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Abstract

Let N be the counting function of a Beurling generalized number sys-
tem and let π be the counting function of its primes. We show that the
L1-condition

∫ ∞
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∣

∣

N(x)− ax
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∣

∣
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x
< ∞

and the asymptotic behavior

N(x) = ax +O

(

x

log x

)

,

for some a > 0, suffice for a Chebyshev upper estimate

π(x) log x

x
≤ B < ∞ .

1 Introduction

Let P = {pk}
∞
k=1 be a set of Beurling generalized primes, namely, a non-decreasing

sequence of real numbers 1 < p1 ≤ p2 ≤ · · · ≤ pk → ∞. The sequence {nk}
∞
k=1

denotes its associated set of generalized integers [2, 3]. Consider the counting
functions of generalized integers and primes

N(x) = NP(x) = ∑
nk<x

1 and π(x) = πP(x) = ∑
pk<x

1 .
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Beurling’s problem consists in finding mild conditions over N that ensure a cer-
tain asymptotic behavior for π. This problem has been extensively investigated
in connection with the prime number theorem (PNT), i.e.,

π(x) ∼
x

log x
, x → ∞ , (1)

and Chebyshev two-sided estimates, that is,

0 < lim inf
x→∞

π(x) log x

x
and lim sup

x→∞

π(x) log x

x
< ∞ . (2)

On the other hand, there are no mild hypotheses in the literature for Chebyshev
upper estimates,

lim sup
x→∞

π(x) log x

x
< ∞ . (3)

The purpose of this article is to study asymptotic requirements over N that imply
the Chebyshev upper estimate (3).

Beurling [3] proved that

N(x) = ax + O

(

x

logγ x

)

, x → ∞ (a > 0) , (4)

where γ > 3/2, suffices for the PNT (1) to hold. See [3, 10, 13] for more general
PNT. Beurling’s condition is sharp, because when γ = 3/2 there are generalized
number systems for which the PNT fails [3, 5]. For γ < 1, not even Chebyshev
estimates need to hold, as follows from an example of Hall [9] (see also [1]). Dia-
mond has shown [6] that (4) with γ > 1 is enough to obtain Chebyshev two-sided
estimates (2). Furthermore, he conjectured [7] that the weaker hypothesis

∫ ∞

1

∣

∣

∣

∣

N(x)− ax

x

∣

∣

∣

∣

dx

x
< ∞ , with a > 0 , (5)

would be enough for (2). His conjecture was shown to be false by Kahane [11].
Nevertheless, the author has recently shown [15] that if one adds to (5) the con-
dition

N(x) = ax + o

(

x

log x

)

, x → ∞ , (6)

then (2) is fulfilled, extending thus earlier results from [6, 18].
It is natural to replace the little o symbol in (6) by an O growth estimate and

investigate the effect of this new condition on the asymptotic distribution of the
generalized primes. It turns out that one gets a Chebyshev upper estimate in this
case. Our main goal is to give a proof of the following theorem.

Theorem 1. Diamond’s L1-condition (5) and the asymptotic behavior

N(x) = ax + O

(

x

log x

)

, x → ∞ , (7)

suffice for the Chebyshev upper estimate (3).
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2 Notation

We will give an analytic proof of Theorem 1. Our technique follows distribu-
tional ideas already used in [13, 15, 16]. It employs the Wiener division theorem
[12, Chap. 2] and the operational calculus for the Laplace transform of Schwartz
distributions [4, 17]. The Schwartz spaces of test functions and distributions are
denoted as D(R), S(R), D′(R) and S ′(R), see [8, 14, 17] for their properties.
If f ∈ S ′(R) has support in [0, ∞), its Laplace transform is well defined as

L { f ; s} =
〈

f (u), e−su
〉

, ℜe s > 0 ,

and the Fourier transform f̂ is the distributional boundary value [4] of L { f ; s}
on ℜe s = 0. We use the notation H for the Heaviside function, it is simply the
characteristic function of (0, ∞).

Observe that (3) is equivalent to

lim sup
x→∞

ψ(x)

x
< ∞ , (8)

where ψ is the Chebyshev function

ψ(x) = ψP(x) = ∑
nk<x

Λ(nk) ,

as follows from [2, Lem. 2E].

3 Proof of Theorem 1

Assume (5) and (7). Set T(u) = e−uψ(eu). We must show (8), that is,

lim sup
u→∞

T(u) < ∞ . (9)

The crude inequality T(u) ≤ ue−uN(eu) = O(u) implies that T ∈ S ′(R). The
proof of (9) depends upon estimates on convolution averages of T:

Lemma 1. There exists c > 0 such that
∫ ∞

−∞
T(u)φ̂(u − h)du = O(1) , (10)

whenever φ ∈ D(−c, c).

Indeed, suppose that Lemma 1 has been already established. Choose then in
(10) a test function φ ∈ D(−c, c) such that φ̂ is non-negative. Since ψ(eu) is non-
decreasing, we have e−uT(h) ≤ T(u + h) whenever u and h are positive. Setting
C =

∫ ∞

0 e−uφ̂(u)du > 0, we obtain that

T(h) ≤
1

C

∫ ∞

0
T(u + h)φ̂(u)du = O(1) ,

and Theorem 1 follows at once. It remains to prove the lemma.
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Proof of Lemma 1. Set E1(u) := e−uN(eu) − aH(u) and E2(u) = uE1(u). The as-
sumptions (5) and (7) take the form E1 ∈ L1(R) and E2 ∈ L∞(R). Consider

G(s) = ζ(s) −
a

s − 1
= sL {E1; s − 1}+ a .

Taking ℜe s → 1+, in the distributional sense, we obtain G(1+ it) = (1+ it)Ê1(t)+
a. Since E1 ∈ L1(R), Ê1 is continuous; therefore G(s) extends to a continuous
function on ℜe s = 1. Consequently, (s − 1)ζ(s) is continuous on ℜe s = 1 and
there exists c > 0 such that itζ(1 + it) 6= 0 for all t ∈ (−3c, 3c). Next, we study
the boundary values, on the line segment 1 + i(−c, c), of

L {T(u); s − 1} = L {ψ(eu); s} = −
ζ′(s)

sζ(s)
.

A quick calculation shows that

−
ζ′(s)

sζ(s)
=

L {E′
2; s − 1}

(s − 1)ζ(s)
−

(2s − 1)L {E1; s − 1}+ a

s(s − 1)ζ(s)
−

1

s
+

1

s − 1
, (11)

Consider the boundary distributions

g1(t) = lim
σ→1+

L {E′
2; σ − 1 + it}

(σ − 1 + it)ζ(σ + it)
in S ′(R) ,

and

g2(t) = − lim
σ→1+

(

(2σ − 1 + 2it)L {E1; σ − 1 + it}+ a

(σ + it)(σ − 1 + it)ζ(σ + it)
+

1

σ + it

)

in S ′(R) .

Taking boundary values in (11), we have T̂(t) = g1(t) + g2(t) + Ĥ(t), where H is
the Heaviside function. Fix φ ∈ D(−c, c). Notice that g2 is actually a continuous
function on (−3c, 3c), thus,

∫ ∞

−∞
T(u)φ̂(u − h)du =

〈

g1(t), eihtφ(t)
〉

+
∫ c

−c
eihtg2(t)φ(t)dt +

∫ ∞

−h
φ̂(u)du

=
〈

g1(t), eihtφ(t)
〉

+ o(1) + O(1) .

Our task is then to demonstrate that
〈

g1(t), eihtφ(t)
〉

= O(1). Let M ∈ S ′(R)
be the distribution supported in the interval [0, ∞) that satisfies L {M; s − 1} =

((s − 1)ζ(s))−1 . Notice that g1 = ̂(E′
2 ∗ M). Fix an even function η ∈ D(−3c, 3c)

such that η(t) = 1 for all t ∈ (−2c, 2c). Then, η(t)itζ(1 + it) 6= 0 for all
t ∈ (−2c, 2c); moreover, it is the Fourier transform of the L1-function χ1 ∗ E1 + χ2,
where χ̂1(t) = it(1 + it)η(t) and χ̂2(t) = a(1 + it)η(t). We can therefore apply
the Wiener division theorem [12, p. 88] to η(t)itζ(1 + it) and φ(t). So we find
f ∈ L1(R) such that

f̂ (t) =
φ(t)

η(t)itζ(1 + it)
.

Hence,
〈

g1(t), eihtφ(t)
〉

=
〈

(E′
2 ∗ M)(u), φ̂(u − h)

〉

= (E2 ∗ (η̂)
′ ∗ f )(h) = O(1) ,

because E2 ∈ L∞(R) and (η̂)′ ∗ f ∈ L1(R), whence (10) follows.
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