# Existence of Local Solutions of Nonlinear Wave Equations in $n$-Dimensional Space * 

Yaojun Ye


#### Abstract

In this paper, we investigate the local existence of solutions in $H^{s}$ for $n$ dimensional nonlinear wave equations with special nonlinear terms, such as $$
u_{t t}-\Delta u=u^{k}|\nabla u|^{l}, \quad x \in R^{n}, \quad k \in Z^{+}, \quad l \geq 2 .
$$ where $\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial u}{\partial x_{n}}\right)$. Meanwhile, we obtain that the regular index $s$ of Sobolev space $H^{s}$ satisfies $s>\max \left\{\frac{n+5}{4} ; \frac{n}{2}+1-\frac{1}{l-1}\right\}, n>3$.


## 1 Introduction

In the paper we are concerned with the following nonlinear wave equation

$$
\begin{equation*}
u_{t t}-\triangle u=u^{k}|\nabla u|^{l}, \quad(x, t) \in R^{n} \times R^{+} \tag{1}
\end{equation*}
$$

with the initial value conditions

$$
\begin{equation*}
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), x \in R^{n} \tag{2}
\end{equation*}
$$

[^0]where $k \in Z^{+}, l \geq 2, \nabla u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial u}{\partial x_{n}}\right)$. We want to study the minimal Sobolev regularity in order to deal with the existence of local solutions to the problem (1)-(2) in Sobolev space $H^{s}$. Gustavo Ponce and Thomas C. Sideris [10] show that the lower bound for the Sobolev exponent can be reduced from $\frac{5}{2}$ to $s=s(l)=\max \left\{2, \frac{5 l-7}{2 l-2}\right\}$ in three space dimensions when the nonlinearity in (1) grows no faster than order $l$. Working in three dimensions, Klainerman and Machedon [5] show that if the nonlinearity with $l=2$ satisfies an additional null condition, the Sobolev exponent $s=2$ can be achieved.

The case $l=2, k=0$ and $n \geq 5$ was solved by Tataru [12] using fixed point argument by constructing an appropriate function space. D.Tataru's main result read as follows:

Theorem 1.1 Assume that $l=2, n \geq 5$. then the problem (1)-(2) as $k=0$ is locally well-posed in $H^{s}$ for all $s>\frac{n}{2}$. More precisely, given an initial data $\left(u_{0}, u_{1}\right) \in$ $H^{s} \times H^{s-1}$ there exists an unique $H^{s}$ local solution $u$ within the space $F^{s}$ defined below. Furthermore, the solution depends analytically on the initial data.

The most effective way to prove Theorem1.1 is to use the $X^{s, \theta}$ space[6,7,11] associated to the wave equation and the nonlinear term estimates in $X^{s, \theta}$ space. However, the desired estimates are true at fixed frequency; its failure in general is due to the interaction between the high and low frequencies. Tataru's approach is first to find a suitable modification $F^{s}$ of the $X^{s, \frac{1}{2}}$ space for which the appropriate estimates hold. Next, he prove the local wellposedness using the fixed point argument by establishing the appropriate multiplicative estimates in $F^{s}$ for the nonlinear term.

The object of this manuscript is concerned with the local regularity of (1)-(2) in $R^{n}$ for $n>3, l \geq 2, k \geq 0$. The Sobolev exponent $s$ satisfying $s>\max \left\{\frac{n+5}{4} ; \frac{n}{2}+\right.$ $\left.1-\frac{1}{l-1}\right\}$ is obtained in the paper. Under the assumptions on initial value $\varphi(x)$ and $\psi(x)$ as in [10], the local wellposedness of the problem (1)-(2) is proved using the contraction mapping principle by establishing estimates of linear and nonlinear wave equations.

The following function spaces are used throughout this paper: $L^{p}=L^{p}\left(R^{n}\right)$ denotes the Lebesgue space on $R^{n}$ with the norm $\|\cdot\|_{p}, 1 \leq p \leq \infty$. For $s \in R$ and $1<p<\infty$, Let $H^{s, p}=H^{s, p}\left(R^{n}\right)=(1-\triangle)^{-\frac{s}{2}} L^{p}\left(R^{n}\right)$, the inhomogeneous Sobolev space in terms of Bessel potentials with norm $\|\cdot\|_{H^{s, p}}=$ $\left\|\mathcal{F}^{-1}\left(1+|\mathcal{\xi}|^{2}\right)^{-\frac{s}{2}} \mathcal{F} \cdot\right\|_{p}=\left\|(1-\Delta)^{-\frac{s}{2}} \cdot\right\|_{p} ;$ let $\dot{H}^{s, p}=\dot{H}^{s, p}\left(R^{n}\right)=(-\triangle)^{-\frac{s}{2}} L^{p}\left(R^{n}\right)$, the homogeneous Sobolev space in terms of Riesz potentials with norm $\|\cdot\|_{\dot{H}^{s, p}}=$ $\left\|\mathcal{F}^{-1}|\xi|^{s} \mathcal{F} \cdot\right\|_{p}=\left\|(-\Delta)^{-\frac{s}{2}} \cdot\right\|_{p}$; and write $H^{s}=H^{s}\left(R^{n}\right)=H^{s, 2}\left(R^{n}\right)$ and $\dot{H}^{s}=$ $\dot{H}^{s}\left(R^{n}\right)=\dot{H}^{s, 2}\left(R^{n}\right)$. For any Banach space $X$, we denote by $L^{r}\left(R^{+} ; X\right)$ the space of strongly measurable functions from $R^{+}$to $X$ with $\|u(\cdot)\|_{X} \in L^{r}\left(R^{+}\right)$. For any $r \in[1,+\infty), r^{\prime}$ is the dual number of $r$, i.e. $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Moreover, $C$ denotes a constant which can be changed from line to line. $R^{+}$is a positive real number set, $Z^{+}$ is a positive integer set; $\mathcal{F}$ and $\mathcal{F}^{-1}$ always denote the spatial Fourier transform and its inverse.

## 2 Some Lemmas

We list up some lemmas here for the following discussion.
Lemma 2.1 ([1]) (Sobolev inequality) For $\frac{n}{p}-s=\frac{n}{q}$ with $1<p \leq q<+\infty$, we have $\|f\|_{L^{q}} \leq C\|f\|_{\dot{H}^{s, p}}$. In contrast, for $s p>n$ and $p \geq 1 ; H^{s, p} \hookrightarrow L^{\infty}$.

This estimate combined with usual interpolation yields counterpart estimate for $H^{s, p}$, i.e. $H^{s, p} \hookrightarrow L^{q}$ with $\frac{n}{p}-s \leq \frac{n}{q}, q \geq p$ and $s>0$.

Lemma $2.2([2,4,8])$ Let $u_{0}(x, t)$ is the solution of the following linear homogeneous wave equation

$$
u_{t t}-\Delta u=0, \quad(t, x) \in R^{+} \times R^{n}
$$

with initial value

$$
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad x \in R^{n}
$$

namely

$$
u_{0}(t, x)=\cos (-\Delta)^{\frac{1}{2}} t \varphi+(-\Delta)^{-\frac{1}{2}} \sin (-\Delta)^{\frac{1}{2}} t \psi,
$$

then

$$
\left\|(-\Delta)^{\rho} u_{0}(t, x)\right\|_{L^{r}\left(R^{+} ; L^{q}\left(R^{n}\right)\right)} \leq C\left(\left\|(-\Delta)^{\frac{1}{2}} \varphi\right\|_{L^{2}}+\|\psi\|_{L^{2}}\right) .
$$

where $\frac{2}{r}=(n-1)\left(\frac{1}{2}-\frac{1}{q}\right), q>2 ; \rho=\frac{1}{2}(1-\beta(q)), \beta(q)=\frac{n+1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)$.
Lemma 2.3 ([3]) If $f(x), g(x) \in S\left(R^{n}\right)$ and $\frac{1}{p_{i}}+\frac{1}{q_{i}}=\frac{1}{2}, i=1,2$, with $2<p_{i} \leq$ $\infty$, then for $s>0$, we have the following inequality

$$
\|f g\|_{H^{s}} \leq C\left(\|f\|_{L^{p_{1}}}\|g\|_{H^{s}, q_{1}}+\|g\|_{L^{p_{2}}}\|f\|_{H^{s} q_{2}}\right) .
$$

In order to obtain the estimate of the solution of the inhomogeneous equation

$$
u_{t t}-\Delta u=u^{k}|\nabla u|^{l}, \quad(x, t) \in R^{+} \times R^{n}
$$

with the initial value conditions

$$
u(x, 0)=0, u_{t}(x, 0)=0, x \in R^{n}
$$

we are going to use Theorem 1.3 in [9], now it reads as follows
Theorem 2.1 ([9]) The solution of the problem

$$
u_{t t}-\Delta u=h, \quad u(0)=u_{t}(0)=0
$$

fulfills

$$
\sup _{t \in[0, T]}\|\nabla u(t)\|_{H^{s}}+\sup _{t \in[0, T]}\left\|u_{t}(t)\right\|_{H^{s}} \leq c \int_{0}^{T}\|h(t)\|_{H^{s}} d t .
$$

Here $c$ is independent of $T$. We have $\nabla u, u_{t} \in C^{0}\left([0, T], H^{s}\right)$, if $h \in L^{1}\left((0, T), H^{s}\right)$.

## 3 Estimates of Linear and Nonlinear Wave Equations

Theorem 3.1 Let $\varphi \in H^{s}, \psi \in H^{s-1}$; then the solution $u_{0}(t, x)$ of the Cauchy problem for homogeneous linear wave equation

$$
u_{t t}-\Delta u=0, u(0)=\varphi(x), u_{t}(0)=\psi(x)
$$

fulfills

$$
\sup _{t \in[0, T]}\left\|u_{0}(t)\right\|_{H^{s}}+\sup _{t \in[0, T]}\left\|u_{0 t}(t)\right\|_{H^{s-1}} \leq 2\left[\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}}\right]
$$

Proof It is well known that

$$
\begin{align*}
\left\|u_{0}(t)\right\|_{L^{2}}= & \left\|\cos \left[(-\Delta)^{\frac{1}{2}} t\right] \varphi+(-\Delta)^{-\frac{1}{2}} \sin \left[(-\Delta)^{\frac{1}{2}} t\right] \psi\right\|_{L^{2}}  \tag{3}\\
& \leq\|\varphi\|_{L^{2}}+T\|\psi\|_{L^{2}} \\
\left\|u_{0}(t)\right\|_{\dot{H}^{s}}= & \left\|(-\Delta)^{\frac{s}{2}} u_{0}(t)\right\|_{L^{2}} \\
= & \left\|(-\Delta)^{\frac{s}{2}} \cos \left[(-\Delta)^{\frac{1}{2}} t\right] \varphi+(-\Delta)^{\frac{s}{2}-\frac{1}{2}} \sin \left[(-\Delta)^{\frac{1}{2}} t\right] \psi\right\|_{L^{2}}  \tag{4}\\
\leq & \|\varphi\|_{\dot{H}^{s}}+\|\psi\|_{\dot{H}^{s-1}} .
\end{align*}
$$

The fact that $H^{s}=\dot{H}^{s} \cap L^{2}$ if $s>0$ (see [1], Theorem 6.3.2) together with (3) and (4) implies

$$
\left\|u_{0}(t)\right\|_{H^{s}} \leq\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}} .
$$

Similarly, we have

$$
\left\|u_{0 t}(t)\right\|_{H^{s-1}} \leq\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}} .
$$

Consequently

$$
\sup _{t \in[0, T]}\left\|u_{0}(t)\right\|_{H^{s}}+\sup _{t \in[0, T]}\left\|u_{0 t}(t)\right\|_{H^{s-1}} \leq 2\left[\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}}\right]
$$

Theorem 3.2 Let $n>3, s>\max \left\{\frac{n+5}{4}, \frac{n}{2}+1-\frac{1}{l-1}\right\}$; and assume that $u(t, x)$ is a solution of the inhomogeneous equation

$$
u_{t t}-\triangle u=u^{k}|\nabla u|^{l}, \quad(x, t) \in R^{+} \times R^{n}
$$

with the initial value conditions

$$
u(x, 0)=0, u_{t}(x, 0)=0, x \in R^{n}
$$

namely

$$
u(t, x)=\int_{0}^{t} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right)(\tau) d \tau
$$

then $u(t, x)$ satisfies the following estimate

$$
\begin{aligned}
\sup _{t \in[0, T]}\|u(t)\|_{H^{s}} & +\sup _{t \in[0, T]}\left\|u_{t}(t)\right\|_{H^{s-1}} \leq C\left\{T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}\right. \\
& \left.+T^{\frac{r+1-1}{r}}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)}^{l-1} \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+1}\right\}
\end{aligned}
$$

where $K(t)=(-\Delta)^{-\frac{1}{2}} \sin (-\Delta)^{\frac{1}{2}} t, \sigma=\frac{1}{2}(s-\beta(q)+1), \frac{2}{r}=(n-1)\left(\frac{1}{2}-\frac{1}{q}\right)$, $q>\frac{2(n-1)}{4 s-n-5}$.

Proof We get that by Theorem 2.1

$$
\begin{equation*}
\sup _{t \in[0, T]}\|u(t)\|_{H^{s}}+\sup _{t \in[0, T]}\left\|u_{t}(t)\right\|_{H^{s-1}} \leq C \int_{0}^{T}\left\|\left(u^{k}|\nabla u|^{l}\right)(\tau)\right\|_{H^{s-1}} d \tau \tag{5}
\end{equation*}
$$

From the fact $H^{s-1}=\dot{H}^{s-1} \cap L^{2}$ if $s>1$, it is easily to see

$$
\begin{align*}
& \int_{0}^{T}\left\|\left(u^{k}|\nabla u|^{l}\right)(\tau)\right\|_{H^{s-1}} d \tau \\
& \leq \int_{0}^{T}\left\|u^{k}|\nabla u|^{l}\right\|_{L^{2}} d \tau+\int_{0}^{T}\left\|(-\Delta)^{\frac{s-1}{2}} u^{k}|\nabla u|^{l}\right\|_{L^{2}} d \tau  \tag{6}\\
& \leq C T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}+\int_{0}^{T}\left\|(-\Delta)^{\frac{s-1}{2}} u^{k}|\nabla u|^{l}\right\|_{L^{2}} d \tau .
\end{align*}
$$

We may choose $p, \tilde{p}>2$ such that $H^{s} \hookrightarrow H^{s-1, p}, H^{s-1} \hookrightarrow L^{\tilde{p}}$ and $\frac{1}{p}+\frac{1}{\tilde{p}}=\frac{1}{2}$. From Lemma 2.1 and Lemma 2.3 we derive

$$
\begin{align*}
\left\|(-\Delta)^{\frac{s-1}{2}} u^{k}|\nabla u|^{l}\right\|_{L^{2}} & \leq C\left\|u^{k}|\nabla u|^{l}\right\|_{H^{s-1}} \\
& \leq C\left(\left\|u^{k}\right\|_{L^{\infty}}\left\||\nabla u|^{l}\right\|_{H^{s-1}}+\left\|u^{k}\right\|_{H^{s-1, p}}\left\||\nabla u|^{l}\right\|_{L^{\tilde{p}}}\right)  \tag{7}\\
& \leq C\left\|u^{k}\right\|_{H^{s}}\|\nabla u\|_{L^{\infty}}^{l-1}\|\nabla u\|_{H^{s-1}} \leq C\|u\|_{H^{s}}^{k+1}\|\nabla u\|_{L^{\infty}}^{l-1} .
\end{align*}
$$

We obtain $\frac{n}{2 q}+\frac{1}{2}<\frac{1}{2}(s-\beta(q))=\sigma-\frac{1}{2}$ from $q>\frac{2(n-1)}{4 s-n-5}$. Using Sobolev inequality, we find

$$
\begin{align*}
\|\nabla u\|_{L^{\infty}} & \leq C\left\|(1-\Delta)^{\left(\frac{n}{2 q}\right)^{+}} \nabla u\right\|_{L^{q}} \\
& \leq C\|u\|_{L^{q}}+C\left\|(-\Delta)^{\left(\frac{n}{2 q}+\frac{1}{2}\right)^{+}} u\right\|_{L^{q}}  \tag{8}\\
& \leq C\|u\|_{H^{s}}+C\left\|(-\Delta)^{\sigma-\frac{1}{2}} u\right\|_{L^{q}} .
\end{align*}
$$

Substituting the inequality (8) into the estimate (7) and observation (6) yields

$$
\begin{align*}
& \int_{0}^{T}\left\|\left(u^{k}|\nabla u|^{l}\right)(\tau)\right\|_{H^{s-1}} d \tau \\
& \leq C T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}+C \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+1} \int_{0}^{T}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u\right\|_{L^{q}}^{l-1} d t . \tag{9}
\end{align*}
$$

Application of Hölder's inequality obtains finally

$$
\begin{equation*}
\int_{0}^{T}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u\right\|_{L^{q}}^{l-1} d t \leq T^{\frac{r+1-l}{r}}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)}^{l-1} . \tag{10}
\end{equation*}
$$

Substituting (10) into (9), and we have by (5)

$$
\begin{aligned}
\sup _{t \in[0, T]}\|u(t)\|_{H^{s}} & +\sup _{t \in[0, T]}\left\|u_{t}(t)\right\|_{H^{s-1}} \leq C\left\{T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}\right. \\
& \left.+T^{\frac{r+1-1}{r}} \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+1}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)}^{l-1}\right\} .
\end{aligned}
$$

## 4 Main Result and Its Proof

Our main result reads as follows:
Theorem 4.1 Suppose that $n>3, l \geq 2, k \geq 0$ and $(\varphi, \psi) \in H^{s} \times H^{s-1}$ with $s>\max \left\{\frac{n+5}{4} ; \frac{n}{2}+1-\frac{1}{l-1}\right\}$; then there exists $T>0$ depending on $s,\|\varphi\|_{H^{s}}$ and $\|\psi\|_{H^{s-1}}$ such that (1)-(2) has a unique solution $u(t, x)$ satisfying

$$
u(t, x) \in C\left([0, T] ; H^{s}\left(R^{n}\right)\right) \cap C^{1}\left([0, T] ; H^{s-1}\left(R^{n}\right)\right)
$$

and

$$
\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)}<+\infty
$$

where $\sigma=\frac{1}{2}(s-\beta(q)+1), \frac{2}{r}=(n-1)\left(\frac{1}{2}-\frac{1}{q}\right), q>\frac{2(n-1)}{4 s-n-5}$.
Proof For $s>\frac{n}{2}+1$, it is clear that Theorem 4.1 holds by means of the classical energy method. Thus we only consider the case of $s \leq \frac{n}{2}+1$.

For $T, M>0$, we define the space

$$
X=\left\{u \mid u \in C\left([0, T] ; H^{s}\right) \cap C^{1}\left([0, T] ; H^{s-1}\right) ;\|u\|_{X} \leq M\right\}
$$

where

$$
\|u\|_{X}=\sup _{t \in[0, T]}\|u(t)\|_{H^{s}}+\sup _{t \in[0, T]}\left\|u_{t}(t)\right\|_{H^{s-1}}+\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t, x)\right\|_{L^{r}\left(0, T ; L^{q}\right)}
$$

To solve our problem, we may rewrite (1)-(2) in the equivalent integral equation of the form

$$
\begin{equation*}
u(t, x)=u_{0}(t, x)+\int_{0}^{t} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right)(\tau) d \tau \tag{11}
\end{equation*}
$$

where $K(t)$ is defined in Theorem 3.2.
Defining the following map by the integral equation (11)

$$
\begin{equation*}
\Phi: u \longrightarrow \Phi u=u_{0}(t, x)+\int_{0}^{t} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right)(\tau) d \tau \tag{12}
\end{equation*}
$$

We have from Theorem 3.1 and 3.2

$$
\begin{align*}
\sup _{t \in[0, T]}\|\Phi u(t)\|_{H^{s}} & +\sup _{t \in[0, T]}\left\|\Phi u_{t}(t)\right\|_{H^{s-1}} \\
& \leq\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}}+C T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}  \tag{13}\\
& +C T^{\frac{r+1-l}{r}}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)}^{l-1} \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+1} .
\end{align*}
$$

Noting

$$
\begin{aligned}
\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t)\right\|_{L^{r}\left(0, T ; L^{q}\right)} & \leq\left\|(-\Delta)^{\sigma-\frac{1}{2}} u_{0}(t, x)\right\|_{L^{r}\left(R^{+} ; L^{q}\right)} \\
& +\left(\int_{0}^{T}\left\|(-\Delta)^{\sigma-\frac{1}{2}} \int_{0}^{t} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right) d \tau\right\|_{L^{q}}^{r} d t\right)^{\frac{1}{r}} \\
& =I+I I .
\end{aligned}
$$

From Lemma 2.2

$$
\begin{equation*}
I \leq C\left(\left\|(-\Delta)^{\frac{s}{2}} \varphi\right\|_{L^{2}}+\left\|(-\Delta)^{\frac{s-1}{2}} \psi\right\|_{L^{2}}\right) \leq C\left(\|\varphi\|_{H^{s}}+\|\psi\|_{H^{s-1}}\right) \tag{14}
\end{equation*}
$$

Using the Minkowski integral inequality first in space and then in time, we can estimate II by

$$
\begin{aligned}
I I & \leq\left(\int_{0}^{T}\left(\int_{0}^{t}\left\|(-\Delta)^{\sigma-\frac{1}{2}} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right)(\tau)\right\|_{L^{q}} d \tau\right)^{r} d t\right)^{\frac{1}{r}} \\
& \leq \int_{0}^{T}\left(\int_{0}^{T}\left\|(-\Delta)^{\sigma-\frac{1}{2}} K(t-\tau)\left(u^{k}|\nabla u|^{l}\right)(\tau)\right\|_{L^{q}}^{r} d t\right)^{\frac{1}{r}} d \tau
\end{aligned}
$$

Applying the identity $K(t-\tau)=K(t) K^{\prime}(\tau)-K^{\prime}(t) K(\tau)$ and the fact that $K^{\prime}(\tau)$ and $(-\Delta)^{\frac{1}{2}} K(\tau)$ are bounded in $L^{2}$ to get

$$
I I \leq C \int_{0}^{T}\left\|(-\Delta)^{\frac{s-1}{2}}\left(u^{k}|\nabla u|^{l}\right)\right\|_{L^{2}} d t
$$

we also used Lemma 2.2 in the above estimation.
It follows that from (9) and (10)

$$
\begin{equation*}
I I \leq C\left(T \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+l}+T^{\frac{r+1-l}{r}} \sup _{t \in[0, T]}\|u(t)\|_{H^{s}}^{k+1}\left\|(-\Delta)^{\sigma-\frac{1}{2}} u(t, x)\right\|_{L^{r}\left(0, T ; L^{q}\right)}^{l-1}\right) \tag{15}
\end{equation*}
$$

Combining (13) and (14) with (15), we conclude that

$$
\begin{align*}
\|\Phi u\|_{X} & \leq C\left\{\|\varphi\|_{H^{s}}+(1+T)\|\psi\|_{H^{s-1}}+\left(T+T^{\frac{r+1-l}{r}}\right)\|u\|_{X}^{k+l}\right\}  \tag{16}\\
& \leq C\left\{(1+T)\left(\|\varphi\|_{H^{s}}+\|\psi\|_{H^{s-1}}\right)+\left(T+T^{\frac{r+1-l}{r}}\right)\|u\|_{X}^{k+l}\right\} .
\end{align*}
$$

Setting $M=2 C(1+T)\left(\|\varphi\|_{H^{s}}+\|\psi\|_{H^{s-1}}\right)$ and choosing sufficiently small $T>0$ such that $C\left(T+T^{\frac{r+1-l}{r}}\right) M^{k+l-1} \leq \frac{1}{2}$; then we obtain from (16)

$$
\|\Phi u\|_{X} \leq M
$$

That is, $\Phi$ maps $X$ into itself.
For any $u, v \in X$; we get similarly as the above estimation

$$
\|\Phi u-\Phi v\|_{X} \leq C\left(T+T^{\frac{r+1-l}{r}}\right) M^{k+l-1}\|u-v\|_{X}
$$

Under the same restrictions on $T$ and $M$; we have

$$
\|\Phi u-\Phi v\|_{X} \leq \frac{1}{2}\|u-v\|_{X} .
$$

Consequently, $\Phi$ is a contraction map from $X$ to $X$.
By Banach fixed point theorem, there exists a unique fixed point $u \in X$ of $\Phi$ such that $\Phi u=u$; which implies that $u$ is a solution of the integral equation (11) corresponding to (1)-(2) and fulfills

$$
u(t, x) \in C\left([0, T] ; H^{s}\left(R^{n}\right)\right) \cap C\left([0, T] ; H^{s-1}\left(R^{n}\right)\right) .
$$

The proof of Theorem 4.1 is finished.

## References

[1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976.
[2] J. Ginibre and G. Velo, Generalized Strichartz inequality for wave equation, J. Func. Anal., 133(1995), 50-68.
[3] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41(1988), 891-907.
[4] M. Keel and T. Tao, Endpoint Strichartz estimates , Amer. J. Mtah., 120(1998), 955-980.
[5] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure App. Math., 46(1993), 1221-1268.
[6] S. Klainerman and M. Machedon, Estimates for null forms and the spaces $H_{s, \delta}$, International Math Research Notices, 17(1996), 853-866.
[7] S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equation in 4+1 dimensions, J. Amer. Math. Soc., 12(1999), 93-116.
[8] C.X. Miao, Harmonic analysis and Applications to PDEs,(in Chinese), The Second Edition; Science Press, Beijing 2004,6.
[9] H. Pecher, Local solutions of semilinear wave equations in $\mathrm{H}^{s+1}$, Mathematical Methods in the Applied Sciences, 19(1996), 145-170.
[10] G. Ponce and T.C. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. in P.D.E., 18(1993), 169-177.
[11] D. Tataru, On the $X_{\theta}^{s}$ spaces and unique continuation for semilinear hyperbolic equations, Comm. in P.D.E., 21(1996), 46-66.
[12] D. Tataru, On the equation $\square u=|\nabla u|^{2}$ in 5+1 dimensions, Math. Res. Letters, 6(1999), 469-485.

Department of Mathematics and Information Science, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China E-mail: yeyaojun2002@yahoo.com.cn


[^0]:    *This Research was supported by Natural Science Foundation of Zhejiang Province (No.Y6100016), The Science and Research Project of Zhejiang Province Education Commission (No.Y200803804 and Y200907298), The Middle-aged and Young Leader in Zhejiang University of Science and Technology (2008-2012) and Interdisciplinary Pre-research Project of Zhejiang University of Science and Technology (2010-2012) and The Natural Science Foundation of China (No. 61273016).

    Received by the editors October 2009 - In revised form in December 2011.
    Communicated by P. Godin.
    2000 Mathematics Subject Classification : 35L05, 35A07, 35 B65.
    Key words and phrases : Wave equations, Initial value problem, Local regularity.

