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Abstract

Initial problems for Hamilton–Jacobi functional differential equations and
initial boundary value problems of the Dirichlet type for parabolic equations
are considered. It is proved that classical solutions of functional differen-
tial equations can be estimated by solutions of initial problems for ordinary
functional differential equations. Theorems on the uniqueness of solutions
are obtained as consequences of comparison results. A method of differential
inequalities is used. Here, the involved operators do not satisfy the Volterra
condition.

1 Introduction

Two types of results on partial differential inequalities are taken into considera-
tions in the literature. The first type allows to estimate a function of several vari-
ables be means of another function of several variables, while the second one, the
so called comparison theorems, give estimates of functions of several variables
by means of functions of one variable. Functions of one variable are solutions of
initial problems for ordinary differential equations.

In this paper we deal with comparison theorems corresponding to functional
differential equations of Hamilton–Jacobi type and for parabolic functional dif-
ferential problems.

The papers [6] and [23] initiated the theory of first order partial differential
inequalities. The main result, known as the Haar–Ważewski inequality, shows
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that a function of several variables which is of class C1 on the Haar pyramid and
satisfies a linear differential inequality can be estimated by a solution of a suitable
initial value problem for an ordinary differential equation. Uniqueness results for
initial problems on the Haar pyramid and estimates of solutions are obtained as
consequences of the Haar–Ważewski theorem.

There are many generalizations and extensions of the above classical result.
We list some of them.

The main differential inequality may be nonlinear with respect to an unknown
function and consequently, the comparison problem may be nonlinear. The as-
sumption on the regularity of an unknown function which satisfied a differential
inequality may be weakened. It is assumed that solutions of differential inequali-
ties admit first order partial derivatives on the Haar pyramid and they are totally
differentiable on a subset of the boundary of the Haar pyramid ([14] Chapter VII).
For the Cauchy problem on an unbounded domain the assumption of total differ-
entiability can be omitted. Comparison theorems for solutions which are global
with respect to spatial variables are presented in [3]. An interesting result on the
global uniqueness of the Cauchy problem when the right hand sides of equations
satisfy the Hölder condition can be found in [2].

Vector-valued functions satisfying nonlinear systems of partial differential in-
equalities can be estimated by solutions of initial problems for ordinary differen-
tial systems. The above results are presented in the monographs [11] (Chapter
IX) and [14], (Chapter VII).

The Haar–Ważewski theorem has been extended to semi classical solutions of
nonlinear functional differential inequalities, see the papers [5], [20], [21] and the
monograph [22]. Solutions in the Cinquini–Cibrario sense of nonlinear functional
differential inequalities have been investigated in [9]. Comparison theorems for
generalized entropy solutions of nonlinear differential or functional differential
problems are discussed in [8], [10]. Comparison results for initial boundary value
problems related to functional differential equations are given in [4]. Differential
and functional differential inequalities with Kamke type comparison problems
can be found in [1]. Viscosity solutions of functional differential inequalities are
developed in [17]. Functional differential versions of the Haar–Ważewski theo-
rem for initial and initial boundary value problems can be found [7] (Chapters I
and V).

The classical theory of parabolic differential inequalities was developed in the
monographs [11], [14], [19]. Functional differential inequalities of parabolic type
and uniqueness results for initial boundary value problems were treated in [12],
[13] and [15], [16]. Finite systems of weakly coupled functional differential equa-
tions are considered in these paper. Every equation in the system contains the
vector of unknown functions as a functional variable and the derivatives of only
one function. Partial derivatives appear in a classical sense.

The results on functional differential equations and inequalities presented in
the above papers have the following property: it is assumed that given operators
satisfy the Volterra condition with respect to time variable.

The aim of this paper is to make further contributions to comparison results
for evolution functional differential equations. We consider initial problems for
functional differential equations of the Hamilton–Jacobi type and initial bound-
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ary value problems of the Dirichlet type for parabolic functional differential equa-
tions. We do not assume that given operators satisfy the Volterra condition. We
give estimates of solutions and prove theorems on the uniqueness of classical
solutions.

The paper is organized as follows. In Section 2 we prove a theorem on or-
dinary functional differential inequalities. In the next section we give estimates
of functions of several variables satisfying functional differential inequalities by
means of solutions of suitable initial problems for ordinary differential equations.
As a consequence we obtain a general theorem for the uniqueness of a classical
solution of the original problem.

In Section 4 we give a result on estimates of solutions of parabolic problems
and a theorem on uniqueness of solutions of initial boundary value problems of
the Dirichlet type.

Differential equations with deviated variables and integral differential equa-
tions are special cases of problems considered here.

2 Ordinary functional differential inequalities

We prove a theorem on ordinary functional differential inequalities. We give esti-
mates of functions of several variables satisfying functional differential inequali-
ties by means of solutions of initial problems for ordinary functional differential
equations.

For any metric spaces X and Y we denote by C(X, Y) the class of all con-
tinuous functions defined on X and taking values in Y. Suppose that a > 0
and b0 ∈ R+, R+ = [0,+∞), are fixed and I = [−b0 − a, 0]. For a function
ω : I ∪ [0, a] → R and for a point t ∈ [0, a]. we define ωt : I → R as fol-
lows: ωt(τ) = ω(t + τ), τ ∈ I. Suppose that σ : [0, a] × C(I, R+) → R+ and
L : [0, a] → R+ are given functions. We will say that σ satisfies condition (V0) if
for each t ∈ [0, a] and for ξ, ξ̃ ∈ C(I, R+) such that ξ(τ) = ξ̃(τ) for τ ∈ [−b0 − t, 0]
we have σ(t, ξ) = σ(t, ξ̃). Condition (V0) means that the value of σ at (t, ξ) de-
pends on t and on the restriction of ξ to the set [−b0 − t, 0] only.

Given η ∈ C([−b0, 0], R+), we consider the Cauchy problem

ω′(t) = σ(t, ωt) + L(t)ω(a), ω(t) = η(t) for t ∈ [−b0, 0]. (1)

We assume that σ satisfies condition (V0) and we consider classical solutions of
(1) and solutions of functional differential inequalities corresponding to (1).

Remark 2.1. Suppose that H : [0, a]× C(I ∪ [0, a], R) → R and µ : I → R are given
functions. Let us consider the Cauchy problem

ω′(t) = H(t, ω), ω(t) = µ(t) for t ∈ I, (2)

where ω is the functional variable. It is clear that (1) is a special case of (2). We will say
that H satisfies the Volterra condition if for each t ∈ [0, a] and for ξ, ξ̃ ∈ C(I ∪ [0, a], R)
such that ξ(τ) = ξ̃(τ) for τ ∈ [−b0 − a, t] we have H(t, ξ) = H(t, ξ̃). Note that the
Volterra condition is not satisfied for H(t, ω) = σ(t, ωt) + L(t)ω(a).
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The theory of functional differential equations and inequalities presented in [11]
(vol. II) concerns equations satisfying the Volterra condition. Until now there have not
been any results on functional differential inequalities which do not satisfy the Volterra
condition.

In the present paper we use comparison functional differential equations which do not
satisfy the Volterra condition.

For ξ ∈ C(I, R) and t ∈ [0, a] we put

‖ξ‖t = max{|ξ(τ)| : τ ∈ [−b0 − t, 0]}.

Lemma 2.2. If ζ, ϑ ∈ C([0, a], R) and

D−ζ(t) ≤ ϑ(t) for t ∈ (0, a],

where D− is the left hand lower Dini derivative then

ζ(t) − ζ(0) ≤
∫ t

0
ϑ(τ) dτ, t ∈ [0, a]. (3)

Proof. Write

∆(t) = ζ(t) −
∫ t

0
ϑ(τ) dτ, t ∈ [0, a].

Then D−∆(t) ≤ 0 for t ∈ (0, a]. It follows from the Dini theorem ([14], Theorem
2.1) that ∆ is nonincreasing on [0, a]. This gives ∆(t) ≤ ∆(0) for t ∈ [0, a] and
assertion (3) follows.

Assumption H[σ, L]. The functions σ : [0, a] × C(I, R+) → R+, L : [0, a] →
R+ satisfy the conditions:

(i) σ is continuous, it is nondecreasing with respect to the second variable, and
satisfies condition (V0).

(ii) There is K ∈ C([0, a], R+) such that

σ(t, ξ) − σ(t, ξ̃) ≤ K(t)‖ξ − ξ̃‖t

where t ∈ [0, a], ξ, ξ̃ ∈ C(I, R+) and ξ(τ) ≥ ξ̃ for τ ∈ I.

(iii) L ∈ C([0, a], R+) and

∫ a

0
L(s) exp

{

∫ a

s
K(τ) dτ

}

ds < 1. (4)

The following theorem on functional differential inequalities is important in
our considerations.

Theorem 2.3. Suppose that Assumption H[σ, L] is satisfied and

(i) ϕ ∈ C([−b0, a], R+), ϕ is nondecreasing on [−b0, a], and

D−ϕ(t) ≤ σ(t, ϕt) + L(t)ϕ(a) for t ∈ (0, a].
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(ii) η ∈ C([−b0, 0], R+) and ϕ(t) ≤ η(t) for t ∈ [−b0, 0].

Then there exists exactly one solution ω( · , η) of the Cauchy problem (1). The solution
ω( · , η) is defined on [−b0, a] and

ϕ(t) ≤ ω(t, η) for t ∈ [0, a]. (5)

Proof. Consider the sequence of functions {y(k)} defined in the following way.

The function y(0) is given by the relations:

(i) y(0)(t) = η(t) for t ∈ [−b0, 0],

(ii) y(0) is a solution of the Cauchy problem

ω′(t) = K(t)ω(t) + L(t)ω(a) + σ(t, θ), ω(0) = η(0), (6)

where θ : I → R+ is given by θ(τ) = 0 for τ ∈ I.

If y(k) : [−b0, a] → R+ is a known function then

y(k+1)(t) = η(t) for t ∈ [−b0, 0]

and

y(k+1)(t) = η(0) +
∫ t

0
σ(τ, y

(k)
τ ) dτ + y(k)(a)

∫ t

0
L(s) ds for t ∈ [0, a].

From (4) we conclude that there exists exactly one y(0) and it is given by

y(0)(t) = η(0) exp
{

∫ t

0
K(τ) dτ}

+A
∫ t

0
L(s) exp

{

∫ t

s
K(τ) dτ

}

ds +
∫ t

0
σ(s, θ) exp

{

∫ t

s
K(τ) dτ

}

ds

where

A = Ã
[

η(0) exp
{

∫ a

0
K(τ)dτ

}

+
∫ a

0
σ(s, θ) exp

{

∫ t

s
K(τ)dτ

}

ds
]

,

Ã =
[

1 −
∫ a

0
L(s) exp

{

∫ a

s
K(τ) dτ

}

ds
]−1

. (7)

It follows that the sequence {y(k)} is defined on [−b0, a]. It is easily seen that

0 ≤ y(k+1)(t) ≤ y(k)(t) for t ∈ [0, a] and k ≥ 0. (8)

Now we prove that

ϕ(t) ≤ y(k)(t) for t ∈ [0, a] and k ≥ 0. (9)

For k = 0 we have

D−ϕ(t) ≤ K(t)ϕ(t) + L(t)ϕ(a) + σ(t, θ), t ∈ (0, a],
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and consequently

D−

[

ϕ(t) exp
{

−
∫ t

0
K(τ)dτ

}

]

≤
[

L(t)ϕ(a) + σ(t, θ)
]

exp
{

−
∫ t

0
K(τ)dτ

}

.

It follows from Lemma 2.2 that

ϕ(t) ≤ η(0) exp
{

∫ t

0
K(τ)dτ

}

+ ϕ(a)
∫ t

0
L(s) exp

{

∫ t

s
K(τ)

}

ds

+
∫ t

0
σ(s, θ) exp

{

∫ t

s
K(τ)

}

ds, t ∈ (0, a].

The above inequality and (4) imply the estimate ϕ(t) ≤ y(0)(t) for t ∈ [0, a].

Suppose that k ≥ 0 is fixed and ϕ(t) ≤ y(k)(t) for t ∈ [0, a]. Then we have

D−ϕ(t) ≤ σ(t, y
(k)
t ) + y(k)(a)L(t), t ∈ (0, a],

and consequently

ϕ(t) ≤ η(0) +
∫ t

0
σ(τ, y

(k)
τ ) + y(k)(a)

∫ t

0
L(τ)dτ = y(k+1)(t),

where t ∈ (0, a]. Then we obtain (9) by induction.
It follows from (8) that there is

lim
k→∞

y(k)(t) = ω(t, η), t ∈ [0, a],

and ω( · , η) satisfies (1). From (9) we obtain (5). Uniqueness of a solution of (1)
follows from Assumption H[σ, L]. This completes the proof.

Remark 2.4. It is important in classical theorems on functional differential inequalities
that given operators satisfy the Volterra condition. Let us consider the following example.
The function

ω̃(t) = et +
ea

2 − ea

(

et − 1
)

satisfies the functional differential inequality

ω′(t) ≤ ω(t) + ω(a), t ∈ [0, a] (10)

where a > ln 4 and the function

ω̄(t) = 2et +
2ea

2 − ea

(

et − 1
)

satisfies the functional differential inequality

ω′(t) ≥ ω(t) + ω(a), t ∈ [0, a]. (11)

Note that the right hand sides of (10) and (11) do not satisfy the Volterra condition.
Moreover we have ω̃(0) < ω̄(0) and the inequality

ω̃(t) ≤ ω̄(t), t ∈ [0, a]

is not satisfied.
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3 First order partial functional differential equations

For x, y ∈ R
n, x = (x1, . . . , xn), y = (y1, . . . , yn), we write x < y if xi < yi for

1 ≤ i ≤ n. In a similar way we define the relation x ≤ y.
Suppose that α, β ∈ C([−b0, a], R

n) where a > 0, b0 ∈ R+, α = (α1, . . . , αn) ,
β = (β1, . . . , βn), and α(t) < β(t) for t ∈ [−b0, a]. Write

Ξ0 = {(t, x) ∈ R
1+n : t ∈ [−b0, 0], α(t) ≤ x ≤ β(t)},

Ξ = { (t, x) ∈ R
1+n : t ∈ [0, a], α(t) ≤ x ≤ β(t) }.

Solutions of functional differential equations or inequalities will be defined on
Ξ0 ∪ Ξ, and Ξ0 will be an initial set for the Cauchy problem. For (t, x) ∈ Ξ we put

A[t, x] = {(τ, y) ∈ R
1+n : (t + τ, x + y) ∈ Ξ0 ∪ Ξ}.

Then

A[t, x] = {(τ, y) ∈ R
1+n : −b0 − t ≤ τ ≤ −t + a,

− x + α(t + τ) ≤ y ≤ −x + β(t + τ)}.

Write
B[t, x] = {(τ, y) ∈ A[t, x] : τ ≤ 0}, (t, x) ∈ Ξ.

Set

ci = min{αi(t) : t ∈ [−b0, a]}, di = max{βi(t) : t ∈ [−b0, a]}, 1 ≤ i ≤ n,

and c = (c1, . . . , cn), d = (d1, . . . , dn). Write

D = [−b0 − a, a] × [c − d, d − c], E = [−b0 − a, 0]× [c − d, d − c].

Then A[t, x] ⊂ D and B[t, x] ⊂ E for (t, x) ∈ Ξ.
Given z : Ξ0 ∪ Ξ → R and (t, x) ∈ Ξ, define z(t,x) : B[t, x] → R and z[t,x] :

A[t, x] → R by

z(t,x)(τ, y) = z(t + τ, x + y) for (τ, y) ∈ B[t, x], (12)

and
z[t,x](τ, y) = z(t + τ, x + y) for (τ, y) ∈ A[t, x]. (13)

Put Ω = Ξ × C(E, R) × C(D, R) × R
n and suppose that f : Ω → R is a given

function of the variables (t, x, v, w, q), x = (x1, . . . , xn), q = (q1, . . . , qn). Let us
denote by z an unknown function of the variables (t, x). Set

F[z](t, x) = f (t, x, z(t,x), z[t,x], ∂xz(t, x))

where ∂xz = (∂x1
z, . . . , ∂xnz). We consider the functional differential equation

∂tz = F[z] (14)
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with the initial condition
z = ψ on Ξ0, (15)

where ψ : Ξ0 → R is a given function. We will say that f satisfies condition (V)
if for each (t, x, q) ∈ Ξ × R

n and for v, ṽ ∈ C(E, R), w, w̃ ∈ C(D, R) such that
v(τ, y) = ṽ(τ, y) for (τ, y) ∈ B[t, x] and w(τ, y) = w̃(τ, y) for (τ, y) ∈ A[t, x] we
have f (t, x, v, w, q) = f (t, x, ṽ, w̃, q). It is clear that condition (V) means that the
value of f at (t, x, v, w, q) ∈ Ω depends on (t, x, q) and on the restrictions of v and
w to the sets B[t, x] and A[t, x] respectively. We assume that f satisfies condition
(V) and we consider classical solutions of (14), (15).

Remark 3.1. Suppose that G : Ξ × C(Ξ0 ∪ Ξ, R)× R
n → R is a given function. Let

us consider the functional differential equation

∂tz(t, x) = G(t, x, z, ∂xz(t, x)) (16)

where z is the functional variable. It is clear that (14) is a special case of (16). We will
say that G satisfies the Volterra condition if for each (t, x, q) ∈ Ξ × R

n, and for z, z̃ ∈
C(Ξ0 ∪ Ξ, R) such that z(τ, y) = z̃(τ, y) for (τ, y) ∈ (Ξ0 ∪ Ξ) ∩ ([−b0, t]× R

n) we
have G(t, x, z, q) = G(t, x, z̃, q).

Note that the Volterra condition is not satisfied for equation (14).
The results presented in [1], [4], [5], [8], [9], [17] have the following limitation:

functional differential equations or systems considered in these papers satisfy the Volterra
condition. In fact, we are not aware of any previous results pertaining to the functional
differential equation (16) which do not satisfy the Volterra condition.

With the above motivation we consider problem (14), (15).

Write
Ξ⋆ = {(t, x) ∈ Ξ : t ∈ (0, a] : α(t) < x < β(t)},

∂0Ξ =
(

Ξ \ Ξ⋆

)

∩
(

(0, a]× R
n
)

.

A function z : Ξ0 ∪ Ξ → R will be called the function of class C⋆ if z is con-
tinuous on Ξ0 ∪ Ξ and there exist the derivatives ∂tz, ∂xz = (∂x1

z, . . . , ∂xnz) on
Ξ ∩

(

(0, a]× R
n
)

and z is differentiable on ∂0Ξ. For z ∈ C(Ξ0 ∪ Ξ, R) we put

Π+[z] = {(t, x) ∈ Ξ : |z(t, x)| ≥ |z(t, y)| for y ∈ [α(t), β(t)]}

and
‖z‖t = max{|z(τ, y)| : (τ, y) ∈ Ξ0 ∪ Ξ, τ ≤ t}, t ∈ [−b0, a]. (17)

For each (t, x) ∈ Ξ there are the sets of natural numbers I0[t, x], I−[t.x], I+[t, x]
such that I−[t, x] ∩ I+[t, x] = ∅, I0[t, x] ∪ I−[t, x] ∪ I+[t, x] = {1, . . . , n}, and

αi(t) < xi < βi(t) for i ∈ I0[t, x],

xi = αi(t) for i ∈ I−[t, x], xi = βi(t) for i ∈ I+[t, x].

It is clear that there are (t, x) ∈ Ξ such that I0[t, x] = ∅ or I−[t, x] = ∅ or I+[t, x] =
∅. For (t, x) ∈ ∂0Ξ and i ∈ I−[t, x], j ∈ I+[t, x] we put

x[i, α] = (x1, . . . , xi−1, αi(t), xi+1, . . . , xn),



Functional differential inequalities with partial derivatives 135

x[j, β] = (x1, . . . , xj−1, β j(t), xj+1, . . . , xn).

Set ei = (1, . . . , 0, 1, 0, . . . , 0) ∈ R
n with 1 standing in the i−th place. For (t, x, v) ∈

Ξ × C(E, R) we define a function Vv : [−b0 − t, 0] → R+ in the following way:

(Vv)(τ) = max{|v(τ, y)| : (τ, y) ∈ B[t, x]}, τ ∈ [−b0 − t, 0]. (18)

For w ∈ C(D, R) and (t, x) ∈ Ξ we define the seminorm

‖w‖A[t,x] = max{|z(τ, y)| : (τ, y) ∈ A[t, x]}. (19)

If z ∈ C(Ξ0 ∪ Ξ, R) and (t, x) ∈ Ξ then we write

‖z[t,x]‖A[t,x] = max{|z[t,x](τ, y)| : (τ, y) ∈ A[t, x]}. (20)

For a function z : Ξ0 ∪ Ξ → R which is of class C⋆ and for a point
(t, x) ∈ Ξ ∩

(

(0, a]× R
n]
)

we put

Y[z](t, x) = ∑
i∈I−[t,x]

α′
i(t)|∂xi

z(t, x)| − ∑
i∈I+[t,x]

β′
i(t)|∂xi

z(t, x)|.

Assumption H[α, β]. The functions α, β ∈ C([−b0, a], R
n) are such that

α(t) < β(t) for t ∈ [−b0, a] and there exist the derivatives α′(t), β′(t) for t ∈ [0, a]
and α′(t) ≥ 0[n], β′(t) ≤ 0[n] for t ∈ [0, a] where 0[n] = (0, . . . , 0) ∈ R

n.

Theorem 3.2. Suppose that Assumptions H[σ, L] and H[α, β] are satisfied and

(i) u : Ξ0 ∪ Ξ → R is of class C⋆ and η(t) = ‖u‖t, t ∈ [−b0, 0].

(ii) The functional differential inequality

|∂tu(t, x)| ≤ σ(t, Vu(t,x)) + L(t)‖u[t,x]‖A[t,x] + Y[u](t, x) (21)

is satisfied for (t, x) ∈ Π+[u].

Under these assumptions we have

‖u‖t ≤ ω(t, η) for t ∈ [0, a], (22)

where ω( · , η) is the solution of (1).

Proof. Write ζ(t) = ‖u‖t, t ∈ [−b0, a]. Then ζ ∈ C([−b0, a], R+) and ζ is
nondecreasing. We prove that

D−ζ(t) ≤ σ(t, ζt) + L(t)ζ(a) for t ∈ (0, a]. (23)

Suppose that t ∈ (0, a]. There is (τ, x) ∈ Ξ0 ∪ Ξ such that ζ(t) = |u(τ, x)|.
If τ < t then D−ζ(t) = 0 and (23) is satisfied. Suppose that τ = t. Then
(i) ζ(t) = u(t, x) or (ii) ζ(t) = −u(t, x). Let us consider the case (i). It is eas-
ily seen that

∂xi
u(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

u(t, x) ≤ 0 for i ∈ I−[t, x], (24)
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and
∂xi

u(t, x) = 0 for i ∈ I0[t, x]. (25)

Let γ : [0, t] → R
n, γ = (γ1, . . . , γn), be defined by

γi(τ) = xi for i ∈ I0[t, x],

γi(τ) = αi(τ) for i ∈ I+[t, x], γi(τ) = βi(τ) for i ∈ I−[t, x].

Set λ(τ) = u(τ, γ(τ)), τ ∈ [0, t]. Then λ(τ) ≤ ζ(τ) for τ ∈ [0, t] and λ(t) = ζ(t).
This gives λ′(t) ≥ D−ζ(t). It is clear that (t, x) ∈ Π+[u]. Then we have

D−ζ(t) ≤ λ′(t) = ∂tu(t, x) +
n

∑
i=1

∂xi
u(t, x) γ′

i(t)

≤ σ(t, ζt) + L(t)ζ(a) + Y[u](t, x) +
n

∑
i=1

∂xi
u(t, x) γ′

i(t) = σ(t, ζt) + L(t)ζ(a),

which proves (23). If the case (ii) is satisfied then (23) can be proved in a similar
way. It follows from Theorem 2.3 that ζ(t) ≤ ω(t, η) for t ∈ [0, a]. This gives (22)
and the proof is complete.

Now we construct estimates of solutions of (14) and we give a result on the
uniqueness of solutions of initial problems.

Assumption H[ f , α, β]. The functions α, β : [−b0, a] → R
n satisfy Assumption

H[α, β] and

(i) for (t, x) ∈ ∂0Ξ, i ∈ I−[t, x], h ∈ R, h 6= 0, we have

α′
i(t) ≥

∣

∣

1

h

[

f (t, x[i, α], v, w, q + eih)− f (t, x[i, α], v, w, q)
]∣

∣

where v ∈ C(E, R), w ∈ C(D, R), q = (q1, . . . , qn) ∈ R
n and qj = 0 for

j ∈ I0[t, x].

(ii) For (t, x) ∈ ∂0Ξ, i ∈ I+[t, x], h ∈ R, h 6= 0, we have

−β′
i(t) ≥

∣

∣

1

h

[

f (t, x[i, β], v, w, q + eih)− f (t, x[i, β], v, w, q)
]
∣

∣

where v ∈ C(E, R) w ∈ C(D, R), q = (q1, . . . , qn) ∈ R
n and qj = 0 for

j ∈ I0[t, x].

Theorem 3.3. Suppose that f : Ω → R satisfies condition (V), and Assumptions
H[σ, L] and H[α, β] hold.

I. If the estimate

∣

∣ f (t, x, v, w, 0[n]))
∣

∣ ≤ σ(t, Vv) + L(t)‖w‖A[t,x] (26)

is satisfied for (t, x, v, w) ∈ Ξ × C(E, R)× C(D, R) and z̃ : Ξ0 ∪ Ξ → R is a solution
of (14) and z̃ is of class C⋆ then

|z̃(t, x)| ≤ ω(t, η) for (t, x) ∈ Ξ, (27)
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where ω( · , η) is a solution of (1) with η given by

η(t) = max
{

|z̃(τ, y)| : (τ, y) ∈ Ξ0, τ ≤ t
}

, t ∈ [−b0, 0].

II. If the estimate
∣

∣ f (t, x, v, w, q)− f (t, x, ṽ, w̃, q)
∣

∣ ≤ σ(t, V(v − ṽ)) + L(t)‖w − w̃‖A[t,x]

is satisfied on Ω and σ(t, θ) = 0 for t ∈ [0, a] then the Cauchy problem (14), (15) admits
at most one solution of class C⋆ on Ξ0 ∪ Ξ.

Proof. We apply Theorem 3.2 to prove (27). Suppose that (t, x) ∈ Π+[z̃]. We
prove that

|∂tz̃(t, x)| ≤ σ(t, Vz̃(t,x)) + L(t)‖z̃[t,x]‖A[t,x] + Y[z̃](t, x). (28)

Let us consider the case where z̃(t, x) ≥ 0. Then we have

∂xi
z̃(t, x) ≥ 0 for i ∈ I+[t, x], ∂xi

z̃(t, x) ≤ 0 for i ∈ I−[t, x] (29)

and
∂xi

z̃(t, x) = 0 for i ∈ I0[t, x]. (30)

It follows from (26) that

∂tz̃(t, x) ≤ σ(t, Vz̃(t,x)) + L(t)‖z̃[t,x]‖A[t,x] + Γ(t, x)

where
Γ(t, x) = F[z̃](t, x)− f (t, x, z̃(t,x), z̃[t,x], 0[n]).

We deduce from Assumption H[ f , α, β] and from (29), (30) that

Γ(t, x) ≤ Y[z̃](t, x),

and consequently

∂tz̃(t, x) ≤ σ(t, Vz̃(t,x)) + L(t)‖z̃[t,x]‖A[t,x] + Y[z̃](t, x).

In a similar way we prove that

∂tz̃(t, x) ≥ −σ(t, Vz̃(t,x))− L(t)‖z̃[t,x]‖A[t,x] − Y[z̃](t, x),

which completes the proof of (28).
It is a simple matter to show (28) in the case where z̃(t, x) < 0 and

(t, x) ∈ Π+[z̃]. Then all the assumptions of Theorem 3.2 are satisfied and as-
sertion (27) follows.

II. Suppose that z̃, z̄ : Ξ0 ∪ Ξ → R are solutions of (14), (15) and they are of
class C⋆ and (z̃ − z̄)(t, x) 6≡ 0 on Ξ. Set u = z̃ − z̄. We prove that u satisfies the
functional differential inequality (21) for (t, x) ∈ Π+[u].

Suppose that (t, x) ∈ Π+[u]. Now, there are two cases to be distinguished:
(i) u(t, x) ≥ 0 or (ii) u(t, x) < 0. Let us consider the first case. Then relations (24),
(25) are satisfied and

∂tu(t, x) ≤ σ(t, Vu(t,x)) + L(t)‖u[t,x]‖A[t,x] (31)
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+ f (t, x, z̄(t,x), z̄[t,x], ∂x z̃(t, x))− F[z̄](t, x)

≤ σ(t, Vut,x)) + L(t)‖u[t,x]‖A[t,x] + Y[u](t, x).

In a similar way we obtain the inequality

∂tu(t, x) ≥ −σ(t, Vut,x))− L(t)‖u[t,x]‖A[t,x] − Y[u](t, x). (32)

Relations (31), (32) imply (21).
The case (ii) can be treated in a similar way. Then all the assumptions of The-

orem 3.2 are satisfied with η(t) = 0 for t ∈ [−b0, 0] and the assertion follows.
Now we consider important special cases of Theorem 3.3. Suppose that the

sets Ξ and Ξ0 are given by

Ξ = {(t, x) ∈ R
1+n : t ∈ [0, a], −b + Mt ≤ x ≤ b − Mt },

Ξ0 = [−b0, a]× [−b, b],

where b = (b1, . . . , bn) ∈ R
n, M = (M1, . . . , Mn) ∈ R

n
+ and b > Ma. For

v ∈ C(E, R) and (t, x) ∈ Ξ we put

‖v‖B[t,x] = max{|v(τ, y)| : (τ, y) ∈ B[t, x]}. (33)

If z ∈ C(Ξ0 ∪ Ξ, R) and (t, x) ∈ Ξ then we write

‖z(t,x)‖B[t,x] = max{|z(t,x)(τ, y)| : (τ, y) ∈ B[t, x] }.

Assumption H[σ̃, L]. The functions σ̃ : [0, a] × R+ → R+, L : [0, a] → R+

satisfy the conditions:

(i) σ̃ ∈ C([0, a] × R+) and σ̃ is nondecreasing with respect to the second vari-
able.

(ii) There is K ∈ C([0, a], R+) such that

σ̃(t, p)− σ̃(t, p̃) ≤ K(t)(p − p̃)

where t ∈ [0, a], p, p̃ ∈ R+ and p ≥ p̃.

(iii) L ∈ C([0, a], R+) and condition (4) is satisfied.

The following lemmas are important in applications.

Lemma 3.4. Suppose that f : Ω → R satisfies condition (V) and

(i) the derivatives (∂q1
f , . . . , ∂qn) = ∂q f exist and

(

|∂q1
f (P)|, . . . , |∂qn f (P)|

)

≤ M

where P = (t, x, v, w, q) ∈ Ω.

(ii) There are σ̃ : [0, a] × R+ → R+ and L : [0, a] × R+ such that Assumption
H[σ̃, L] is satisfied and

∣

∣ f (t, x, v, w, 0[n])
∣

∣ ≤ σ̃(t, ‖v‖B[t,x]) + L(t)‖w‖A[t,x]

where (t, x, v, w) ∈ Ξ × C(E, R)× C(D, R).
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(iii) z̃ : Ξ0 ∪ Ξ → R is a solution of (14), (15) and z̃ is of class C⋆.

Under these assumptions we have ‖z̃‖t ≤ ω(t, η̃) for t ∈ [0, a], where ω( · , η̃) is a
solution of the Cauchy problem

ω′(t) = σ̃(t, ω(t)) + L(t), ω(0) = η̃,

and η̃ = ‖z̃‖0.

The above lemma is a consequence of Theorem 3.3 part I.

Lemma 3.5. Suppose that f : Ω → R satisfies condition (V) and

(i) Assumption (i) of Lemma 3.4 holds.

(ii) There are K, L ∈ C([0, a], R+) such that condition (4) is satisfied and

∣

∣ f (t, x, v, w, q)− f (t, x, ṽ, w̃, q)
∣

∣ ≤ K(t)‖v− ṽ‖B[t,x]+ L(t)‖w− w̃‖A[t,x] on Ω.

Then the Cauchy problem (14), (15) admits at most one solution of class C⋆ on Ξ0 ∪ Ξ.

The above lemma is a consequence of Theorem 3.3 part II.

4 Parabolic functional differential problems

Let Q ⊂ R
n be a bounded domain with the boundary ∂Q. Write Ξ = [0, a] × Q,

Ξ0 = [−b0, 0]× Q where a > 0, b0 ∈ R+, and Q is the closure of Q. For (t, x) ∈ Ξ

we put

A[t, x] = {(τ, y) ∈ R
1+n : (t + τ, x + y) ∈ Ξ0 ∪ Ξ}

and

B[t, x] = {(τ, y) ∈ A[t, x] : τ ≤ 0}.

There is [c, d] ⊂ R
n, c = (c1, . . . , cn), d = (d1, . . . , n), such that A[t, x] ⊂

[−b0 − a, a] × [c, d] and B[t, x] ⊂ [−b0,−a, 0]× [c, d]. Set D = [−b0 − a, a] × [c, d]
and E = [−b0 − a, 0]× [c, d].

Given z : Ξ0 ∪ Ξ → R and (t, x) ∈ Ξ, define z(t,x) : B[t, x] → R and

z[t,x] : A[t, x] → R by (12) and (13) respectively.
Let Mn×n be the class of all n × n symmetric matrices with real elements. Set

Ω = Ξ ×C(E, R)× C(D, R)×R
n × Mn×n and suppose that F : Ω → R is a given

function of the variables (t, x, v, w, q, s) where x = (x1, . . . , xn),
q = (q1, . . . , qn) and s =

[

sij

]

i,j=1,...,n
. We will say that F satisfies condition (V) if

for each (t, x, q, s) ∈ Ξ × R
n × Mn×n and for v, ṽ ∈ C(E, R), w, w̃ ∈ C(D, R) such

that v(τ, y) = ṽ(τ, y) for (τ, y) ∈ B[t, x] and w(τ, y) = w̃(τ, y) for (τ, y) ∈ A[t, x]
we have F(t, x, v, w, q, s) = F(t, x, ṽ, w̃, q, s).

Write ∂0Ξ = [0, a]× ∂Q and suppose that ψ : Ξ0 ∪ ∂0Ξ → R is a given function.
Set

F[z](t, x) = F(t, x, z(t,x), z[t,x], ∂xz(t, x), ∂xxz(t, x))
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where ∂xz = (∂x1
z, . . . , ∂xn z) and ∂xxz =

[

∂xixj
z
]

i,j=1,...,n
. We consider the func-

tional differential equation
∂tz = F[z] (34)

with the initial boundary condition

z = ψ on Ξ0 ∪ ∂0Ξ. (35)

We assume that F satisfies condition (V) and we consider classical solutions of
(34), (35).

Remark 4.1. Suppose that G : Ξ × C(Ξ0 ∪ Ξ, R) × R
n × Mn×n → R is a given

function. Let us consider the functional differential equation

∂tz(t, x) = G(t, x, z, ∂xz(t, x), ∂xxz(t, x)) (36)

where z is the functional variable. It is clear that (34) is a special case of (36). We will say
that G satisfies the Volterra condition if for each (t, x) ∈ Ξ and for z,
z̃ ∈ C(Ξ0 ∪ Ξ, R) such that z(τ, y) = z̃(τ, y) for (τ, y) ∈ (Ξ0 ∪ Ξ) ∩ ([−b0, t]× R

n)
we have G(t, x, z, q, s) = G(t, x, z̃, q, s) where (q, s) ∈ R

n × Mn×n.
Note that the Volterra condition is not satisfied for G(t, x, z, q, s) = F(t, x, z(t,x) ,

z[t,x], q, s).
The results presented in [12], [13] and [15], [16] have the following limitation: func-

tional differential equations (or systems) considered in these papers satisfy the Volterra
condition. In fact, we are not aware of any previous results pertaining to the functional
differential equation (36) which do not satisfy the Volterra condition.

With the above motivation we consider problem (34), (35).

A function z : Ξ0 ∪ Ξ → R will be called the function of class C1.2 if
z ∈ C(Ξ0 ∪ Ξ, R) and z( · , x) : [0, a] → R is of class C1 for x ∈ Q and z(t, · ) :
Q → R is of class C2 for t ∈ [0, a].

For s, s̃ ∈ Mn×n, where

s =
[

sij

]

i,j=1,...,n
, s̃ =

[

s̃ij

]

i,j=1,...,n

we write s ≤ s̃ if

n

∑
i,j=1

(sij − s̃ij)λiλj ≤ 0 for any λ = (λ1, . . . , λn) ∈ R
n.

For v ∈ C(E, R), w ∈ C(D, R), z ∈ C(Ξ0 ∪ Ξ, R) and (t, x) ∈ Ξ we define
the function Vv : [−b0 − t, 0] → R and the numbers ‖w‖A[t,x], ‖z[t,x]‖A[t,x] by

(18)–(20) respectively. Let ‖z‖t, t ∈ [−b0, a], be defined by (17).
Assumption H[F, σ]. The function F : Ω → R satisfies condition (V) and

(i) F is continuous and there is σ : [0, a]× C(I, R+) → R such that Assumption
H[σ, L] is satisfied and

|F(t, x, v, w, q, s)− F(t, x, ṽ, w̃, q, s)| ≤ σ(t, V(v− ṽ)) + L(t)‖w − w̃‖A[t,x] on Ω.
(37)
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(ii) If s, s̃ ∈ Mn×n and s ≤ s̃ then for (t, x, v, w, q) ∈ Ξ×C(E, R)×C(D, R)×R
n

we have
F(t, x, v, w, q, s) ≤ F(t, x, v, w, q, s̃).

We prove a theorem on an estimate of the difference between a solution and an
approximate solution of (34), (35).

Theorem 4.2. Suppose that Assumption H[F, σ] is satisfied and

(i) z̄ : Ξ0 ∪ Ξ → R is a solution of (34), (35) and z̄ is of class C1.2.

(ii) z̃ : Ξ0 ∪ Ξ → R is of class C1.2 and z̃ satisfies the boundary condition (35).

(iii) The function Γ̃ : Ξ → R is defined by the relation

∂tz̃(t, x) = F[z̃](t, x) + Γ̃(t, x) (38)

and γ̃ ∈ C([0, a], R+) is given by

|Γ̃(t, x)| ≤ γ̃(t) on Ξ. (39)

Under these assumptions we have

‖z̄ − z̃‖t ≤ ω̃(t) for t ∈ [0, a], (40)

where ω̃ : [−b0, a] → R+ is a solution of the Cauchy problem

ω′(t) = σ(t, ωt) + L(t)ω(a) + γ̃(t), ω(t) = 0 for t ∈ [−b0, 0]. (41)

Proof. We apply Theorem 2.3. Set ϕ(t) = ‖z̄ − z̃‖t, t ∈ [−b0, a]. Then
ϕ ∈ C([−b0, a], R+) and ϕ is nondecreasing. We prove that ϕ satisfies the func-
tional differential inequality

D−ϕ(t) ≤ σ(t, ϕt) + L(t)ϕ(a) + γ̃(t), t ∈ (0, a]. (42)

Suppose that t ∈ (0, a]. There is (τ, x) ∈ Ξ, τ ≤ t, such that ϕ(t) = |(z̄ − z̃)(τ, x)|.
If τ < t then D−ϕ(t) = 0 and (42) is satisfied. Suppose that τ = t. Now,
there are two cases to be distinguished: (i) ϕ(t) = (z̄ − z̃)(t, x) or (ii) ϕ(t) =
−(z̄ − z̃)(t, x)). Let us consider the first case. Since z̄ and z̃ satisfy (35) then x ∈ Q
and consequently ∂x z̄(t, x) = ∂x z̃(t, x) and

n

∑
i,j=1

∂xixj
(z̄ − z̃)(t, x) λiλj ≤ 0 for λ = (λ1, . . . , λn) ∈ R

n.

From (37)–(39) we conclude that

D−ϕ(t) ≤ ∂t(z̄ − z̃)(t, x) ≤ σ(t, ϕt) + L(t)ϕ(a)

+F(t, x, z̃(t,x) , z̃[t,x], ∂xz̄(t, x), ∂xx z̄(t, x))− F[z̃](t, x)− Γ̃(t, x)

≤ σ(t, ϕt) + L(t)ϕ(a) + γ̃(t),

which proves (42). In a similar way we prove (42) if the case (ii) holds.
Now all the assumptions of Theorem 2.3 are satisfied with η(t) = 0 for

t ∈ [−b0, 0], and assertion (40) follows.
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Theorem 4.3. Suppose that Assumptions H[F, σ] is satisfied and σ(t, θ) = for t ∈ [0, a].
Then problem (34), (35) admits at most one solution of class C1.2 on Ξ0 ∪ Ξ.

Proof. If z̄, z̃ : Ξ0 ∪ Ξ → R are solutions of (34), (35) then conditions (38), (39)
are satisfied with Γ̃(t, x) = 0 on Ξ and γ̃(t) = 0 on [0, a]. It follows from Theorem
4.2 that z̄ = z̃ on Ξ which completes the proof.

For v ∈ C(E, R) we define the numbers ‖v‖B[t,x], (t, x) ∈ Ξ, by (33).

Lemma 4.4. Suppose that F : Ω → R satisfies condition (V) and

(i) F is continuous and there are K, L ∈ C([0, a], R+) such that

∣

∣F(t, x, v, w, q, s)− F(t, x, ṽ, w̃, q, s)
∣

∣ ≤

K(t)‖v − ṽ‖B[t,x] + L(t)‖w − w̃‖A[t,x] on Ω (43)

and inequality (4) is satisfied.

(ii) Condition (ii) of Assumption H[F, σ] holds.

(iii) The functions z̃, z̄ : Ξ0 ∪ Ξ → R satisfy assumption (i)–(iii) of Theorem 4.2.

Under these assumptions we have

‖z̄ − z̃‖t ≤ ω̃(t) for t ∈ [0, a],

where

ω̃(t) =
∫ t

0

[

γ̃(τ) + A⋆L(τ)
]

exp
{

∫ t

τ
K(s)ds

}

dτ, (44)

A⋆ = Ã
[

∫ a

0
γ̃(τ) exp

{

∫ a

τ
K(s) ds

}]

, (45)

and Ã is given by (7). Moreover, problem (34), (35) admits at most one solution of class
C1.2 on Ξ0 ∪ Ξ .

The above lemma is a consequence of Theorem 4.2 and Theorem 4.3.
We give examples of equations which can be derived from (34) by specializing

the operator F. Suppose that

G : Ξ × R
2 × R

n → R, A : Ξ → Mn×n, A =
[

aij

]

i,j=1,...n
,

are given functions. We define F as follows

F[z](t, x) = G
(

t, x,
∫

B[t,x]
z(t,x)(τ, y) dydτ,

∫

A[t,x]
z[t,x](τ, y) dydτ, ∂xz(t, x)

)

(46)

+
n

∑
i,j=1

aij(t, x) ∂xixj
z(t, x).

Then (34) reduces to the differential integral equation

∂tz = F[z]) (47)
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Assumption H[G, A]. The functions G : Ξ × R
2 × R

n → R, A : Ξ → Mn×n

are continuous and

(i) there are K̃, L̃ ∈ C([0, a], R+) such that

∣

∣G(t, x, ζ, ν, q)− G(t, x, ζ̃, ν̃, q)
∣

∣ ≤ K̃(t)|ζ − ζ̃|+ L̃|ν − ν̃|.

(ii) The matrix A is symmetric and

n

∑
i,j=1

aij(t, x)λiλj ≥ 0, (t, x) ∈ Ξ, λ = (λ1, . . . , λn) ∈ R
n.

We have the following result for the differential integral problem (47), (35).

Lemma 4.5. Suppose that Assumption H[G, A] is satisfied and

(i) z̄ : Ξ0 ∪ Ξ → R is a solution of (47), (35) and z̄ is of class C1.2.

(ii) z̃ : Ξ0 ∪ Ξ → R is of class C1.2 and z̃ satisfies condition (35).

(iii) The function Γ̃ : Ξ → R is defined by (38) with F given by (46), |Γ̃(t, x)| ≤ γ̃(t)
on Ξ, and γ̃ ∈ C([0, a], R+).

(iv) The following condition holds:

κ a
∫ a

0
L̃(s) exp

{

κ
∫ a

s
τ K̃(τ) dτ

}

ds < 1,

where

κ =
n

∏
i=1

(di − ci).

Under these assumptions we have

‖z̄ − z̃‖t ≤ ω̃(t) for t ∈ [0, a],

where ω̃ is given by (44), (45) with

K(t) = κ tK̃(t), L(t) = a κL̃(t), (48)

and Ã is defined by (7) with the above given K and L. Moreover, problem (47), (35) admits
at most one solution of class C1.2 on Ξ0 ∪ Ξ.

Proof. It follows from Assumption H[G, A] that the operator F defined by (46)
satisfies condition (ii) of Assumption H[F, σ], and the Lipschitz condition (43)
holds with K, L given by (48). Then our assertion follows from Lemma 4.4.

Now we consider differential equations with deviated variables. For the above
given functions G and A we put

F[z](t, x) = G
(

t, x, z(χ(t, x)), z(ϑ(t, x)), ∂x z(t, x)
)

+
n

∑
i,j=1

aij(t, x)∂xi xj
z(t, x). (49)
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where χ, ϑ : Ξ → R
1+n and χ(t, x), ϑ(t, x) ∈ Ξ0 ∪ Ξ for (t, x) ∈ Ξ. Then (34)

reduces to the differential equation with deviated variables

∂tz = F[z]. (50)

Assumption H[χ, ϑ]. The functions χ, ϑ : Ξ → R
1+n, χ = (χ0, χ̃), ϑ = (ϑ0, ϑ̃),

χ̃ = (χ1, . . . , χn), ϑ̃ = (ϑ1, . . . , ϑn), satisfy the conditions:

(i) χ, ϑ are continuous and χ̃(t, x), ϑ̃(t, x) ∈ Q for (t, x) ∈ Ξ.

(ii) For (t, x) ∈ Ξ we have −b0 ≤ χ0(t, x) ≤ t and −b0 ≤ ϑ0(t, x) ≤ a.

We have the following result for the differential problem (49) (35).

Lemma 4.6. Suppose that Assumption H[G, A] and H[α, β] are satisfied and

(i) z̄ : Ξ0 ∪ Ξ → R is a solution of (50), (35), and z̄ is of class C1.2.

(ii) z̃ : Ξ0 ∪ Ξ → R is of class C1.2 and z̃ satisfies condition (35).

(iii) The function Γ̃ : Ξ → R is defined by (38) with F given by (49), and
|Γ̃(t, x)| ≤ γ̃(t) on Ξ where γ̃ ∈ C([0, a], R+).

(iv) Condition (4) is satisfied for K = K̃ and L = L̃.

Under these assumptions we have

‖z̄ − z̃‖t ≤ ω̃(t) for t ∈ [0, a],

where ω̃ is given by (44), (45) with K = K̃, L = L̃, and Ã defined by (7) with the above
given K, L. Moreover, problem (49), (35) admits at most one solution of class C1.2 on
Ξ0 ∪ Ξ.

The above result is a consequence of Lemma 4.4.
It is clear that more complicated examples of differential equations with devi-

ated variables or differential integral equations can be derived from (34).
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