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Abstract

A new notion of injectivity is introduced. It is shown that approximate
Connes-amenability and approximate injectivity are the same properties. As
a consequence, approximate Connes-amenability of the direct sum of dual
Banach algebras is discussed. A characterization is given for approximate
Connes-amenability of dual Banach algebras in terms of the approximate
splitting of certain short exact sequence.

1 Preliminaries

The notion of amenability for Banach algebras introduced by Johnson [12], has
proved to be of enormous importance in Banach algebra theory (see [4]). Several
modifications of this notion were introduced by Ghahramani and Loy in [8]. The
reader may find more detail in [1, 2, 9, 10].

The concept of Connes-amenability, which is a natural generalization of
amenability for dual Banach algebras, was introduced by Runde in [13], see also
[3, 11]). For more information on this subject, see [14]. There is a characterization
of Connes-amenability in terms of splitting of an admissible short exact sequence,
a fact noted by Daws [5, Prop. 4.4]. The notion of injectivity for dual Banach
algebras was introduced by Daws in [6]. A dual Banach algebra is injective if
and only if it is Connes-amenable [6, Theorem 6.13] The concept of approximate
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Connes-amenability which is a generalization of Connes-amenability was intro-
duced in [7].

The purpose of the present paper is to generalize [5, Prop. 4.4] and [6, Theo-
rem 6.13] to the approximate case. The organization of the paper is as follows. In
Sec. 2 we define and study the notion of approximate injectivity for dual Banach
algebras. Then we show that approximate injectivity is equivalent to approximate
Connes-amenability.

The results of Sec. 2 are applied in Sec. 3 to investigate the approximate
Connes-amenability of the direct sum of dual Banach algebras. We prove that the
direct sum of two approximately Connes-amenable dual Banach algebras, when
at least one of them has an identity, is approximately Connes-amenable. For a Ba-
nach algebra A, we study the relation between approximate Connes-amenability
of WAP(A∗)∗ and continuous representations of A on reflexive Banach spaces.

In Sec. 4 we give a characterization of approximate Connes-amenability of a
dual Banach algebra A = (A∗)∗ in terms of the approximate splitting of the short
exact sequence

0 −→ A♯
∗

∆∗|
A
♯
∗−→ σWC(A♯⊗̂A♯)∗ −→ σWC(A♯⊗̂A♯)∗/∆∗(A♯

∗) −→ 0 .

Before proceeding further we recall some terminology. Throughout, if A is
a Banach algebra we shall write A♯ for the forced unitization of A. The adjoined
identity element will usually be denoted by e.

Let E and F be Banach spaces. We write L(E, F) for the space of all bounded
linear operators from E into F, and L(E) for L(E, E). The closed unit ball of a
Banach space E is denoted by ball E.

For a Banach algebra A, a Banach A-bimodule E, is a Banach space which is
algebraically an A-bimodule, and for which there is a constant C ≥ 0 such that

||a . x|| ≤ C||a|| ||x|| and ||x . a|| ≤ C||a|| ||x|| (a ∈ A, x ∈ E).

Let E be a Banach A-bimodule and E∗ be a closed submodule of E∗ such that
E = (E∗)

∗. Then we say that E is a dual Banach A-bimodule with predual E∗.
A Banach algebra A is called a dual Banach algebra if it is a dual Banach

A-bimodule. For a dual Banach algebra A, A dual Banach A-bimodule E is nor-
mal if the maps

A −→ E , a 7−→

{

a . x
x . a

,

are w∗-w∗-continuous, for each x ∈ E.
A continuous derivation from a Banach algebra A to a Banach A-bimodule E

is a bounded linear map D : A −→ E, satisfying D(ab) = a . Db + Da . b. For
x ∈ E, the derivation adx := a 7−→ a . x − x . a, is called an inner derivation.
A derivation D : A −→ E is approximately inner if there exists a net (xα)α in E,
such that D = limα adxα , the limit being in strong operator topology.

A Banach algebra A is amenable if for any Banach A-bimodule E, every deriva-
tion from A to E∗ is inner. We say that A is approximately amenable if for any
Banach A-bimodule E, every derivation D : A −→ E∗ is approximately inner.



Approximate injectivity of dual Banach algebras 833

Let A be a dual Banach algebra. Then A is Connes-amenable if every
w∗-continuous derivation from A to a normal dual Banach A-bimodule is inner.
Similarly, a dual Banach algebra A is approximately Connes-amenable if for every
normal, dual Banach A-bimodule E, every w∗-continuous derivation D : A −→ E
is approximately inner.

Let A be a dual Banach algebra, and let E be a Banach A-bimodule. We write
σWC(E) for the set of all elements x ∈ E such that the maps

A −→ E , a 7−→

{

a . x
x . a

,

are w∗-weak continuous. It is clear that σWC(E) is a closed submodule of E.
Let A be a Banach algebra. Then A⊗̂A is a Banach A-bimodule in the stan-

dard way. Define ∆A : A⊗̂A −→ A by ∆A(a ⊗ b) = ab. Then ∆A is an A-
bimodule homomorphism. In the sequel, simply we write ∆ for both ∆A and
∆A♯ .

For a dual Banach algebra A with predual A∗, it is shown in [15, Cor. 4.6]
that ∆∗(A∗) ⊆ σWC((A⊗̂A)∗), so that ∆∗ maps A∗ into σWC((A⊗̂A)∗). Con-
sequently, taking the adjoint of ∆∗|A∗ , we can extend ∆ to an A-bimodule homo-
morphism ∆σWC : σWC((A⊗̂A)∗)∗ −→ A.

For a Banach algebra A, recall that (A⊗̂A)∗ = L(A,A∗) with duality defined
by

〈a ⊗ b, T〉 = 〈a, Tb〉 (T ∈ L(A,A∗), a, b ∈ A) .

According to [5, 6], it is useful to identify σWC((A⊗̂A)∗) with σWC(L(A,A∗)).
Connes-amenability of a dual Banach algebra A is equivalent to existence of a

σWC-virtual diagonal, which is an element M ∈ σWC((A⊗̂A)∗)∗ such that

a . M = M . a and a∆σWC(M) = a (a ∈ A) ,

see [15, Theorem 4.8].

2 Approximate Injectivity

Our first proposition is a characterization of approximately Connes-amenable
dual Banach algebras which improves [7, Theorem 3.3].

Proposition 2.1. Suppose that A is a dual Banach algebra. Then the following are
equivalent:

(i) A is approximately Connes-amenable.
(ii) There is a net (Mα)α ⊆ σWC((A♯⊗̂A♯)∗)∗ such that

a . Mα − Mα . a −→ 0 and ∆σWC Mα −→ e (a ∈ A♯) .

(iii) There is a net (M
′

α)α ⊆ σWC((A♯⊗̂A♯)∗)∗ such that

a . M
′

α − M
′

α . a −→ 0 and ∆σWC M
′

α = e (a ∈ A♯) .
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Proof. Using [7, Prop. 2.3], the equivalences of (i) and (ii) is just [7, Theorem 3.3].
(i) =⇒ (iii) also follows from the proof in [7]. The implication (iii) =⇒ (ii) is
obvious.

Let F be a subset of an algebra H. The commutant of F is

F c = {T ∈ H : TS = ST, S ∈ F} .

It is obvious that F c is a closed subalgebra of H .
Let E be a Banach space, and let F ⊆ L(E) be a subalgebra. A quasi-expectation

for F is a projection Q : L(E) −→ F c such that Q(STU) = SQ(T)U for S, U ∈ F c

and T ∈ L(E).
When E is a reflexive Banach space, E∗⊗̂E is the canonical predual for L(E),

see Example 3 in the introduction in [13], so that it induces a w∗-topology on L(E)
.

From [6], we recall that a unital dual Banach algebra A is injective if whenever
π : A −→ L(E) is a w∗-continuous, unital representation on a reflexive Banach
space E, there is a quasi-expectation Q : L(E) −→ π(A)c for π(A).

Let E be a Banach space and let F ⊆ L(E) be a subalgebra. It is easy to see
that a bounded linear map Q : L(E) −→ F c is a quasi-expectation for F if and
only if

(1) The map Q is the identity on F c,
(2) SQ(T)− Q(T)S = 0, (S ∈ F , T ∈ L(E)), and
(3) Q(STU) = SQ(T)U (S, U ∈ F c, T ∈ L(E)).
The above observation is the motivation of the basic definition for the present

paper.

Definition 2.2. Let F be a subalgebra of L(E) for some Banach space E. An
approximate quasi-expectation for F is a net of bounded linear maps Qα : L(E) −→
L(E), such that

(i) Each Qα is the identity map on F c,
(ii) SQα(T)− Qα(T)S −→ 0 , (S ∈ F , uniformly for all T ∈ ballL(E)), and
(iii) Qα(STU) = SQα(T)U (S, U ∈ F c, T ∈ L(E), and for all α).

We remark that (ii) of Definition 2.2 is exactly the condition

sup
T∈ballL(E)

||SQα(T)− Qα(T)S|| −→ 0 , (S ∈ F ) .

Definition 2.3. A (unital) dual Banach algebra A is approximately injective if when-
ever π : A −→ L(E) is a (unital) w∗-continuous representation on a reflexive
Banach space E, there is an approximate quasi-expectation for π(A).

In the above definition, we wish to stress that the representation π is assumed
to be unital, when A is unital.

It is known that if A = (A∗)∗ is a dual Banach algebra, then its unitization
A♯ = A⊕1

C is a dual Banach algebra with predual A∗ ⊕
∞

C, where ⊕1 and ⊕∞

indicate ℓ1 and ℓ∞ direct sums, respectively. The duality pairing between A♯ and
its predual is given by

〈(φ, α), (a, λ)〉 = 〈φ, a〉+ λα (a ∈ A, φ ∈ A∗, α, λ ∈ C) .

We write IE for the identity map on a Banach space E.
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Proposition 2.4. Suppose that A is a dual Banach algebra. Then A is approxi-
mately injective if and only if A♯ is approximately injective.

Proof. Let A be approximately injective and let π : A♯ −→ L(E) be a unital
w∗-continuous representation where E is a reflexive Banach space. Clearly π|A is
a w∗-continuous representation for A. Approximate injectivity of A implies that
there is an approximate quasi-expectation Qα : L(E) −→ L(E) for π(A). It is
easy to check that π(A♯)c = π(A)c . For a ∈ A, λ ∈ C and T ∈ L(E), we observe
that

π(a, λ)Qα(T)− Qα(T)π(a, λ) = π(a)Qα(T)− Qα(T)π(a) .

Therefore (Qα) is an approximate quasi-expectation for π(A♯), as required.
Conversely, suppose that A♯ is approximately injective, and that π : A −→

L(E) is a w∗-continuous representation on a reflexive Banach space E. We extend
π to π̃ from A into A♯ by setting π̃(a, λ) = π(a) + λIE, for a ∈ A and λ ∈ C.
It is readily seen that π̃ is a w∗-continuous representation. By the assumption,
there is an approximate quasi-expectation (Qα)α for π̃(A♯). Because π̃(A♯)c =
π(A)c and π(a) = π̃(a) for every a ∈ A, we conclude that A is approximately
injective.

The following is a part of [7, Prop. 6.1].

Proposition 2.5. Suppose that A and B are dual Banach algebras and that
θ : A −→ B is a w∗-continuous homomorphism. Suppose that A is approxi-
mately Connes-amenable. Then there is a net (Qi) ⊆ L(B) such that each Qi is
the identity map on θ(A)c ,

θ(a) Qi(b)− Qi(b) θ(a) −→ 0 (a ∈ A, uniformly for all b ∈ ball B) ,

and

Qi(z1bz2) = z1Qi(b)z2 (z1, z2 ∈ θ(A)c , b ∈ B) .

We recall some preliminaries from [6] that are needed to prove the main the-
orem. Suppose that A is a dual Banach algebra and that π : A −→ L(E)
is a w∗-continuous representation on some reflexive Banach space E. We turn
L(E)⊗̂E⊗̂E∗ into a Banach A-bimodule by setting

a . (T ⊗ x ⊗ φ) := T ⊗ π(a)(x) ⊗ φ , and (T ⊗ x ⊗ φ) . a := T ⊗ x ⊗ π(a)∗(φ) ,

for all a ∈ A, x ∈ E, φ ∈ E∗ and T ∈ L(E). Hence the dual space L(L(E)), with
predual L(E)⊗̂(E⊗̂E∗), has naturally a Banach A-bimodule structure. One can
check that L(E) becomes a Banach A-bimodule through

a . T := π(a)T , and T . a := Tπ(a) (a ∈ A, T ∈ L(E)) ,

and a Banach π(A)c-bimodule in the obvious way. We write LA(L(E)) for the
collection of all π(A)c-bimodule homomorphisms, that is, maps Q ∈ L(L(E)) such
that

Q(ST) = SQ(T) , and Q(TS) = Q(T)S
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for all S ∈ π(A)c and T ∈ L(E). Then, the A-bimodule action on LA(L(E)) is
given by

(a . Q)(T) = π(a)Q(T) , and (Q . a)(T) = Q(T)π(a)

(a ∈ A, T ∈ L(E), Q ∈ LA(L(E))) .

Let X ⊆ L(E)⊗̂E⊗̂E∗ be the closure of the linear span of elements

cT ⊗ x ⊗ µ − T ⊗ x ⊗ c∗(µ), and Tc ⊗ x ⊗ µ − T ⊗ c(x)⊗ µ

for all c ∈ π(A)c , T ∈ L(E), x ∈ E and µ ∈ E∗. Define θ : A⊗̂A −→ LA(L(E))
by

θ(a ⊗ b)(T) = aTb (a, b ∈ A, T ∈ L(E)) ,

and then define ψ : L(E)⊗̂E⊗̂
E∗

X
−→ L(A,A∗) by

〈a ⊗ b, ψ(T ⊗ x ⊗ φ + X)〉 = 〈θ(a ⊗ b)(T)(x), φ〉 = 〈aTb(x), φ〉 ,

for a, b ∈ A, x ∈ E, φ ∈ E∗, and T ∈ L(E). It is shown in [6, Theorem 6.11]
that there is a Banach space E and an isometric, w∗-continuous representation
π : A −→ L(E), such that ψ is a bijection and

ψ∗ : σWC(L(A,A∗))∗ −→ LA(L(E))

is an isomorphism.

Theorem 2.6. Suppose that A is a dual Banach algebra. Then A is approximately
Connes-amenable if and only if A is approximately injective.

Proof. Let A be approximately Connes-amenable, and let π : A −→ L(E) be
a w∗-continuous representation on some reflexive Banach space E. Applying
Proposition 2.5, with L(E) and π in place of B and θ respectively, we see that
A is approximately injective.

Conversely, suppose that A is approximately injective. By Proposition 2.4
and [7, Prop. 2.3(i)] without loss of generality, we may suppose that A is unital
with the identity e. Suppose that π : A −→ L(E) is the isometric, w∗-continuous
representation constructed in [6, Theorem 6.11], so that ψ∗ is an isomorphism. Let
(Qα)α be an approximate quasi-expectation for π(A). Note that Qα ∈ LA(L(E)),
by (iii) of Definition 2.2. Define Mα := (ψ∗)−1(Qα), for each α. For every a ∈ A
and T ∈ L(E), we see that

(a . Qα − Qα . a)(T) = π(a)Qα(T)− Qα(T)π(a) ,

so that a . Qα − Qα . a −→ 0 in L(L(E)). Then, because ψ∗ is an A-bimodule
isomorphism, we conclude that a . Mα − Mα . a −→ 0 in σWC((A⊗̂A)∗)∗, for
each a ∈ A.

Since A⊗̂A is w∗-dense in σWC((A⊗̂A)∗)∗, there exists a bounded net (τα,i)

in A⊗̂A such that Mα = w∗ − limi τα,i, for each α. Let τα,i = ∑
∞
n=1 aα,i

n ⊗ bα,i
n . For

x ∈ E and φ ∈ E∗, there exists λ ∈ A∗, the predual of A, such that
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〈a, λ〉 = 〈φ, π(a)x〉, for a ∈ A. The same argument as in the proof of
[6, Theorem 6.13] shows that 〈ab, λ〉 = 〈φ, π(a)IEπ(b)(x)〉, for all a, b ∈ A, and

〈φ, Qα(IE)(x)〉 = lim
i

∞

∑
n=1

〈φ, π(aα,i
n bα,i

n )(x)〉 .

Since Qα is identity on π(A)c , Qα(IE) = IE. Then, since x and φ are arbitrary,

we must have w∗ − limi Σ∞
n=1aα,i

n bα,i
n = e. So that ∆σWC(Mα) = e, for each α.

Therefore, by Proposition 2.1, A is approximately Connes-amenable.

Let Z be the group of integers. It is known that ℓ1(Z) is amenable and so it
is not surprising that ℓ1(Z) is approximately Connes-amenable. Here, we shall
directly (although in the argument, we use the fact that Z is an amenable group)
show that ℓ1(Z) is approximately injective . Let E be a reflexive Banach space,
and let π : ℓ1(Z) −→ L(E) be a unital w∗-representation. For each n ∈ N, we
define Qn : L(E) −→ L(E) by

Qn(T) :=
1

n

n

∑
k=1

π(δ−k) T π(δk) .

It is readily seen that each Qn is identity on π(ℓ1(Z))c , and Qn(STU) = SQn(T)U
for S, U ∈ π(ℓ1(Z))c and T ∈ L(E). For m ≥ 0 and T ∈ ball L(E), we have

limn−→∞ ||π(δm) Qn(T)− Qn(T) π(δm)||

= lim
n−→∞

||
1

n

n

∑
k=1

(π(δm−k) T π(δk)− π(δ−k) T π(δk+m))||

= lim
n−→∞

||
1

n

m

∑
k=1

(π(δm−k) T π(δk))||

≤ lim
n−→∞

m

n
||T|| ||π||2

≤ lim
n

m

n
||π||2 ,

so that π(δm) Qn(T) − Qn(T) π(δm) −→ 0, for m ≥ 0 and uniformly for all
T ∈ ball L(E).

A similar argument holds for m < 0. Therefore the sequence (Qn)n is an
approximate quasi-expectation for π(ℓ1(Z)).

3 Application to direct sums and WAP(A∗)∗

In view of Theorem 2.6, we give a new proof for [7, Proposition 2.3(ii)] concerning
the approximate Connes-amenability of the direct sum of dual Banach algebras.

Proposition 3.1. Suppose that A and B are approximately Connes-amenable dual
Banach algebras and each has an identity. Then A⊕1 B is approximately Connes-
amenable.
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Proof. Let E be a reflexive Banach space, and let π : A ⊕1 B −→ L(E) be a
w∗-continuous representation. We define homomorphisms φ : A −→ A ⊕1 B
and ψ : B −→ A⊕1 B by setting φ(a) = (a, eB) and ψ(b) = (eA, b) for all a ∈ A
and b ∈ B, where eA and eB are the identities of A and B, respectively. Clearly φ
and ψ are w∗-continuous and therefore we may consider the w∗-continuous rep-
resentations πA := πφ and πB := πψ. Notice that πA(A) ⊆ πB(B)

c , πB(B) ⊆
πA(A)c and π(A ⊕1 B)c = πA(A)c ∩ πB(B)

c . As A and B are approximately
Connes-amenable, there are approximate quasi-expectations (Pi)i∈I and (Qj)j∈J

for πA(A) and πB(B), respectively. Put q(j,i) :=
1

2
(Qj + Pi) for each (j, i) ∈ J × I.

It is readily seen that q(j,i)(S) = S, for every S ∈ π(A⊕1 B)c.

Next, for each a ∈ A, b ∈ B and T ∈ ballL(E), using (iii) of Definition 2.2, we
have

π(a, b)q(T) − q(j,i)(T)π(a, b) =

1

2
(πA(a) πB(b)Qj(T) + πA(a) πB(b)Pi(T)−

Qj(T)πA(a) πB(b)− Pi(T)πA(a) πB(b)) =

1

2
πA(a) (πB(b)Qj(T)− Qj(T)πB(b)) +

1

2
πB(b) (πA(a)Pi(T)− Pi(T)πA(a))+

1

2
(Qj(πA(a)T) πB(b)− Qj(TπA(a)) πB(b))+

1

2
(Pi(πB(b)T) πA(a)− Pi(TπB(b)) πA(a)) .

Therefore π(a, b)q(j,i)(T) − q(j,i)(T)π(a, b) −→ 0 uniformly for all T ∈ ballL(E)

and for a ∈ A, and b ∈ B. Finally, for S, U ∈ πA(A)c ∩ πB(B)
c and for T ∈ L(E),

we have q(j,i)(STU) = Sq(j,i)(T)U.

We conclude that (q(j,i))(j,i)∈J×I is an approximate quasi-expectation for

π(A⊕1 B), as required.

We can improve Proposition 3.1 as follows.

Theorem 3.2. Suppose that A and B are approximately Connes-amenable dual
Banach algebras and that one of A or B has an identity. Then A⊕1 B is approxi-
mately Connes-amenable.

Proof. Let E be a reflexive Banach space, and let π : A ⊕1 B −→ L(E) be a
w∗-continuous representation. We extend π to π̃ from A♯ ⊕1 B into L(E) by
defining π̃(e) = IE − π(eB), where e and eB are the identities of A♯ and B, re-
spectively. It is readily seen that after this extension π̃ is still a w∗-continuous
representation. Since A♯ ⊕1 B is approximately Connes-amenable by Proposi-
tion 3.1, there exists an approximate quasi-expectation Qi : L(E) −→ L(E) for
π̃(A♯ ⊕1 B). Clearly π̃(A♯ ⊕1 B)c = π(A⊕1 B)c, and therefore we conclude that
(Qi) is an approximate quasi-expectation for π(A⊕1 B).
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Let A be a Banach algebra and let E be a Banach A-bimodule. An element
x ∈ E is called weakly almost periodic if the maps

A −→ E , a 7−→

{

a . x
x . a

,

are weakly compact. The set of all weakly almost periodic elements in E is de-
noted by WAP(E).

For a Banach algebra A, there is a well-defined product on WAP(A∗)∗ turn-
ing it into a dual Banach algebra with a universal property, [15, Theorem 4.10].
In [6, Prop. 6.15], Daws gives a characterization of Connes-amenability of
WAP(A∗)∗ in terms of continuous representations of A. For the approximate
case, however, we are only able to obtain a weaker result as follows.

Proposition 3.3. Suppose that A is a Banach algebra for which WAP(A∗)∗ is ap-
proximately Connes-amenable. Then, for every continuous representation
π : A −→ L(E) on a reflexive Banach space E, there exists an approximate quasi-
expectation for π(A).

Proof. Suppose that π : A −→ L(E) is a continuous representation on a reflexive
Banach space E, and that π̂ : WAP(A∗)∗ −→ L(E) is the unique w∗-continuous
representation extending π, [15, Theorem 4.10]. The same argument as in [6,
Proposition 6.15], shows that π(A)c = π̂(WAP(A∗)∗)c. Now, Theorem 2.6 yields
the existence of an approximate quasi-expectation for π̂(WAP(A∗)∗) and in par-
ticular for π(A).

Corollary 3.4. Suppose that A is a dual Banach algebra. If WAP(A∗)∗ is approx-
imately Connes-amenable, so is A.

Proof. Immediate from Proposition 3.3 and Theorem 2.6.

We conclude this section by giving a direct proof for Corollary 3.4. Let E
be a normal, dual Banach A-bimodule, and D : A −→ E be a w∗-continuous
derivation. Let ı : A∗ −→ WAP(A∗) be the canonical map. Then ı∗ is an
A-bimodule homomorphism from WAP(A∗)∗ onto A. We turn E into a Banach
WAP(A∗)∗-bimodule by

x . Λ := x . ı∗(Λ) , and Λ . x := ı∗(Λ) . x (x ∈ E, Λ ∈ WAP(A∗)∗) .

Note that E is normal as Banach WAP(A∗)∗-bimodule. Hence
Dı∗ : WAP(A∗)∗ −→ E is a w∗-continuous derivation. Since WAP(A∗)∗ is ap-
proximately Connes-amenable, there exists a net (xi) in E such that

(Dı∗)(Λ) = lim
i

Λ . xi − xi . Λ (Λ ∈ WAP(A∗)∗) .

Consequently, Da = limi a . xi − xi . a, for all a in A, as required.
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4 Approximate Splitting

Let A be a Banach algebra and let X, Y and Z be left Banach A-modules. We
recall that a short exact sequence

∑ : 0 −→ X
f

−→ Y
g

−→ Z −→ 0

is admissible, if there exists a bounded linear map ρ : Y −→ X such that ρ f = IX.
If, further, we may choose ρ to be a left A-module homomorphism, then ∑ is said
to split. We say that ∑ approximately splits, if there exists a net ρi : Y −→ X of left
inverse maps to f such that

a . ρi(y)− ρi(a . y) −→ 0 (a ∈ A, uniformly for all y ∈ ball Y) .

Similar definitions hold for right modules and bimodules.
Let A be a dual Banach algebra with predual A∗, and consider the short exact

sequence of A-bimodules

∑(A) : 0 −→ A∗
∆∗|A∗−→ σWC(A⊗̂A)∗ −→ σWC(A⊗̂A)∗/∆∗(A∗) −→ 0 .

If A has an identity e, then ∆∗|A∗ is an injective map, and the map

σWC(A⊗̂A)∗ −→ A∗ , T 7−→ T(e)

is a bounded left inverse to ∆∗|A∗ , so that ∑(A) is admissible.
It is shown in [5, Proposition 4.4] that A is Connes-amenable if and only if the

short exact sequence ∑(A) splits, whenever A is a unital dual Banach algebra.
For the approximate version, we have the following.

Theorem 4.1. Suppose that A is a dual Banach algebra. Then A is approximately
Connes-amenable if and only if the admissible short exact sequence ∑(A♯) ap-
proximately splits.

Proof. We write A♯
∗ for the predual of A♯. Suppose that ∑(A♯) approximately

splits, so that there exists a net ρi : σWC(A♯⊗̂A♯)∗ −→ A♯
∗ of left inverse maps to

∆∗|
A♯

∗
, such that

a . ρi(T)− ρi(a . T) −→ 0 and ρi(T) . a − ρi(T . a) −→ 0 ,

for each a ∈ A♯ and uniformly for all T ∈ ball σWC(A♯⊗̂A♯)∗.
Setting Mi := ρ∗i (e), it is readily seen that ∆σWC(Mi) = e , for each i. For

a ∈ A♯ and T ∈ ball σWC(A♯⊗̂A♯)∗, we have

|〈T, a . Mi − Mi . a〉| = |〈ρi(T . a)− ρi(a . T), e〉|

≤ |〈ρi(T . a)− ρi(T) . a, e〉| + |〈a . ρi(T)− ρi(a . T), e〉|

≤ ||ρi(T . a)− ρi(a . T)||+ ||a . ρi(T)− ρi(a . T)||,

so that a . Mi − Mi . a −→ 0. Therefore, by Proposition 2.1, A is approximately
Connes-amenable.
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Conversely, suppose that A is approximately Connes-amenable. Take the net
(Mi)i ⊆ σWC((A♯⊗̂A♯)∗)∗ given in Proposition 2.1 (iii), and define a net ρi :
σWC(L(A♯ ,A♯∗)) −→ A♯∗ by

〈a, ρi(T)〉 := 〈T . a, Mi〉 (a ∈ A♯).

Suppose that (aα)α is a bounded net in A♯ which tends to a ∈ A♯ in the
w∗-topology. Then T . aα −→ T . a weakly, for each T ∈ σWC(L(A♯ ,A♯∗)),

so that 〈aα , ρi(T)〉 −→ 〈a, ρi(T)〉. This implies that ρi maps into A♯
∗, for every i, as

required.

For φ ∈ A♯
∗ and a ∈ A♯, we have

〈a, (ρi ∆∗|
A♯

∗
)(φ)〉 = 〈∆∗(φ . a), Mi〉 = 〈φ . a, ∆σwc(Mi)〉 = 〈φ . a, e〉 = 〈a, φ〉 ,

so that ρi ∆∗|
A♯

∗
= I

A♯
∗
. Finally, for a, b, c ∈ A♯ and T ∈ ball σWC(L(A♯ ,A♯∗)), we

note that

〈c, ρi(a . T. b)− a . ρi(T) . b〉 = 〈a . T . bc, Mi〉 − 〈(T . bc) . a, Mi〉

= 〈T . bc, Mi . a〉 − 〈T . bc, a . Mi〉

= 〈T . bc, Mi . a − a . Mi〉 ,

so that ∑(A♯) approximately splits.
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