
−a2 = (1 − ρ)l1, (2.23)

3a2
2 − 2a3 = (1 − ρ)l2, (2.24)

−(10a3
2 − 12a2a3 + 3a4) = (1 − ρ)l3. (2.25)

Addition of (2.21) with (2.24) yields:

2a2
2 = (1 − ρ)(c2 + l2). (2.26)

Putting a2 = (1 − ρ)c1 from (2.20) we have after simplification:

c2
1 =

c2 + l2
2(1 − ρ)

. (2.27)

By applying the familiar inequalities |c2| ≤ 2 and |l2| ≤ 2 we get the first bound
in the following and the second estimate is well known:

|c1| ≤
{

√

2
(1−ρ)

(0 ≤ ρ ≤ 1
2)

2 (1
2 ≤ ρ < 1).

(2.28)

Next, we substract (2.24) from (2.21), add the equations (2.22) and (2.25) and get
respectively:

4a3 = 4a2
2 + (1 − ρ)(c2 − l2) (2.29)

and
−9a3

2 + 9a2a3 = (1 − ρ)(c3 + l3). (2.30)
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We shall now find an estimate on |a4|. We wish to express a4 in terms of the first
three coefficients of P(w) and Q(z). For this we substract (2.25) from (2.22), and
get

6a4 = −11a3
2 + 15a2a3 + (1 − ρ)(c3 − l3)

= −9a3
2 + 9a2a3 − 2a3

2 + 6a2a3 + (1 − ρ)(c3 − l3).

We replace −9a3
2 + 9a2a3 by the right hand side of (2.30), put a3 = (1 − ρ)2c2

1 +
(1−ρ)

4 (c2 − l2) (see (2.29)) and a2 = (1 − ρ)c1. Thus, we have:

6a4 = (1 − ρ)(c3 + l3)− 2(1 − ρ)3c3
1 + 6(1 − ρ)c1

(

(1 − ρ)2c2
1 +

(1 − ρ)

4
(c2 − l2)

)

+ (1 − ρ)(c3 − l3)

= 2(1 − ρ)c3 + 4(1 − ρ)3c3
1 +

6(1 − ρ)2

4
c1(c2 − l2).

Next replacing c2
1 by (2.27) we finally get

6a4 = 2(1 − ρ)c3 + 4(1 − ρ)3c1
c2 + l2

2(1 − ρ)
+

6(1 − ρ)2

4
c1(c2 − l2)

= 2(1 − ρ)c3 + 2(1 − ρ)2c1(c2 + l2) +
3(1 − ρ)2

2
c1(c2 − l2)

= 2(1 − ρ)c3 +
7(1 − ρ)2

2
c1c2 +

(1 − ρ)2

2
c1l2.

By applying the inequalities |c3| ≤ 2, |c2| ≤ 2 and |l2| ≤ 2, the estimate for |c1|
from (2.28) we have

6|a4| ≤ 2(1 − ρ)|c3|+
7(1 − ρ)2

2
|c1||c2|+

(1 − ρ)2

2
|c1||l2|

≤
{

4(1 − ρ) + 8
√

2(1 − ρ) (0 ≤ ρ ≤ 1
2)

4(1 − ρ) + 16(1 − ρ)2 (1
2 ≤ ρ < 1).

Or equivalently:

|a4| ≤
{

2(1−ρ)
3 [1 + 2

√

2(1 − ρ)] (0 ≤ ρ ≤ 1
2)

2(1−ρ)
3 [1 + 4(1 − ρ)] (1

2 ≤ ρ < 1).

We get the assertion (2.17). This completes the proof of the Theorem 2.2.

3 Concluding Remarks

By definition every bi-starlike analytic function f (z) in U is associated with a
function Q(z) in the Carathéodory class P and its inverse function g(w) is as-
sociated with another function P(w) ∈ P . In this paper suitable relationships
between the first and second coefficients of the two functions P(w) and Q(z) are
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obtained. Using these relationships, the third Taylor-Maclaurin’s coefficient of a
bi-starlike function f (z) is expressed in terms of the first and second coefficients
of P(w) and Q(z). Similarly the fourth coefficient of f (z) is expressed in terms of
the first three coefficients of P(w) and Q(z). A refined estimate for the first coef-
ficient of the function Q(z) is also derived. These relationships and the refined
estimate yield coefficient bounds for the third and fourth coefficients of the func-

tions in the classes S⋆β
σ and S⋆

σ(ρ).
By comparing our result (2.1) with (1.9) we observe that our estimate on |a3| im-

proves upon the earlier bound of Brannan and Taha [4] for the class S⋆β
σ .
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