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Abstract

Some new existence theorems are obtained for periodic solutions of nonau-
tonomous second order Hamiltonian systems with (g, p)-Laplacian by using
the least action principle and the minimax methods.

1 Introduction

In the last two decades many authors starting with Mawhin and Willem (see [2])
proved the existence of solutions for the Hamiltonian systems:

{ a ([ (OP~2u(t)) = VE(t u(t))

u(0) —u(T) = u(0) - (T)=0/
with p = 2 or more general with p > 1, under suitable conditions on the potential
F (see [8]-[21] and references therein).
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Inspired by some of these papers in [1], [3], [4], [5], [6], the authors have con-
sidered the extensions to second-order Hamiltonian systems with (g, p)-Laplacian:

%( i ()]77201(4)) = Vi F(t,ur (1), u2(t)),  ae. t€[0,T],

S (i (1)|P~212(t)) = Vi, E(t,ur (), ua(t)), a.e. t €10,T], (1.2)
u1(0) —ur(T) = 11 (0) —uy(T) =0,

u2(0) — up(T) = 12(0) —12(T) =0,

where 1 < p,q < +0o, T > 0,and F : [0, T] x RN x RN — R satisfy the following
assumption (A):
e Fis measurable in t for each (x1,xp) € RN x RY;
e [ is continuously differentiable in (x1, x;) for a.e. t € [0, T};
e there exist a;,a, € C(R*,R*) and b € L'(0, T;R*) such that
|E(t, x1,%2) |, |V F(t,x1,22)|, [V F(t, 21, 32) ] < [a1 (1)) + az(|x2])]b(8)
for all (x1,x,) € RN x RN and a.e. t € [0, T).

The aim of this paper is to obtain new existence results for system 1.2 by
imposing a more general growth conditions on the potential F. More precisely
we assume that there exist constants C; > 0 and two positive control functions
h;i € C(R*,R"), i = 1,2, which satisfied the following restrictions:

(i) hi(s) < h;(t) foralls <t,steR",

(ii) hi(s+1t) < Ci(h(s) +h(t)) forallst€ R,

(iii) thy(t) —qH1(t) = —o0 as t — oo, where Hy (¢ fo hi(s
(iv) thy(t) — pHa(t) — —o0 ast — oo, where Hj(t fo hy (s
(v) Bl 0 as t — +oo,
(vi) HZ( L 0 ast — +oco.

The main results are the following theorems.
Theorem 1.1. Suppose that F satisfies assumption (A) and the following conditions:

Hi) There exist two positive control functions h; € C(R™Y,R™) with the properties
P prop
(i)-(vi). Moreover, there exist f;, g; € L1(0, T; R"),i = 1,2, such that

(Vi F(t, %1, x2)[ < fi(B)ha(|x1]) + g1(8),
|V F(t,x1,%2)| < fa(t)ha(|x2]) + g2(¢)

forall (x1,x) € RN x RN and a.e. t € [0, T);
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(Hp) There exist two positive control functions h; € C(R™,R™),i = 1,2, which satisfy
the conditions (i)-(vi), and assume that

1 /T
F(t, x1,x7)dt >0 asx::\/m%_i_oo
(D) + Ha(al) Jo 02 x| 1= /2 + [

forae. t €0, T).

Then problem (1.2) has at least one solution which minimizes the function ¢ given by
1 /T 1 T T
plur z) 1= /0 iy (£)] 96kt + ;/O i (£)[Pdt + /0 F(t, 1y (), ua (1)) dt

On the Banach space W := W%’q X W%’p (details see Section 2).
Remark 1.1. Theorem 1 in [4] are obtained under the following conditions:
(Hy)" There exist f;,¢; € L'(0,T;R"),i = 1,2and &y € [0, —1),a2 € [0,p — 1)
such that
[V F(t, x1,x2)| < fa(t)|x1[* 4 g1 (1),
[V F(t,x1,%2)| < fo(t)[x2]™ + &2(t)

for all (x1,x2) € RN x RN and ae. t € [0, T];

(Hy) ————— [ F(t,x1,x2)dt — 400 as|x| = /[ 2+ 122 — +oo,

1|71 4z |2
where g’ and p’ be such that % + % = 1and % + % =1

Theorem 1.1 generalizes Theorem 1 in [4] partly. Indeed, if we replace (H;)" with
the following more stronger assumption

(Hp)* There exist f;,g; € L'(0, T;R"),i = 1,2and a1 € [1/4,9—1),a2 € [1/7,
p — 1) such that
[V F(t,x1,x2)| < A3 |7 + (),
Vi F(t 31, %2)| < fo8) x4 ga(h)
for all (x1,x) € RN x RN and ae. t € [0, T],
and take the control functions hy(t) = t7%~1 hy(t) = 7271 then we see that

condition (Hj) is much weaker than (H,)'. Theorem 1 in [4] it follows from
Theorem 1.1 under assumptions (Hj)* and (H,). Moreover, if g = p = 2,

F(t,x1,%2) = Fi (£ x1), h1 () = 19 with aq € [1/2,1) and
(H))** |V F(t,x1)| < AAt)]|x1[*17 1+ ¢1(#) forallx; € RN and ae. t € [0, T,
Theorem 1 in [10] it follows also from Theorem 1.1 under assumptions (Hy)**

and (Hp). There are functions F satisfying our Theorem 1.1 and not satisfying the
results in [4, 10]. For example let

1|7 + |x2|P
In (e + |x1]> + |x2|2)'

F(t, x1,x2) = |f(1)]
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where f € L1(0, T;R"). Then, for all (x1,x2) € RN x RN and t € [0, T], one has

21771

[V F(t,x1,22)| < (2+ q)|f(t)|ln(e-|——|xl|2)’

x|
In (6-1— |XZ|2),

which implies that we cannot apply Theorem 1 in [4]. On the other hand, if we
take

[V, F(t, x1,%2)| < (24 p)|f(2)]

" d m(y = —
Thern M 0=y

we can see that conditions (H7) and (H>) are satisfied. Therefore Theorem 1.1 is
a new result.

hy(t)

Theorem 1.2. Suppose that (Hy) and assumption (A) hold. Assume that

1 T
H /Ft,x,x dt <0 as|x| = /|x1]? + |x|? = +o0
( 3) H1(|X1|)-|—H2(|X2|) 0 ( 1 2) ’ ’ ’ 1| ’ 2|

forae. t €[0,T].
Then problem (1.2) has at least one solution in W.

Remark 1.2. Theorem 1.2 is also a new result. What’s more, there are functions F
satisfying our Theorem 1.2 and not satisfying the results in [4, 10]. For example
let

217 + [x]P

where f € L'(0, T; R").

2 Preliminaries

For the sake of convenience, in the following we will denote various positive
constants as c;,i = 1,2,3,.... Firstly, we introduce some functional spaces. Let
T > 0,1 < q,p < +o0 and use | - | to denote the Euclidean norm in RN. We

denote by W%’p the Sobolev space of functions u € L?(0, T;R") having a weak
derivative 1 € LP(0, T; RY). The norm in W%’p is defined by

1
T [z
lullyso = ([ (ol + ey yar) "
Furthermore, we use the space W defined by

WA Lp
W= Wy x Wy

with the norm || (u1, u2)[|w = ||u1l[ 10 + [[u2]| 5. Itis clear that W is a reflexive
T T

Banach space.
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Foru e W%’p, let i := %fOTu(t)dt and ii(t) := u(t) — 1, then one has
|leo < c1lltt]lp, 7]l < c1]|?]lg,  (Sobolev’s inequality)
||y < colulpdt, ||5]lg < c2||9|l; (Wirtinger’s inequality)

for each u € W%’p,v € W%’q, where [[ul[, := fo lu(t)|Pdt) P and ||i|le :=
maxo<s< |i(t)].
It follows from assumption (A) that functional ¢ on W given by

o(u,up) = %/OT |1y () |7dt + % /OT ’uz(t)jpdt—l—/OTF(t,ul(t),uz(t))dt

is continuously differentiable and weakly lower semicontinuous on W (see [4]).
Moreover, one has

(¢ (u1,2), (01, 02)) = foT 11172111, 01)dt + foT(Wz’P_lez,sz)dt
+f0 (uq,uz) t ul/uZ)/ (Ullvz))dt

forall u; € Wl’q, v; € WP ,i =1,2. It is well known that the solutions of problem
(1.2) correspond to the critical points of the functional ¢.
To proof of our main theorems, we need the following auxiliary result.

Proposition 2.1. Let g’ and p’ be such that % + % = 1and % + % = 1. Suppose
that there exist two positive functions h;(t),i = 1,2, which satisfy the conditions (i),
(iii)-(vi) of (Hj), then we have the following estimates:

(@) 0 <hi(t) <et ! +¢3 forany e; > 0,t € R,
(b) 0<h2()<eztp ey forany e; > 0,t € RT,
(c) hé ast — +oo,
(d) hH ast — +oo,
(e)H()—>—|—oo ast — +oo,

(f) Ha(t) = 400 ast — +oo.

Proof. We only need to proof the estimates (a), (c), (e), the others are similar. It
follows from (v) of (H;) that, for any € > 0, there exists M; > 0 such that

Hq(t) <eith Yt > M.
Observe that (iii) of (H7), there exists M, > 0 such that
thy(t) —gH1(t) <0 YVt > My,
which implies that

Hy(t)

<= <get’™ ' Vt>M,

where M := max{Mi, M5 }. Hence we obtain

hl(i’) < qeltq_l + Iy (M)
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for all t > 0 by (i) of (Hj). Obviously, h;(t) satisfies (a) due to the definition of
hi(t) and the above inequality.
Next, we turn to (b). Recalling the property (v) of (H;) and the fact % + % =1,
we get
mT () 7 (b - N
0< = S HTTH ) < () - HT (¢t
Hi(t) — H7() ()—(t> U

, HT (¢t ;o Hqy(£)\ 71
:q”’-lT():qq <£)q — 0 ast — +oo.

1
t1

Therefore, estimate (c) holds.
Finally, we show that (e) is also true. By (iii) of (H;), one arrives at, for every
L > 0, there exists M3 > 0 such that

thl (t) - qu (i’) < —L Vit > M3.

So, one has
Gthl (Gt) — qu (Gt) < —L
for all |6t| > Mj3. Then we have

§ o] omi g s g (1)

9q+1 = gatl 49

Let 0 > 1, integrating both sides of the above inequality from 1 to 6, we obtain

Hy (6) L L L/ 1
_ <« = _Z_ =
RO TR (Gq—l)'

Let & — +oc0 in the above inequality, and by (v) of (Hj), one has

L
Hy(t) > =
1(£) p

for all t > Mj3. By the arbitrariness of L, we have
Hi(t) = +oc0  ast— +oo,

which completes the proof. m
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3 Proof of main results

Now, we are ready to proof our main results.
Proof of Theorem 1.1. It follows from (Hj) and Sobolev’s inequality that

‘ /OT[F(t, uq (1), ua(t) — E(t, ﬂ1,ﬁz)]dt‘

T T
g‘ / [F(t,ul(t),uz(t)—F(t,ul(t),ﬁz)]dt‘—I—‘ / F(t,uy (), i) — F(t, i1y, )] dt
0 0

/OT /Ol(VxZF(t, uq (1), it + Szﬁz(t)),ﬁz(t))dsdt‘

_|_

T r1
I (VxlF(t,ﬂl+slﬁ1(t),a2),ﬁ1(t))dsdt)
T T T
< [ el + |m@)Dma(O)dt + [ ga(lma(dldt+ [ gi(6)lm (0)at
+ [ A (m] + a0 )
T T
< [ WG ta(lm]) + (D)t + 7] [ g2(e)t
+ [ At ]) + (e Dm0l + o [
< Cilia(lal) + ha(lm O o [ (00t + il [ g2l

T T
+C;‘[h1(|a1|)+h1(|a1(t)|)]||ﬁ1||oo/o f1(if)df+||ﬁl||oo/O g1(t)dt

1
ZpC;_‘cf

T T T
Cima(all)l1alle [ o)t + ]l [ 1Ot +Cim(anll) ke [ (et

<G5

) T r' T
Il + 20Csele () ([ o) |+ Nl [ ga(or

+C]

1 , T q
eglmliL + 2eCiclin (ml) ([ Ao ]

Zin‘c?
1. p e . * -~ np—1 ~ T
§5||M2||p+65h2 (|72]) + cslltallp + C3le2|da]le0 ~ + ca] |2 |0 5 f2(t)dt
1,. o . -1 3 r
+leu1||2 + o7 (| ]) + cslliin[|q + Cilen || 1% +C3]||u1||00/0 f1(t)dt
1 . q q/ _ . 1 . 14
< E+€1010 lt1llg + c7hi® (|i1]) + colltallg + 5= +€2c12 | [[12][}

2p
+ esho? (|ita]) + c11 |t |- (3.1)
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Hence, we see that
1 /T 1 T T
p(un, ) = - [lin(Ode+ [l [ FE (), u(0)
q.Jo pJo 0
T
—F(t,al,az)]dtJr/ F(t, i1y, fip)dt
0

1 1
> <2q €1C1o) 1 ]|g — collta [l + <2p 61262612) [u2][p — c1n 2]l

1 T
+ (Hy(Ju1|) + Ha(|i12])) [H1(|ﬂ1!) A (A /0 F(t, i1y, ip)dt
7 (|m]) ho?' (|i12])
" TH (i) + Ha([]) ‘05H1<|a1|>+H2<|ﬂ2|>}' (32)

By Proposition 2.1, we observe that

m (|m]) ho? (|22)) N
1 — — 0 - —— — 0 as/|ig]? + |i#2]? = +oo.
Hy(|im]) + Ha(|1i2]) Hy(|im]) + Ha([a)) @12 + |22

These together with (3.2), by (H) and Proposition 2.1, for €, €2 small enough,
one has

¢(u1,up) — 400 as |[(ug, uz)||lw — +oo.

Then, by the least action principle,, problem (1.2) has at least one solution which
minimizes the function ¢. n

Proof of Theorem 1.2. First we prove that ¢ satisfies the (PS) condition. Suppose
that {(u1,, u2s)} C W is a (PS) sequence for ¢, that is, ¢'(uy,, uz,) — Oasn —
+o00 and {¢(u1,, uzy)} is bounded. In a way similar to the proof of Theorem 1.1,
we have

/0 LV Bt i1 (1), o (1)), i (£))dE + /0 (VL E(t 1 (1), uzn(t)),ﬁZH(t))dt’

< ’/OT(vxlF(truln(t)/uZH(t))/ﬁln(t))dt' + '/OT(szF(fr uln(t)/uZH(t))/ﬁ2n(t>)dt’

< <% + €1C1o) i1 | + crhn® (Jia]) + collia || + (% + 62012) [l
+esha? ([ia]) + o1 [iall,
for all 7. Hence, we get
(@1, 2n ) lw > (@' (1, ti2n), (10, Ti2n))
= [ LTt 1) w0 (1)) 00 (1)) + i ()90, (1), 001
+ (Vi F(t, 1 (£), i (1)), 20 (1)) + ([t () [P~ %112 (£), 1124 (£))] dt
> (1= 5 = eren ) i = o (1m]) = ey

1 . i _ .
+ (1 T2 62612) lt2ullp — csha? (|i2]) — c1a izl (3.3)
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for large n. On the other hand, it follows from Wirtinger’s inequality that

ST L.
1 o) lw = 0l g + 820l < (L4 5)T itullg + (14 )7 k2a

:= c13| (thin, ti2n) || LaxLr (3.4)

for all n. Combing (3.3) with (3.4), we obtain

. 1 . . .
c13| (th1n, thon) |Laxrr > <1 - Z - €1C1o) ||u1n||?; — 7y (|ir]) — cg ||t ]lq
1 . o .
+ (1= 5~ exen ) el = esha? (1ml) = culial,
for €1, € small enough, which implies that

1l (|an]) + ho? (|i12n]) + 1] > il + (1120 ||} (3.5)

for all large n. By the proof of (3.1), we also have

/OT[F(t/ Uln (t), uzn(t)) — F(t, all’llﬁZn)]dt

1 , ' . 1 .
< (55 +cw) lll+ ern® (D) + colinlly + (5 + eac )

—|—C5]’l2p (|112D —|—C11H112Hp. (36)

Thus, by (3.5), (3.6), Proposition 2.1 and (H3), one has
1 /T 1 /T
(110, t2y) = 5/0 yulnymH;/o g |Pdlt
T T
+/0 [F(t, u1,, (£), u2n(t)) —F(t,ﬁ1n,ﬁ2n)]df+/0 E(t, i1y, tipy)dt
< 3 — 3 R .
< Z + €1¢10 Hulan + E + €2012 Hu2n||p + C9||u1an

! ! T
+ entlltianlly + o (i) + csha? (Jiiau]) +/O F(t, i1y, i) dt

< cis [0 () + e () + 1] + et [1a? ()

<=

l ! /
o (2 ]) + 1| + Caz [ (1) + o (120]) +1]

! ' T
+ ool (|n]) + csha (|itn]) + /0 E(t, i1y, it )dt

’ / q P
< 18T (|11, |) + c19h2? (|i2n]) + c20m1 7 (|i1n]) + c21h2 7 (|1i24])

ql

[ Y T
+ coohy P (|i1n]) + cosha ¥ (|#2n]) +024+/O F(t, 11y, i, )dt
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) ) cish” (i) croha? (|i2a))
= (Hq(|ui + H>(|@ — - = -
() + BalT2e) | G, T By Hr(lsa]) + Hollz])
7 v
co0h 7 (|t11,]) co1ho 7 (|1ign])
Hy (|1, |) + Ha(li20|) — Hi(|i1a]) + Ha(|i24])
7 v
cooh 7 (|111,]) co3ha 7 (|1i2n])
Hy (|1 |) + Ha(li2q|) ~ Hi(|i#1a]) + Ha(|i24])
n Co4 n fOTF(t,ﬂln,L_tzn)dt }
Hi(|it1n]) + Ho(lii2n|) — Hi(|#1a]) + Ha(|t24]) |

note p,q > 1, which implies that

(P(ulnr u2n) — —00 as \/|a1n|2 + |ﬁ2n|2 — +oo. (3.7)

This contradicts the boundedness of { (11, u2,) }. So, {|if1,|* + |#2,|?} is bounded,
by (3.5), we know {(u1,, p,)} is bounded. Using the same arguments of [4], we
conclude that the (PS) condition is satisfied.

Let W := W%’q X W%’p be the subspace of W given by
W {(uy,u2) € W| (111, 112) = (0,0)}.
Then, for (u1,us) € W, we have
(11, up) = 400 as |[(ug,uz)||w — +oo. (3.8)

Indeed, for Dy, D; > 0 and €1, €2 small enough, by the proof of (3.6), we get
ul,uz / |u1 |th—|— / ’uz ’pdt
T
+ / (t, 11 (£), ua(£)) — F(t, Dy, D)|dt + / E(t,D;, D,)dt
0
1
. . P
> (5 — e lnll = ern® (D) = slinly+ (5, = eacn ) il

_C5th’(D2)_cn\|u2\|p+/0 F(t, Dy, Dy)dt
> cos|lia [l — eollttallg — ca6 izl — cnnlliiallp — c27
for all (u1,u) € W. By the Wirtinger’s inequality, the norm
[(ur, u2) || = ([ (ein, i) [[Lasce = N llg + [zl

is an equivalent norm on W. Hence, (3.8) follows from the equivalence and the
above inequality.
On the other hand, by (H3) and Proposition 2.1, we have

@(uy, 1) — —oo as |(uy,up)| — +ooin RN x RN,

Then, by Saddle Point Theorem [7], problem (1.2) has at least one solution in W,
and the proof hereby is complete. n
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