Coefficient bounds for bi-starlike analytic functions

A. K. Mishra M. M. Soren*

Abstract

In the present paper, we find new bounds on the modulii of the third and fourth Taylor-Maclaurin's coefficients of bi-starlike functions of order ρ and strongly bi-starlike functions of order β. Our estimates on the third coefficient improve upon earlier estimates found in [D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60].

1 Introduction and definitions

Let \mathcal{A} be the class of analytic functions $f(z)$ in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

and represented by the normalized series:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

We denote by \mathcal{S} the family of univalent functions in \mathcal{A}. (see, for details,[5, 15]).

[^0]For $f \in \mathcal{S}$ the inverse function f^{-1} is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
\begin{equation*}
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) \tag{5}
\end{equation*}
$$

Further more,
$f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \quad\left(|w|<r_{0}(f)\right)$.
The function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if $(i) f \in \mathcal{S}$ and $(i i) f^{-1}(w)$ has an univalent analytic continuation to $|w|<1$. Let σ denote the class of biunivalent analytic functions in \mathbb{U}. Initial pioneering work on the class σ were done in [3, 9, 11]. Recently, Srivastava et al.[14] exhibited some interesting examples of functions in the class σ. We add that the family of functions defined by

$$
\bar{\lambda}\left(e^{\lambda z}-1\right) \quad(\lambda \in \mathbb{C},|\lambda|=1 ; z \in \mathbb{U})
$$

are univalent in the larger disc $|z|<\pi$ and their inverse functions are univalent in \mathbb{U}. Therefore, these functions are also bi-univalent. For a brief history on the developments regarding the class σ see [7].
Earlier Brannan and Taha (cf [4], also see [16]) introduced two interesting subclasses of the function class σ, in analogy to the subclasses of strongly starlike functions of order β and starlike functions of order ρ of the class \mathcal{S}. We thus have the following definitions.

Definition 1.1. [4] The function $f(z)$, given by (1.1), is said to be in the class $\mathcal{S}_{\sigma}^{\star \beta}(0<\beta \leq 1)$, the class of strongly bi-starlike functions of order β, if each of the following conditions are satisfied:

$$
\begin{equation*}
f \in \sigma, \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\beta \pi}{2} \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\beta \pi}{2} \quad(w \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

where the function g is the analytic continuation of $f^{-1}(w)$ to \mathbb{U}.
Definition 1.2. [4] The function $f(z)$, given by (1.1), is said to be in the class $\mathcal{S}_{\sigma}^{\star}(\rho)$, the class of bi-starlike functions of order $\rho(0 \leq \rho<1)$ if each of the following conditions are satisfied:

$$
\begin{equation*}
f \in \sigma, \quad \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\rho \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w g^{\prime}(w)}{g(w)}\right)>\rho \quad(w \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

Example 1.3. The following considerations show that the family of functions defined by $f(z)=z+a_{2} z^{2} \quad(z \in \mathbb{U})$, are members of the class $\mathcal{S}_{\sigma}^{\star}(\rho)$ if $\left|a_{2}\right| \leq \frac{1-\rho}{4(2-\rho)}$. Direct verification shows that f is a univalent starlike function of order ρ. More over, we have

$$
\begin{equation*}
g^{-1}(w)=\frac{-1+\sqrt{1+4 a_{2} w}}{2 a_{2}}=w+\sum_{n=2}^{\infty} A_{n} w^{n} \quad(w \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

where

$$
A_{n}=\frac{1}{2}\binom{\frac{1}{2}}{n} 4^{n} a_{2}^{n-1} \quad(n=2,3, \ldots)
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{n-\rho}{1-\rho}\right)\left|A_{n}\right| \\
& \quad \leq \sum_{n=2}^{\infty} \frac{4^{n-1}}{1-\rho}\left(\frac{n-\rho}{n}\right)\left\{\frac{(n-1)-\frac{1}{2}}{n-1}\right\}\left\{\frac{(n-2)-\frac{1}{2}}{n-2}\right\} \cdots\left\{\frac{1-\frac{1}{2}}{1}\right\}\left|a_{2}\right|^{n-1} \\
& \leq \\
& \leq \frac{1}{1-\rho} \sum_{n=2}^{\infty} 4^{n-1}\left|a_{2}\right|^{n-1} \\
& \leq \\
& \leq \frac{1}{1-\rho} \sum_{n=2}^{\infty} 4^{n-1} \frac{(1-\rho)^{n-1}}{4^{n-1}(2-\rho)^{n-1}} \\
& \leq \\
& \leq \frac{1}{2-\rho}\left(1+\sum_{n=1}^{\infty}\left(\frac{1-\rho}{2-\rho}\right)^{n}\right)=1
\end{aligned}
$$

This shows that g^{-1} is a univalent starlike function of order ρ. Therefore, $f \in \mathcal{S}_{\sigma}^{\star}(\rho)$.

We shall also need the class \mathcal{P} of analytic functions $p(z)$ of the form:

$$
p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} \quad(z \in \mathbb{U})
$$

and satisfying $\Re(p(z))>0 \quad(z \in \mathbb{U})$. The class \mathcal{P} is popularly named after Carathéodory.

Brannan and Taha [4] found estimates for the second and third Taylor-Maclaurin's coefficients of the functions f in the classes $\mathcal{S}_{\sigma}^{\star \beta}$ and $\mathcal{S}_{\sigma}^{\star}(\rho)$. That is:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \beta}{\sqrt{1+\beta}} \quad\left(f \in \mathcal{S}_{\sigma}^{\star \beta}\right) \text { and }\left|a_{2}\right| \leq \sqrt{2(1-\rho)} \quad\left(f \in \mathcal{S}_{\sigma}^{\star}(\rho)\right) \tag{1.8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|a_{3}\right| \leq 2 \beta \quad\left(f \in \mathcal{S}_{\sigma}^{\star \beta}\right) \text { and }\left|a_{3}\right| \leq 2(1-\rho) \quad\left(f \in \mathcal{S}_{\sigma}^{\star}(\rho)\right) \tag{1.9}
\end{equation*}
$$

Srivastava et al. [14] introduced and investigated two novel subclasses of σ and found non-sharp bounds for functions in these classes. As a follow up of the work in [14], at present there is renewed interest in the study of the class σ and its many new subclasses. For example see $[1,2,6,7,8,10,12,13,17,18]$.
In this note we improve upon the bound on $\left|a_{3}\right|,\left(f \in \mathcal{S}_{\sigma}^{\star \beta}\right)$ of Brannan and Taha [4] given at (1.9). We also find estimates for $\left|a_{4}\right|$ when $f \in \mathcal{S}_{\sigma}^{\star \beta}$ and $\mathcal{S}_{\sigma}^{\star}(\rho)$.

2 Coefficient bounds for the function class $\mathcal{S}_{\sigma}^{\star \beta}$

We state and prove the following:
Theorem 2.1. If the function $f(z)$ in $\mathcal{S}_{\sigma}^{\star \beta}$ is given by (1.1), then

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\beta \quad\left(0<\beta \leq \frac{1}{3}\right) \tag{2.1}\\
\frac{4 \beta^{2}}{1+\beta} \quad\left(\frac{1}{3} \leq \beta \leq 1\right)
\end{array}\right.
$$

and

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2 \beta}{3}\left(1-\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right) & \left(0<\beta<\frac{3+\sqrt{73}}{32}\right) \tag{2.2}\\ \frac{2 \beta}{3}\left(1+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right) & \left(\frac{3+\sqrt{73}}{32} \leq \beta<\frac{2}{5}\right) \\ \frac{2 \beta}{3}\left(\frac{15 \beta}{5 \beta+4}+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right) & \left(\frac{2}{5} \leq \beta \leq 1\right)\end{cases}
$$

Proof. Let $f(z) \in \mathcal{S}_{\sigma}^{\star \beta}(0<\beta \leq 1)$. Then by Definition 1.1, we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=[Q(z)]^{\beta} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{g(w)}=[P(w)]^{\beta} \tag{2.4}
\end{equation*}
$$

respectively, where $Q(z)$ and $P(w)$ belong to the class \mathcal{P} and have the forms:

$$
Q(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad(z \in \mathbb{U})
$$

and

$$
P(w)=1+l_{1} w+l_{2} w^{2}+l_{3} w^{3}+\cdots \quad(w \in \mathbb{U})
$$

By equating the coefficients of $\frac{z f^{\prime}(z)}{f(z)}$ with the coefficients of $[Q(z)]^{\beta}$, we get

$$
\begin{gather*}
a_{2}=\beta c_{1} \tag{2.5}\\
2 a_{3}-a_{2}^{2}=\beta c_{2}+\frac{\beta(\beta-1)}{2} c_{1}^{2} \tag{2.6}
\end{gather*}
$$

and

$$
\begin{equation*}
3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}=\beta c_{3}+\beta(\beta-1) c_{1} c_{2}+\frac{\beta(\beta-1)(\beta-2)}{6} c_{1}^{3} . \tag{2.7}
\end{equation*}
$$

Similarly, by equating the coefficients of $\frac{w g^{\prime}(w)}{g(w)}$ and $[P(w)]^{\beta}$, we have

$$
\begin{equation*}
a_{2}=-\beta l_{1} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
3 a_{2}^{2}-2 a_{3}=\beta l_{2}+\frac{\beta(\beta-1)}{2} l_{1}^{2} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left(10 a_{2}^{3}-12 a_{2} a_{3}+3 a_{4}\right)=\beta l_{3}+\beta(\beta-1) l_{1} l_{2}+\frac{\beta(\beta-1)(\beta-2)}{6} l_{1}^{3} . \tag{2.10}
\end{equation*}
$$

The relations (2.5) and (2.8), together give

$$
\begin{equation*}
l_{1}=-c_{1} . \tag{2.11}
\end{equation*}
$$

We shall obtain a refined estimate on $\left|c_{1}\right|$ for use in the estimates of $\left|a_{3}\right|$ and $\left|a_{4}\right|$. For this purpose we first add (2.6) with (2.9); then use the relations (2.11) and get the following:

$$
2 a_{2}^{2}=\beta\left(c_{2}+l_{2}\right)+\beta(\beta-1) c_{1}^{2} .
$$

Putting $a_{2}=\beta c_{1}$ from (2.5), we have after simplification:

$$
\begin{equation*}
c_{1}^{2}=\frac{c_{2}+l_{2}}{1+\beta} . \tag{2.12}
\end{equation*}
$$

By applying the familiar inequalities $\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$ we get:

$$
\begin{equation*}
\left|c_{1}\right| \leq \sqrt{\frac{4}{1+\beta}}=\frac{2}{\sqrt{1+\beta}} \tag{2.13}
\end{equation*}
$$

To find a bound on $\left|a_{3}\right|$ we wish express a_{3} in terms of the coefficients of the functions $P(w)$ and $Q(z)$. For this we substract (2.9) from (2.6) and get

$$
4 a_{3}=4 a_{2}^{2}+\beta\left(c_{2}-l_{2}\right)+\frac{\beta(\beta-1)}{2}\left(c_{1}^{2}-l_{1}^{2}\right) .
$$

The relation $c_{1}^{2}=l_{1}^{2}$ from (2.11), reduces the above expression to

$$
\begin{equation*}
4 a_{3}=4 a_{2}^{2}+\beta\left(c_{2}-l_{2}\right) . \tag{2.14}
\end{equation*}
$$

Next putting that $a_{2}=\beta c_{1}$ and using (2.12), we obtain

$$
\begin{aligned}
4 a_{3} & =4 \beta^{2} c_{1}^{2}+\beta\left(c_{2}-l_{2}\right) \\
& =4 \beta^{2}\left(\frac{c_{2}+l_{2}}{1+\beta}\right)+\beta\left(c_{2}-l_{2}\right) \\
& =\frac{\beta}{1+\beta}\left[(5 \beta+1) c_{2}+(3 \beta-1) l_{2}\right] .
\end{aligned}
$$

Therefore, the inequalities $\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$ give the following:

$$
4\left|a_{3}\right| \leq \begin{cases}\frac{2 \beta}{1+\beta}(5 \beta+1+1-3 \beta)=4 \beta & \left(0<\beta \leq \frac{1}{3}\right) \\ \frac{2 \beta}{1+\beta}(5 \beta+1+3 \beta-1)=\frac{16 \beta^{2}}{1+\beta} & \left(\frac{1}{3} \leq \beta \leq 1\right)\end{cases}
$$

which simplifies to:

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\beta \quad\left(0<\beta \leq \frac{1}{3}\right) \\
\frac{4 \beta^{2}}{1+\beta} \quad\left(\frac{1}{3} \leq \beta \leq 1\right)
\end{array}\right.
$$

This is precisely the assertion of (2.1).
We shall next find an estimate on $\left|a_{4}\right|$. At first we shall derive a relation connecting $c_{1}, c_{2}, c_{3}, l_{2}$ and l_{3}. To this end, we first add the equations (2.7) and (2.10) and get

$$
-9 a_{2}^{3}+9 a_{2} a_{3}=\beta\left(c_{3}+l_{3}\right)+\beta(\beta-1)\left(c_{1} c_{2}+l_{1} l_{2}\right)+\frac{\beta(\beta-1)(\beta-2)}{6}\left(c_{1}^{3}+l_{1}^{3}\right)
$$

By putting $l_{1}=-c_{1}$ the above expression reduces to the following:

$$
\begin{equation*}
-9 a_{2}^{3}+9 a_{2} a_{3}=\beta\left(c_{3}+l_{3}\right)+\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) . \tag{2.15}
\end{equation*}
$$

Substituting $a_{3}=a_{2}^{2}+\frac{\beta}{4}\left(c_{2}-l_{2}\right)$ from (2.14) into (2.15) we get after simplification:

$$
\frac{9 \beta a_{2}}{4}\left(c_{2}-l_{2}\right)=\beta\left(c_{3}+l_{3}\right)+\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) .
$$

Since $a_{2}=\beta c_{1}$, (see 2.5) we have

$$
\frac{9 \beta^{2}}{4} c_{1}\left(c_{2}-l_{2}\right)=\beta\left(c_{3}+l_{3}\right)+\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) .
$$

Or equivalently:

$$
\begin{equation*}
c_{1}\left(c_{2}-l_{2}\right)=\frac{4\left(c_{3}+l_{3}\right)}{5 \beta+4} . \tag{2.16}
\end{equation*}
$$

We wish to express a_{4} in terms of the first three coefficients of $P(w)$ and $Q(z)$. Now substracting (2.15) from (2.12), we get

$$
\begin{array}{r}
6 a_{4}=-11 a_{2}^{3}+15 a_{2} a_{3}+\beta\left(c_{3}-l_{3}\right)+\beta(\beta-1)\left(c_{1} c_{2}-l_{1} l_{2}\right)+ \\
\frac{\beta(\beta-1)(\beta-2)}{6}\left(c_{1}^{3}-l_{1}^{3}\right) .
\end{array}
$$

Observing that $l_{1}=-c_{1}$ we have $c_{1}^{3}-l_{1}^{3}=2 c_{1}^{3}$ and therefore

$$
\begin{aligned}
6 a_{4}=-9 a_{2}^{3}+9 a_{2} a_{3}-2 a_{2}^{3}+6 a_{2} a_{3}+ & \beta\left(c_{3}-l_{3}\right)+ \\
& \beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right)+\frac{\beta(\beta-1)(\beta-2)}{3} c_{1}^{3} .
\end{aligned}
$$

We replace $-9 a_{2}^{3}+9 a_{2} a_{3}$ by the right hand side of (2.15), put $a_{3}=\beta^{2} c_{1}^{2}+\frac{\beta}{4}\left(c_{2}-l_{2}\right)$ (see (2.14)) and $a_{2}=\beta c_{1}$. This gives

$$
\begin{aligned}
6 a_{4}= & \beta\left(c_{3}+l_{3}\right)+\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right)-2 \beta^{3} c_{1}^{3}+6 \beta c_{1}\left(\beta^{2} c_{1}^{2}+\frac{\beta}{4}\left(c_{2}-l_{2}\right)\right) \\
& +\beta\left(c_{3}-l_{3}\right)+\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right)+\frac{\beta(\beta-1)(\beta-2)}{3} c_{1}^{3} \\
= & 2 \beta c_{3}+\frac{\beta(5 \beta-2)}{2} c_{1}\left(c_{2}-l_{2}\right)+\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right)+\frac{13 \beta^{3}-3 \beta^{2}+2 \beta}{3} c_{1}^{3}
\end{aligned}
$$

Next, replacing $c_{1}\left(c_{2}-l_{2}\right)$ by the expression in the right hand side of (2.16) and c_{1}^{2} by (2.12) we finally get

$$
\begin{aligned}
& 6 a_{4}=2 \beta c_{3}+\frac{\beta(5 \beta-2)}{2} \frac{4\left(c_{3}+l_{3}\right)}{5 \beta+4}+\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right)+ \\
& \frac{13 \beta^{3}-3 \beta^{2}+2 \beta}{3} c_{1} \frac{\left(c_{2}+l_{2}\right)}{1+\beta} \\
&=2 \beta c_{3}+\frac{2 \beta(5 \beta-2)}{5 \beta+4}\left(c_{3}+l_{3}\right)+\frac{16 \beta^{3}-3 \beta^{2}-\beta}{3(1+\beta)} c_{1}\left(c_{2}+l_{2}\right) \\
&=\beta\left[\frac{4(5 \beta+1)}{5 \beta+4} c_{3}+\frac{2(5 \beta-2)}{5 \beta+4} l_{3}+\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)} c_{1}\left(c_{2}+l_{2}\right)\right] .
\end{aligned}
$$

This gives

$$
\left|a_{4}\right| \leq \frac{\beta}{6}\left\{\left|\frac{4(5 \beta+1)}{5 \beta+4}\right|\left|c_{3}\right|+\left|\frac{2(5 \beta-2)}{5 \beta+4}\right|\left|l_{3}\right|+\left|\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)}\right|\left|c_{1}\right|\left|\left(c_{2}+l_{2}\right)\right|\right\} .
$$

We observe that $\beta_{0}=\frac{3+\sqrt{73}}{32}$ and $\beta_{1}=\frac{3-\sqrt{73}}{32}$ are the roots of the quadratic polynomial $16 \beta^{2}-3 \beta-1$, out of which $\beta_{1}<0$. Therefore,

$$
\left|a_{4}\right| \leq \begin{cases}\frac{\beta}{6}\left[\frac{4(5 \beta+1)}{5 \beta+4}\left|c_{3}\right|+\frac{2(2-5 \beta)}{5 \beta+4}\left|l_{3}\right|-\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)}\left|c_{1}\right|\left|\left(c_{2}+l_{2}\right)\right|\right] & \left(0<\beta<\frac{3+\sqrt{73}}{32}\right), \\ \frac{\beta}{6}\left[\frac{4(5 \beta+1)}{5 \beta+4}\left|c_{3}\right|+\frac{2(2-5 \beta)}{5 \beta+4}\left|l_{3}\right|+\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)}\left|c_{1}\right|\left|\left(c_{2}+l_{2}\right)\right|\right] & \left(\frac{3+\sqrt{73}}{32} \leq \beta<\frac{2}{5}\right), \\ \frac{\beta}{6}\left[\frac{4(5 \beta+1)}{5 \beta+4}\left|c_{3}\right|+\frac{2(5 \beta-2)}{5 \beta+4}\left|l_{3}\right|+\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)}\left|c_{1}\right|\left|\left(c_{2}+l_{2}\right)\right|\right] & \left(\frac{2}{5} \leq \beta \leq 1\right) .\end{cases}
$$

By applying the inequalities $\left|c_{n}\right| \leq 2,\left|l_{n}\right| \leq 2(n=2,3)$ and the estimate (2.13) for $\left|c_{1}\right|$ we have:

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2 \beta}{3}\left[1-\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right] & \left(0<\beta<\frac{3+\sqrt{73}}{32}\right) \\ \frac{2 \beta}{3}\left[1+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right] & \left(\frac{3+\sqrt{73}}{32} \leq \beta<\frac{2}{5}\right) \\ \frac{2 \beta}{3}\left[\frac{15 \beta}{5 \beta+4}+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}}\right] & \left(\frac{2}{5} \leq \beta \leq 1\right)\end{cases}
$$

We get the assertion (2.2). The proof of Theorem 2.1 is, thus, completed.
We next find an estimate for $\left|a_{4}\right|$ for the function class $\mathcal{S}_{\sigma}^{\star}(\rho)$.
Theorem 2.2. Let $f(z)$, given by (1.1), be in the class $\mathcal{S}_{\sigma}^{\star}(\rho)$. Then

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2(1-\rho)}{3}[1+2 \sqrt{2(1-\rho)}] & \left(0 \leq \rho \leq \frac{1}{2}\right) \tag{2.17}\\ \frac{2(1-\rho)}{3}[1+4(1-\rho)] & \left(\frac{1}{2} \leq \rho<1\right)\end{cases}
$$

Proof. Let $f(z) \in \mathcal{S}^{\star}{ }_{\sigma}(\rho)(0 \leq \rho<1)$. Then by Definition 1.2, we get that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\rho+(1-\rho) Q_{1}(z) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{g(w)}=\rho+(1-\rho) P_{1}(w) \tag{2.19}
\end{equation*}
$$

respectively, where $\Re\left(Q_{1}(z)\right)>0$,

$$
Q_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

and $\Re\left(P_{1}(w)\right)>0$,

$$
P_{1}(w)=1+l_{1} w+l_{2} w^{2}+\cdots \quad(w \in \mathbb{U})
$$

As in the proof of Theorem 2.1, by suitably comparing coefficients in (2.18) and (2.19) we get

$$
\begin{gather*}
a_{2}=(1-\rho) c_{1}, \tag{2.20}\\
2 a_{3}-a_{2}^{2}=(1-\rho) c_{2} \tag{2.21}\\
3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}=(1-\rho) c_{3} \tag{2.22}
\end{gather*}
$$

and

$$
\begin{gather*}
-a_{2}=(1-\rho) l_{1} \tag{2.23}\\
3 a_{2}^{2}-2 a_{3}=(1-\rho) l_{2} \tag{2.24}\\
-\left(10 a_{2}^{3}-12 a_{2} a_{3}+3 a_{4}\right)=(1-\rho) l_{3} . \tag{2.25}
\end{gather*}
$$

Addition of (2.21) with (2.24) yields:

$$
\begin{equation*}
2 a_{2}^{2}=(1-\rho)\left(c_{2}+l_{2}\right) \tag{2.26}
\end{equation*}
$$

Putting $a_{2}=(1-\rho) c_{1}$ from (2.20) we have after simplification:

$$
\begin{equation*}
c_{1}^{2}=\frac{c_{2}+l_{2}}{2(1-\rho)} . \tag{2.27}
\end{equation*}
$$

By applying the familiar inequalities $\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$ we get the first bound in the following and the second estimate is well known:

$$
\left|c_{1}\right| \leq \begin{cases}\sqrt{\frac{2}{(1-\rho)}} & \left(0 \leq \rho \leq \frac{1}{2}\right) \tag{2.28}\\ 2 & \left(\frac{1}{2} \leq \rho<1\right)\end{cases}
$$

Next, we substract (2.24) from (2.21), add the equations (2.22) and (2.25) and get respectively:

$$
\begin{equation*}
4 a_{3}=4 a_{2}^{2}+(1-\rho)\left(c_{2}-l_{2}\right) \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
-9 a_{2}^{3}+9 a_{2} a_{3}=(1-\rho)\left(c_{3}+l_{3}\right) \tag{2.30}
\end{equation*}
$$

We shall now find an estimate on $\left|a_{4}\right|$. We wish to express a_{4} in terms of the first three coefficients of $P(w)$ and $Q(z)$. For this we substract (2.25) from (2.22), and get

$$
\begin{aligned}
6 a_{4} & =-11 a_{2}^{3}+15 a_{2} a_{3}+(1-\rho)\left(c_{3}-l_{3}\right) \\
& =-9 a_{2}^{3}+9 a_{2} a_{3}-2 a_{2}^{3}+6 a_{2} a_{3}+(1-\rho)\left(c_{3}-l_{3}\right) .
\end{aligned}
$$

We replace $-9 a_{2}^{3}+9 a_{2} a_{3}$ by the right hand side of (2.30), put $a_{3}=(1-\rho)^{2} c_{1}^{2}+$ $\frac{(1-\rho)}{4}\left(c_{2}-l_{2}\right)$ (see (2.29)) and $a_{2}=(1-\rho) c_{1}$. Thus, we have:

$$
\begin{aligned}
& 6 a_{4}=(1-\rho)\left(c_{3}+l_{3}\right)-2(1-\rho)^{3} c_{1}^{3}+6(1-\rho) c_{1}\left((1-\rho)^{2} c_{1}^{2}+\frac{(1-\rho)}{4}\left(c_{2}-l_{2}\right)\right) \\
&+(1-\rho)\left(c_{3}-l_{3}\right) \\
&=2(1-\rho) c_{3}+4(1-\rho)^{3} c_{1}^{3}+\frac{6(1-\rho)^{2}}{4} c_{1}\left(c_{2}-l_{2}\right)
\end{aligned}
$$

Next replacing c_{1}^{2} by (2.27) we finally get

$$
\begin{aligned}
6 a_{4} & =2(1-\rho) c_{3}+4(1-\rho)^{3} c_{1} \frac{c_{2}+l_{2}}{2(1-\rho)}+\frac{6(1-\rho)^{2}}{4} c_{1}\left(c_{2}-l_{2}\right) \\
& =2(1-\rho) c_{3}+2(1-\rho)^{2} c_{1}\left(c_{2}+l_{2}\right)+\frac{3(1-\rho)^{2}}{2} c_{1}\left(c_{2}-l_{2}\right) \\
& =2(1-\rho) c_{3}+\frac{7(1-\rho)^{2}}{2} c_{1} c_{2}+\frac{(1-\rho)^{2}}{2} c_{1} l_{2} .
\end{aligned}
$$

By applying the inequalities $\left|c_{3}\right| \leq 2,\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$, the estimate for $\left|c_{1}\right|$ from (2.28) we have

$$
\begin{aligned}
6\left|a_{4}\right| & \leq 2(1-\rho)\left|c_{3}\right|+\frac{7(1-\rho)^{2}}{2}\left|c_{1}\right|\left|c_{2}\right|+\frac{(1-\rho)^{2}}{2}\left|c_{1}\right|\left|l_{2}\right| \\
& \leq \begin{cases}4(1-\rho)+8 \sqrt{2(1-\rho)} & \left(0 \leq \rho \leq \frac{1}{2}\right) \\
4(1-\rho)+16(1-\rho)^{2} & \left(\frac{1}{2} \leq \rho<1\right) .\end{cases}
\end{aligned}
$$

Or equivalently:

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2(1-\rho)}{3}[1+2 \sqrt{2(1-\rho)}] & \left(0 \leq \rho \leq \frac{1}{2}\right) \\ \frac{2(1-\rho)}{3}[1+4(1-\rho)] & \left(\frac{1}{2} \leq \rho<1\right)\end{cases}
$$

We get the assertion (2.17). This completes the proof of the Theorem 2.2.

3 Concluding Remarks

By definition every bi-starlike analytic function $f(z)$ in \mathbb{U} is associated with a function $Q(z)$ in the Carathéodory class \mathcal{P} and its inverse function $g(w)$ is associated with another function $P(w) \in \mathcal{P}$. In this paper suitable relationships between the first and second coefficients of the two functions $P(w)$ and $Q(z)$ are
obtained. Using these relationships, the third Taylor-Maclaurin's coefficient of a bi-starlike function $f(z)$ is expressed in terms of the first and second coefficients of $P(w)$ and $Q(z)$. Similarly the fourth coefficient of $f(z)$ is expressed in terms of the first three coefficients of $P(w)$ and $Q(z)$. A refined estimate for the first coefficient of the function $Q(z)$ is also derived. These relationships and the refined estimate yield coefficient bounds for the third and fourth coefficients of the functions in the classes $\mathcal{S}_{\sigma}^{\star \beta}$ and $\mathcal{S}_{\sigma}^{\star}(\rho)$.
By comparing our result (2.1) with (1.9) we observe that our estimate on $\left|a_{3}\right|$ improves upon the earlier bound of Brannan and Taha [4] for the class $\mathcal{S}_{\sigma}^{\star \beta}$.

Acknowledgements

The research of the second author was supported by the University Grants Commission, Government of India under Rajiv Gandhi National Fellowship Scheme, Grant No. F. 14-2(ST)/2008/(SA-III).

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent function Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), pp. 344-351.
[2] M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, preprint.
[3] D.A. Brannan, J.G. Clunie(Eds.), Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979). Academic Press, New York (1980).
[4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. see also Studia Univ. Babeş-Bolyai Math. 31 (1986), pp. 70-77.
[5] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, 1983.
[6] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), pp. 1569-1573.
[7] S.S. Kumar, V. Kumar, V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, preprint.
[8] S.K. Lee, V. Ravichandran, S. Supramaniam, Initial coefficients of bi-univalent functions, preprint.
[9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), pp. 63-68.
[10] X.-F. Li, A.-P. Wang, Two New Subclasses of Bi-Univalent Functions, International Mathematical Forum 7 (2012), pp. 1495-1504.
[11] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal. 32 (1969), pp. 100-112.
[12] S. Siregar, S. Raman, Certain subclass of analytic and bi-univalent functions involving double zeta functions, Int. Journal on Advanced Sci. Eng. Inform. Tech. 2 (2012), pp. 16-18.
[13] H.M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in Nonlinear Analysis, Springer Series on Optimization and Its Applications, Vol. 68, pp. 607-630, Springer, Berlin, New York and Heidelberg, 2012.
[14] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), pp. 1188-1192.
[15] H.M. Srivastava and S. Owa(Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[16] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
[17] Q.-H. Xu, Y.-C. Gui, H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), pp. 990-994.
[18] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), pp. 11461-11465.

Department of Mathematics
Berhampur University
Bhanja Bihar 760007
Ganjam, Odisha
India
email:akshayam2001@yahoo.co.in
Department of Mathematics
Berhampur University
Bhanja Bihar 760007
Ganjam, Odisha
India
email:soren85@rediffmail.com

[^0]: *Corresponding author.
 Received by the editors in October 2012.
 Communicated by H. De Schepper.
 2010 Mathematics Subject Classification : 30C45, 30C50.
 Key words and phrases : Analytic functions; Univalent functions; Inverse functions; Analytic continuation, Bi-univalent functions; Bi-starlike functions; Taylor-Maclaurin series; Coefficient bounds.

