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Abstract

Let H be a real Hilbert space and let A : D(A) ⊂ H → H be a (possi-
bly multivalued) maximal monotone operator. We are concerned with the
difference equation

∆un + cn Aun+1 ∋ fn, n = 0, 1, ...,

where (cn) ⊂ (0,+∞), ( fn) ⊂ H are p-periodic sequences for a positive
integer p. We investigate the existence of periodic solutions to this equation
as well as the weak or strong convergence of solutions to p-periodic solu-
tions. The first result of this paper (Theorem 1) is a discrete analogue of the
1977 result by Baillon and Haraux (on the periodic forcing problem for the
continuous counterpart of the above equation) and was essentially stated by
Djafari Rouhani and Khatibzadeh in a recent paper [5]. Here we provide a
simpler proof of this result that is based on old existing results due to Brow-
der and Petryshyn [4] and Opial (see, e.g., [6], p.5). A strong convergence
result is also given and some examples are discussed to illustrate the theoret-
ical results.

1 Introduction

Let H be a real Hilbert space with inner product (·, ·) and the induced Hilber-
tian norm ‖ · ‖. Let A : D(A) ⊂ H → H be a (possibly multivalued) maximal
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monotone operator. Consider the difference equation

∆un + cn Aun+1 ∋ fn, n = 0, 1, ..., (E)

where (cn) ⊂ (0,+∞), ( fn) ⊂ H are p-periodic sequences for a positive integer p
and ∆ is the difference operator defined as usual, i.e., ∆un = un+1 − un.
We shall investigate some conditions that guarantee the existence of periodic
solutions to equation (E) as well as the weak or strong convergence of any
solution to a periodic one, as n → ∞.
The problem we investigate in the present paper is the discrete analogue of the
periodic forcing problem for the ”continuous” equation

u′(t) + Au(t) ∋ f (t), t > 0,

studied by J. B. Baillon and A. Haraux [2].
Recently Djafari Rouhani and Khatibzadeh [5] formulated essentially Theorem 1
below that shows that the weak convergence result stated by Baillon and Haraux
[2] for the case of a subdifferential operator A has a discrete counterpart for a
general maximal monotone operator A. Here we provide a simpler proof of
Theorem 1 by using old existing results due to Browder and Petryshyn [4] and
Opial (see Lemma 3 below). In addition, we formulate a strong convergence
result (Theorem 2) and discuss some examples to illustrate the two theorems.

2 Preparatory Lemmas

In what follows we need the following lemmas.

Lemma 1 ([4]). Let X be a uniformly convex Banach space and let Q be a nonexpansive
mapping of X into X (i.e., Q is Lipschitzian with constant 1). Then Q has a fixed point if
and only if for any specific x0 ∈ X the sequence xn = Qnx0) is bounded in X.

Lemma 2 ([4]). Let H be a Hilbert space and let Q : H → H be a nonexpansive mapping
such that the set F of its fixed points is nonempty and Q is asymptotically regular (i.e.,
Qn+1x − Qnx → 0 strongly in H as n → ∞ for each x ∈ H). Then, ∀x0 ∈ H, every
weak cluster point of the sequence xn = Qnx0 belongs to F.

Lemma 3 (Opial’s Lemma, see, e.g., [6], p. 5). Let H be a real Hilbert space and let F
be a nonvoid subset of H. Assume that (xn) is a sequence in H satisfying:

(i) the lim ‖xn − q‖ = ρ(q) exists, ∀q ∈ F;

(ii) any weak cluster point of (xn) belongs to F.

Then, there exists a p ∈ F such that xn → p weakly in H.

Lemma 4 (see, e.g., [6], p. 42). If A : D(A) ⊂ R → R is maximal monotone, then
there exists a lower semicontinuous (LSC) convex function ϕ : R → (−∞,+∞] such
that A is the subdifferential of ϕ: A = ∂ϕ.
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3 Main Results

The following theorem is the discrete analogue of the 1977 Baillon and Haraux
result [2] and was essentially stated by Djafari Rouhani and Khatibzadeh in a
recent paper [5].

Theorem 1. Assume that A : D(A) ⊂ H → H is a maximal monotone operator. Let
cn > 0 and fn ∈ H be p-periodic sequences, i.e., cn+p = cn, fn+p = fn (n = 0, 1, ...),
for a given positive integer p. Then equation (E) has a bounded solution if and only if it
has at least one p-periodic solution. In this case all solutions of (E) are bounded and for
every solution (un) there exists a p-periodic solution (ωn) of (E) such that

un − ωn → 0, weakly in H, as n → ∞.

Moreover, every two periodic solutions differ by an additive constant vector.

Proof. Consider the initial condition

u0 = x, (IC)

for a given x ∈ H. We can rewrite equation (E) in the form:

un+1 − un + cnAun+1 ∋ fn.

The solution of the problem (E)-(IC) is calculated successively from

un+1 =
(

I + cn A
)−1(

un + fn

)

, n = 0, 1, . . . ,

in a unique manner, which will give a unique solution (un)n≥0.
If a solution (un) of (E) is bounded (in particular periodic), then any other solution
(ũn) of (E) is bounded, because

‖un − ũn‖ ≤ ‖u0 − ũ0‖ ∀n = 0, 1, . . . (1)

Set Q : H → H,
Qx = up;x,

where (un;x) is the solution of (E) starting from x: u0 = x. From (1) it follows that
Q is nonexpansive. We also have Qnx = unp;x, n = 0, 1, .... Thus (Qnx)n≥0 is a
bounded sequence for all x ∈ H. Obviously H is uniformly convex so, by Lemma
1, there is an x∗ ∈ H such that Qx∗ = x∗, i.e., u∗

p;x∗ = u∗
0 = x∗, where (u∗

n) is the

solution of (E) starting from x∗. In fact, x∗ ∈ D(A). Since both (cn) and ( fn) are
p-periodic sequences, this implies

u∗
n+p = u∗

n ∀n = 0, 1, . . .

So the first part of the theorem is proved. For the second part we shall use Lem-
mas 2 and 3. Let F be the set of all fixed points of Q. According to the first part
of the theorem, F is nonempty if and only if all the solutions of (E) are bounded.
Assume that F is nonempty. Let u0 ∈ F, i.e., the corresponding solution (un)n≥0
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of equation (E) is p-periodic. Let (zn) be an arbitrary solution of (E) (which is
bounded). We have

‖zkp+m − um‖ ≤ ‖zkp − u0‖ = ‖z(k−1)p+p − up‖

≤ ‖z(k−1)p+m − um‖ ≤ ‖z(k−1)p − u0‖

for each m ∈ {0, 1, . . . , p − 1} and ∀k = 1, 2, ....
Therefore,

lim
k→∞

‖zkp+m − um‖ = C, for all m ∈ {0, 1, . . . , p − 1},

where C is a constant, independent of m.
In particular (for m = 0) the sequence (zkp)k≥0 satisfies the first condition of
Opial’s Lemma (Lemma 3). For the other condition of Lemma 3, we can use
Lemma 2. Obviously, wn := zn − un satisfies

wn − wn+1 ∈ cn(Azn+1 − Aun+1), n ≥ 0.

Since A is monotone, we have

0 ≤ (wn − wn+1, wn+1), n ≥ 0.

In particular, (‖wn‖) is nonincreasing. From

‖wn+1 − wn‖
2 ≤ ‖wn‖

2 − ‖wn+1‖
2

we derive

∑
∞

n=0
‖wn+1 − wn‖

2 ≤ ‖w0‖
2.

Therefore, wn+1 − wn → 0 as n → ∞, which implies

Qk+1z0 − Qkz0 = z(k+1)p − zkp = w(k+1)p − wkp =

∑
p

j=1
(wkp+j − wkp+j−1) → 0,

so Q is asymptotically regular, since z0 is an arbitrary vector. It follows by Lemma
2 that any weak cluster point of zkp = Qkz0 belongs to F. Thus Lemma 3 implies
that zkp converges weakly to some ω0 ∈ F, as k → ∞. Let (ωn) be the periodic
solution corresponding to ω0. By the reasoning above (zn+1 − ωn+1)− (zn − ωn)
converges strongly to 0, as n → ∞. Therefore, zkp+m − ωm converges weakly to 0
as k → ∞, for all m ∈ {0, 1, ..., p − 1}.

In fact, for all n = 0, 1, ..., we have n = kp + m, with m ∈ {0, 1, . . . , p − 1}
and k → ∞ as n → ∞. Thus, zn − ωn = zkp+m − ωm converges weakly to 0 as
n → ∞.

Now, let (ω′
n) be another periodic solution of (E). By the above reasoning,

(zkp+m+1 − ω′
m+1) − (zkp+m − ω′

m) → 0 as k → ∞, strongly in H, for all
m ∈ {0, 1, ..., p − 1}. Therefore, ωm+1 − ω′

m+1 = ωm − ω′
m and thus ωm − ω′

m =
ω0 − ω′

0 = Const., for all m ∈ {1, ..., p − 1}, showing that any two periodic solu-
tions differ by an additive constant. The proof is complete.
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Open Problem 1. In general the periodic solution is not unique, i.e., F is not a
singleton (see Example 1 below). Can one characterize the periodic solution (ωn)
associated with (un) in Theorem 1?

Open Problem 2. If in Theorem 1 A is the subdifferential of a proper, convex
and lower semicontinuous function ϕ : H → (−∞,+∞] and F is nonempty
(i.e., ϕ has at least a minimum point), then it is easy to see that

ϕ(ukp+m) → ϕ(ωm), (2)

as k → ∞, for m = 0, 1, ..., p − 1. Indeed, assuming for simplicity that A is single-
valued, we have for all m ∈ {1, 2, ..., p}

ϕ(ukp+m)− ϕ(ωm) ≤ (Aukp+m − Aωm + Aωm, ukp+m − ωm) =

1

cm−1
((ukp+m−1 − ωm−1)− (ukp+m − ωm), ukp+m − ωm) + (Aωm, ukp+m − ωm),

which implies
lim supk→∞ ϕ(ukp+m) ≤ ϕ(ωm).

Therefore (2) holds since ϕ is lower semicontinuous.
Question: What can one say about the rate of convergence in (2)?

Remark 1. Strong convergence in Theorem 1 is not true in general. Indeed, if
fn = 0 and cn = c > 0, ∀n ≥ 0, then (E) has a bounded solution if and only if all
its solutions are bounded. In this case (E) has a 1-periodic solution, i.e. a constant
solution, un = u0: 0 ∈ Au0. It is known that if A is the subdifferential of a proper,
convex, lower semicontinuous function, A−10 6= ∅, then every solution (zn)n≥0

of
zn+1 − zn + cAzn+1 ∋ 0, n = 0, 1, ...

converges weakly to a point of A−10, but not strongly in general (see Baillon’s
counterexample [1]). However, strong convergence is possible in some cases, for
instance, if either (I + A)−1 is a compact operator or if A is strongly monotone,
i.e., there is a constant a > 0, such that

(x1 − x2, y1 − y2) ≥ a‖x1 − x2‖
2, ∀ xi ∈ D(A), yi ∈ Axi, i = 1, 2.

In the latter case, we can state the following result:

Theorem 2. Assume that A : D(A) ⊂ H → H is a maximal monotone operator, that
is also strongly monotone (with a constant a > 0). Let cn > 0 and fn ∈ H be p-periodic
sequences for a given positive integer p. Then Equation (E) has a unique p-periodic
solution (ωn) and for every solution (un) of (E) we have

un − ωn → 0, strongly in H, as n → ∞.

Proof. Note that cn ≥ min{ck : 0 ≤ k ≤ p − 1} =: c > 0. Since A is strongly
monotone (hence coercive), it follows by Theorem 2 in [3] that all solutions of
equation (E) are bounded. Therefore, by the argument used for the first part of
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Theorem 1, there exists a p-periodic solution (ωn) of equation (E). If (un) is an
arbitrary solution of (E), we have

un − ωn ∈ un+1 − ωn+1 + cn(Aun+1 − Aωn+1), n = 0, 1, ...

Multiplying this equation by un+1 − ωn+1 we easily get

(1 + ac)‖un+1 − ωn+1‖ ≤ ‖un − ωn‖, n = 0, 1, ...,

which implies

‖un − ωn‖ ≤ (1 + ac)−n‖u0 − ω0‖, n = 0, 1, ...

Therefore, (ωn) is the unique p-periodic solution of (E) and un −ωn → 0, strongly
in H, as claimed.

4 Examples

If A is maximal monotone and coercive (i.e., there exists a v∗ ∈ H such that
(w, v − v∗)/‖v‖ → ∞, for v ∈ D(A), w ∈ Av, ‖v‖ → ∞), then equation (E) has
a periodic solution (equivalently, all its solutions are bounded) for all p-periodic
sequences (cn) ⊂ (0,+∞) and ( fn) ⊂ H. Indeed, in this case ( fn) is bounded,
and cn ≥ min{ck : 0 ≤ k ≤ p − 1} =: c > 0, so the assertion follows from
Theorem 2 in [3]. This is not the case in general, as the following simple example
shows:

Example 1. Let H = R, A = ∂ϕ = ϕ′, ϕ : R → R,

ϕ(x) =

{

1
2 x2 if x ≤ 0,

0 if x > 0,

cn = 1 for all n = 0, 1, . . .. If ( fn) is the 3-periodic sequence defined by
f3k = −3, f3k+1 = 3, f3k+2 = −1 for k = 0, 1, . . ., then for u0 = 1 equation (E) has
a 3-periodic solution (ωn), ω3k = 1, ω3k+1 = −1, ω3k+2 = 2, k = 0, 1, . . .. It turns
out that (ωn) is the unique 3-periodic solution of equations (E). This follows easily by
using the fact that any 3-periodic solution has the form (ωn + c),
c ∈ R. By Theorem 1, every solution (un) of equation (E) tends asymptotically to (ωn):
u3k → 1, u3k+1 → −1, u3k+2 → 2 as k → ∞ (see Figure 1).

On the other hand, if ( fn) is the 3-periodic sequence defined by f3k = 2,
f3k+1 = 3, f3k+2 = −2 for k = 0, 1, . . ., then all solutions of (E) are unbounded.
Indeed, it is easy to show that there exists an unbounded solution of equation (E) and
thus, according to Theorem 1, all solutions of (E) are unbounded.

Now, let us show that for some periodic sequences ( fn) the set of periodic solutions
of (E) is not a singleton. For example, if ( fn) is the 3-periodic sequence defined by
f3k = 0.5, f3k+1 = 1.5, f3k+2 = −2 for k = 0, 1, . . ., then the sequence (ωn)
defined by ω3k = c, ω3k+1 = 0.5 + c, ω3k+2 = 2 + c, k = 0, 1, . . ., is a 3-periodic
solution of (E) for all c ≥ 0.
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Figure 1

In what follows we investigate some applications of the results presented in
the previous section.

Example 2. Consider in R the following parabolic type difference equation:

∆mum,n + fm+1(um+1,n) ∋ Lnum+1,n + qm,n, m = 0, 1, ..., n = 1, 2, ... (Ep)

with the condition
um,0 = 0, m = 0, 1, ..., (D)

where Ln denotes the discrete Laplace operator,

Lnum+1,n = ∆2
num+1,n−1 = um+1,n+1 − 2um+1,n + um+1,n−1, (3)

qm,n is a double real sequence, which is p-periodic with respect to m, and fm : D( fm) ⊂
R → R (m = 1, 2, ...) are (possibly multivalued) maximal monotone mappings.

Consider the real Hilbert space

H = ℓ
2(R) = {u = (u1, u2, . . .) :

∞

∑
n=1

|un|
2
< ∞}

with the usual inner product

(u, v) :=
∞

∑
n=1

unvn ∀u, v ∈ H.

Define on H the operator A1 := −L, i.e., A1

(

(vn)n≥1

)

= (−vn+1 + 2vn − vn−1)n≥1,
where v0 = 0. We also define A2 : D(A2) = Π∞

n=1D( fn) ⊂ H → H,

A2v :=
(

f1(v1), f2(v2), . . .
)

, v = (v1, v2, . . .) ∈ D(A2).
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Thus Equation (Ep) with condition (D) can be written in the form

∆um + Aum+1 = qm, m = 0, 1, ..., (E∗
p)

with
um := (um,n)n≥1, qm := (qm,n)n≥1,

where A = A1 + A2.
Operator A1 is everywhere defined, linear and strictly monotone (positive):

(A1v, v) = |v1|
2 + |v1 − v2|

2 + |v2 − v3|
2 + . . . > 0,

for all v different from zero. Moreover, A1 is symmetric:

(A1u, v) = (u, A1v) =
∞

∑
n=0

(un+1 − un)(vn+1 − vn),

where u, v ∈ H, u0 = v0 = 0. Then A1 is the subdifferential of ϕ1,
ϕ1(v) = (1/2)(A1v, v), v ∈ H.
Assume that 0 ∈ D( fm) for all m = 1, 2, .... Then, A2 is maximal monotone in H.
Moreover, A2 is cyclically monotone in H, since all fm are so in R (cf. Lemma 4), i.e.,
A2 is a subdifferential. Since D(A1) = H, it follows that A = A1 + A2 is a maxi-
mal (cyclically) monotone operator, and furthermore A is strictly monotone. Therefore,
if (qm)m≥0 is a p-periodic sequence in H then, the conditions specified in Theorem 1 are
satisfied for equation (E∗

p). If a p-periodic solution of equation (E∗
p) exists, it is unique.

Denote it (ωm)m≥0. For any other solution (um) we have um − ωm → 0, weakly in H,
as m → ∞. In particular, if um = (um,n)n≥1, we have um,n − ωm,n → 0, as m → ∞,
for each n = 1, 2, ....

Remark 2. Note that A1 is just strictly monotone, not strongly monotone.
Indeed, strong monotonicity would imply that A1 is surjective, which is not the
case
(e.g., the sequence (−1/n) ∈ H does not belong to the range of A1).

Example 3. Consider in R the following difference equation:

∆mum,n + fm+1(um+1,n) ∋ Lnum+1,n + qm,n, m = 0, 1, ..., n = 1, 2, ..., N, (4)

with the Dirichlet type conditions

um,0 = 0 = um,N+1, m = 0, 1, ..., (5)

where N is a positive integer, qm+p,n = qm,n for all m = 0, 1, ..., n = 1, ..., N for a
given positive integer p, and fm satisfy the same assumptions as in Example 2. We can
choose H to be the Euclidean space R

N. A1 and A2 are defined similarly. In this case, A1

is even strongly monotone, so (according to Theorem 2) the above equation has a unique
p-periodic solution, ωm+p,n = ωm,n, m = 0, 1, ..., n = 1, 2, ..., N and any other solution
um,n converges to it: um,n − ωm,n → 0, as m → ∞, for each n = 1, 2, · · · N.
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Remark 3. Choosing convenient mappings fm we can obtain solutions with
specific desired properties. E.g., if for all m fm is the subdifferential of the
indicator function of [0, ∞), then the corresponding solutions have nonnegative
components: um,n ≥ 0.

Remark 4. If fact, in the above examples, A2 could be a general maximal mono-
tone operator from the corresponding space H into itself. Even more, if R is
replaced by a general Hilbert space, then all the above reasonings work with
slight modifications.
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