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Abstract

Some new existence theorems are obtained for periodic solutions of nonau-
tonomous second order Hamiltonian systems with (q, p)-Laplacian by using
the least action principle and the minimax methods.

1 Introduction

In the last two decades many authors starting with Mawhin and Willem (see [2])
proved the existence of solutions for the Hamiltonian systems:

{

d
dt

(

|u̇(t)|p−2u̇(t)
)

= ∇F(t, u(t)) a.e. t ∈ [0, T],
u(0)− u(T) = u̇(0)− u̇(T) = 0,

(1.1)

with p = 2 or more general with p > 1, under suitable conditions on the potential
F (see [8]-[21] and references therein).
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Inspired by some of these papers in [1], [3], [4], [5], [6], the authors have con-
sidered the extensions to second-order Hamiltonian systems with (q, p)–Laplacian:















d
dt

(

|u̇1(t)|
q−2u̇1(t)

)

= ∇u1
F(t, u1(t), u2(t)), a.e. t ∈ [0, T],

d
dt

(

|u̇2(t)|
p−2u̇2(t)

)

= ∇u2 F(t, u1(t), u2(t)), a.e. t ∈ [0, T],
u1(0)− u1(T) = u̇1(0)− u̇1(T) = 0,
u2(0)− u2(T) = u̇2(0)− u̇2(T) = 0,

(1.2)

where 1 < p, q < +∞, T > 0, and F : [0, T]×R
N × R

N → R satisfy the following
assumption (A):

• F is measurable in t for each (x1, x2) ∈ R
N × R

N;

• F is continuously differentiable in (x1, x2) for a.e. t ∈ [0, T];

• there exist a1, a2 ∈ C(R+, R
+) and b ∈ L1(0, T; R

+) such that

|F(t, x1, x2)|, |∇x1
F(t, x1, x2)|, |∇x2 F(t, x1, x2)| ≤

[

a1(|x1|) + a2(|x2|)
]

b(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T].

The aim of this paper is to obtain new existence results for system 1.2 by
imposing a more general growth conditions on the potential F. More precisely
we assume that there exist constants C∗

i > 0 and two positive control functions
hi ∈ C(R+, R

+), i = 1, 2, which satisfied the following restrictions:

(i) hi(s) ≤ hi(t) for all s ≤ t, s, t ∈ R
+,

(ii) hi(s + t) ≤ C∗
i (h(s) + h(t)) for all s, t ∈ R

+,

(iii) th1(t)− qH1(t) → −∞ as t → ∞, where H1(t) =
∫ t

0 h1(s)ds,

(iv) th2(t)− pH2(t) → −∞ as t → ∞, where H2(t) =
∫ t

0 h2(s)ds,

(v) H1(t)
tq → 0 as t → +∞,

(vi) H2(t)
tp → 0 as t → +∞.

The main results are the following theorems.

Theorem 1.1. Suppose that F satisfies assumption (A) and the following conditions:

(H1) There exist two positive control functions hi ∈ C(R+, R
+) with the properties

(i)-(vi). Moreover, there exist fi, gi ∈ L1(0, T; R
+), i = 1, 2, such that

|∇x1
F(t, x1, x2)| ≤ f1(t)h1(|x1|) + g1(t),

|∇x2 F(t, x1, x2)| ≤ f2(t)h2(|x2|) + g2(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T];
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(H2) There exist two positive control functions hi ∈ C(R+, R
+), i = 1, 2, which satisfy

the conditions (i)-(vi), and assume that

1

H1(|x1|) + H2(|x2|)

∫ T

0
F(t, x1, x2)dt > 0 as |x| :=

√

|x1|2 + |x2|2 → +∞

for a.e. t ∈ [0, T].

Then problem (1.2) has at least one solution which minimizes the function ϕ given by

ϕ(u1, u2) :=
1

q

∫ T

0
|u̇1(t)|

qdt +
1

p

∫ T

0
|u̇2(t)|

pdt +
∫ T

0
F(t, u1(t), u2(t))dt

On the Banach space W := W
1,q
T × W

1,p
T (details see Section 2).

Remark 1.1. Theorem 1 in [4] are obtained under the following conditions:

(H1)
′ There exist fi, gi ∈ L1(0, T; R

+), i = 1, 2 and α1 ∈ [0, q − 1), α2 ∈ [0, p − 1)
such that

|∇x1
F(t, x1, x2)| ≤ f1(t)|x1|

α1 + g1(t),

|∇x2 F(t, x1, x2)| ≤ f2(t)|x2|
α2 + g2(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T];

(H2)
′ 1

|x1|
q′α1+|x2|

p′α2

∫ T
0 F(t, x1, x2)dt → +∞ as |x| =

√

|x1|2 + |x2|2 → +∞,

where q′ and p′ be such that 1
q +

1
q′ = 1 and 1

p +
1
p′ = 1.

Theorem 1.1 generalizes Theorem 1 in [4] partly. Indeed, if we replace (H1)
′ with

the following more stronger assumption

(H1)
∗ There exist fi, gi ∈ L1(0, T; R

+), i = 1, 2 and α1 ∈ [1/q′, q − 1), α2 ∈ [1/p′,
p − 1) such that

|∇x1
F(t, x1, x2)| ≤ f1(t)|x1|

q′α1−1 + g1(t),

|∇x2 F(t, x1, x2)| ≤ f2(t)|x2|
p′α2−1 + g2(t)

for all (x1, x2) ∈ R
N × R

N and a.e. t ∈ [0, T],

and take the control functions h1(t) = tq′α1−1, h2(t) = tp′α2−1, then we see that
condition (H2) is much weaker than (H2)

′. Theorem 1 in [4] it follows from
Theorem 1.1 under assumptions (H1)

∗ and (H2). Moreover, if q = p = 2,

F(t, x1, x2) = F1(t, x1), h1(t) = tq′α1−1 with α1 ∈ [1/2, 1) and

(H1)
∗∗ |∇x1

F(t, x1)| ≤ f1(t)|x1|
2α1−1 + g1(t) for all x1 ∈ R

N and a.e. t ∈ [0, T],

Theorem 1 in [10] it follows also from Theorem 1.1 under assumptions (H1)
∗∗

and (H2). There are functions F satisfying our Theorem 1.1 and not satisfying the
results in [4, 10]. For example let

F(t, x1, x2) = | f (t)|
|x1|

q + |x2|
p

ln
(

e + |x1|2 + |x2|2
) ,
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where f ∈ L1(0, T; R
+). Then, for all (x1, x2) ∈ R

N × R
N and t ∈ [0, T], one has

|∇x1
F(t, x1, x2)| ≤ (2 + q)| f (t)|

|x1|
q−1

ln
(

e + |x1|2
) ,

|∇x2 F(t, x1, x2)| ≤ (2 + p)| f (t)|
|x2|

p−1

ln
(

e + |x2|2
) ,

which implies that we cannot apply Theorem 1 in [4]. On the other hand, if we
take

h1(t) =
tq−1

ln
(

e + t2
) and h2(t) =

tp−1

ln
(

e + t2
) ,

we can see that conditions (H1) and (H2) are satisfied. Therefore Theorem 1.1 is
a new result.

Theorem 1.2. Suppose that (H1) and assumption (A) hold. Assume that

(H3)
1

H1(|x1|) + H2(|x2|)

∫ T

0
F(t, x1, x2)dt < 0 as |x| =

√

|x1|2 + |x2|2 → +∞

for a.e. t ∈ [0, T].
Then problem (1.2) has at least one solution in W.

Remark 1.2. Theorem 1.2 is also a new result. What’s more, there are functions F
satisfying our Theorem 1.2 and not satisfying the results in [4, 10]. For example
let

F(t, x1, x2) = −| f (t)|
|x1|

q + |x2|
p

ln
(

e + |x1|2 + |x2|2
) ,

where f ∈ L1(0, T; R
+).

2 Preliminaries

For the sake of convenience, in the following we will denote various positive
constants as ci, i = 1, 2, 3, . . . . Firstly, we introduce some functional spaces. Let
T > 0, 1 < q, p < +∞ and use | · | to denote the Euclidean norm in R

N. We

denote by W
1,p
T the Sobolev space of functions u ∈ Lp(0, T; R

N) having a weak

derivative u̇ ∈ Lp(0, T; R
N). The norm in W

1,p
T is defined by

‖u‖
W

1,p
T

:=

(

∫ T

0
(|u(t)|p + |u̇(t)|p)dt

)
1
p

.

Furthermore, we use the space W defined by

W := W
1,q
T × W

1,p
T

with the norm ‖(u1, u2)‖W := ‖u1‖W
1,q
T

+ ‖u2‖W
1,p
T

. It is clear that W is a reflexive

Banach space.
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For u ∈ W
1,p
T , let ū := 1

T

∫ T
0 u(t)dt and ũ(t) := u(t) − ū, then one has

‖ũ‖∞ ≤ c1‖u̇‖p, ‖ṽ‖∞ ≤ c1‖v̇‖q, (Sobolev’s inequality)

‖ũ‖p ≤ c2‖u̇‖pdt, ‖ṽ‖q ≤ c2‖v̇‖q (Wirtinger’s inequality)

for each u ∈ W
1,p
T , v ∈ W

1,q
T , where ‖u‖p := (

∫ T
0 |u(t)|pdt)

1
p and ‖ũ‖∞ :=

max0≤t≤T |ũ(t)|.
It follows from assumption (A) that functional ϕ on W given by

ϕ(u1, u2) =
1

q

∫ T

0
|u̇1(t)|

qdt +
1

p

∫ T

0
|u̇2(t)|

pdt +
∫ T

0
F(t, u1(t), u2(t))dt

is continuously differentiable and weakly lower semicontinuous on W (see [4]).
Moreover, one has

(ϕ′(u1, u2), (v1, v2)) =
∫ T

0 (|u̇1|
q−2u̇1, v̇1)dt +

∫ T
0 (|u̇2|

p−2u̇2, v̇2)dt

+
∫ T

0 (∇(u1,u2)
F(t, u1, u2), (v1, v2))dt

for all ui ∈ W
1,q
T , vi ∈ W

1,p
T , i = 1, 2. It is well known that the solutions of problem

(1.2) correspond to the critical points of the functional ϕ.
To proof of our main theorems, we need the following auxiliary result.

Proposition 2.1. Let q′ and p′ be such that 1
q + 1

q′ = 1 and 1
p + 1

p′ = 1. Suppose

that there exist two positive functions hi(t), i = 1, 2, which satisfy the conditions (i),
(iii)-(vi) of (H1), then we have the following estimates:

(a) 0 < h1(t) ≤ ǫ1tq−1 + c3 for any ǫ1 > 0, t ∈ R
+,

(b) 0 < h2(t) ≤ ǫ2tp−1 + c4 for any ǫ2 > 0, t ∈ R
+,

(c) h1
q′(t)

H1(t)
→ 0 as t → +∞,

(d) h2
p′ (t)

H2(t)
→ 0 as t → +∞,

(e) H1(t) → +∞ as t → +∞,
(f) H2(t) → +∞ as t → +∞.

Proof. We only need to proof the estimates (a), (c), (e), the others are similar. It
follows from (v) of (H1) that, for any ǫ1 > 0, there exists M1 > 0 such that

H1(t) ≤ ε1tq ∀t ≥ M1.

Observe that (iii) of (H1), there exists M2 > 0 such that

th1(t)− qH1(t) ≤ 0 ∀t ≥ M2,

which implies that

h1(t) ≤
qH1(t)

t
≤ qǫ1tq−1 ∀t ≥ M,

where M := max{M1, M2}. Hence we obtain

h1(t) ≤ qǫ1tq−1 + h1(M)
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for all t > 0 by (i) of (H1). Obviously, h1(t) satisfies (a) due to the definition of
h1(t) and the above inequality.

Next, we turn to (b). Recalling the property (v) of (H1) and the fact 1
q +

1
q′ = 1,

we get

0 <
h1

q′(t)

H1(t)
=

h1
q′(t)

H1
q′(t)

· H1
q′−1(t) ≤

(q

t

)q′

· H1
q′−1(t)

= qq′ ·
H1

q′−1(t)

tq′
= qq′

(

H1(t)

tq

)
1

q−1

→ 0 as t → +∞.

Therefore, estimate (c) holds.
Finally, we show that (e) is also true. By (iii) of (H1), one arrives at, for every

L > 0, there exists M3 > 0 such that

th1(t)− qH1(t) ≤ −L ∀t ≥ M3.

So, one has
θth1(θt)− qH1(θt) ≤ −L

for all |θt| ≥ M3. Then we have

d

dθ

[

H1(θt)

θq

]

=
θt · h1(θt) − qH1(θt)

θq+1
≤ −

L

θq+1
=

d

dθ

(

L

qθq

)

.

Let θ > 1, integrating both sides of the above inequality from 1 to θ, we obtain

H1(θt)

θq − H1(t) ≤
L

qθq −
L

q
=

L

q

(

1

θq − 1

)

.

Let θ → +∞ in the above inequality, and by (v) of (H1), one has

H1(t) ≥
L

q

for all t ≥ M3. By the arbitrariness of L, we have

H1(t) → +∞ as t → +∞,

which completes the proof.
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3 Proof of main results

Now, we are ready to proof our main results.
Proof of Theorem 1.1. It follows from (H1) and Sobolev’s inequality that

∣

∣

∣

∣

∫ T

0
[F(t, u1(t), u2(t)− F(t, ū1, ū2)]dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T

0
[F(t, u1(t), u2(t)− F(t, u1(t), ū2)]dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0
F(t, u1(t), ū2)− F(t, ū1 , ū2)]dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫ 1

0
(∇x2 F(t, u1(t), ū2 + s2ũ2(t)), ũ2(t))dsdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0

∫ 1

0
(∇x1

F(t, ū1 + s1ũ1(t), ū2), ũ1(t))dsdt

∣

∣

∣

∣

≤
∫ T

0
f2(t)h2(|ū2|+ |ũ2(t)|)|ũ2(t)|dt +

∫ T

0
g2(t)|ũ2(t)|dt +

∫ T

0
g1(t)|ũ1(t)|dt

+
∫ T

0
f1(t)h1(|ū1|+ |ũ1(t)|)|ũ1(t)|dt

≤
∫ T

0
f2(t)[C

∗
2 (h2(|ū1|) + h2(|ũ2(t)|)]|ũ2(t)|dt + ‖ũ2‖∞

∫ T

0
g2(t)dt

+
∫ T

0
f1(t)[C

∗
1 (h1(|ū1|) + h2(|ũ2(t)|)]|ũ1(t)|dt + ‖ũ1‖∞

∫ T

0
g1(t)dt

≤ C∗
2 [h2(|ū2|) + h2(|ũ2(t)|)]‖ũ2‖∞

∫ T

0
f2(t)dt + ‖ũ2‖∞

∫ T

0
g2(t)dt

+ C∗
1 [h1(|ū1|) + h1(|ũ1(t)|)]‖ũ1‖∞

∫ T

0
f1(t)dt + ‖ũ1‖∞

∫ T

0
g1(t)dt

≤ C∗
2

[

1

2pC∗
2 c

p
1

‖ũ2‖
p
∞ + 2pC∗

2 c
p
1 h2

p′(|ū2|)

(

∫ T

0
f2(t)dt

)p′
]

+ ‖ũ2‖∞

∫ T

0
g2(t)dt

C∗
2 h2(‖ũ2‖∞)‖ũ2‖∞

∫ T

0
f2(t)dt + ‖ũ1‖∞

∫ T

0
g1(t)dt + C∗

1 h1(‖ũ1‖∞)‖ũ1‖∞

∫ T

0
f1(t)dt

+ C∗
1

[

1

2qC∗
1 c

q
1

‖ũ1‖
q
∞ + 2qC∗

1 c
q
1h1

q′(|ū1|)

(

∫ T

0
f1(t)dt

)q′
]

≤
1

2p
‖u̇2‖

p
p + c5h2

p′(|ū2|) + c6‖u̇2‖p + C∗
2 [ǫ2‖ũ2‖

p−1
∞ + c4]‖ũ2‖∞

∫ T

0
f2(t)dt

+
1

2q
‖u̇1‖

q
q + c7h1

q′(|ū1|) + c8‖u̇1‖q + C∗
1 [ǫ1‖ũ1‖

q−1
∞ + c3]‖ũ1‖∞

∫ T

0
f1(t)dt

≤

(

1

2q
+ ǫ1c10

)

‖u̇1‖
q
q + c7h1

q′(|ū1|) + c9‖u̇1‖q +

(

1

2p
+ ǫ2c12

)

‖u̇2‖
p
p

+ c5h2
p′(|ū2|) + c11‖u̇2‖p. (3.1)
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Hence, we see that

ϕ(u1, u2) =
1

q

∫ T

0
|u̇1(t)|

qdt +
1

p

∫ T

0
|u̇2(t)|

pdt +
∫ T

0
[F(t, u1(t), u2(t))

− F(t, ū1 , ū2)]dt +
∫ T

0
F(t, ū1 , ū2)dt

≥

(

1

2q
− ǫ1c10

)

‖u̇1‖
q
q − c9‖u̇1‖q +

(

1

2p
− c12ǫ2c12

)

‖u̇2‖
p
p − c11‖u̇2‖p

+ (H1(|ū1|) + H2(|ū2|))

[

1

H1(|ū1|) + H2(|ū2|)

∫ T

0
F(t, ū1 , ū2)dt

− c7
h1

q′(|ū1|)

H1(|ū1|) + H2(|ū2|)
− c5

h2
p′(|ū2|)

H1(|ū1|) + H2(|ū2|)

]

. (3.2)

By Proposition 2.1, we observe that

h1
q′(|ū1|)

H1(|ū1|) + H2(|ū2|)
→ 0,

h2
p′(|ū2|)

H1(|ū1|) + H2(|ū2|)
→ 0 as

√

|ū1|2 + |ū2|2 → +∞.

These together with (3.2), by (H2) and Proposition 2.1, for ǫ1, ǫ2 small enough,
one has

ϕ(u1, u2) → +∞ as ‖(u1, u2)‖W → +∞.

Then, by the least action principle,, problem (1.2) has at least one solution which
minimizes the function ϕ.

Proof of Theorem 1.2. First we prove that ϕ satisfies the (PS) condition. Suppose
that {(u1n, u2n)} ⊂ W is a (PS) sequence for ϕ, that is, ϕ′(u1n, u2n) → 0 as n →
+∞ and {ϕ(u1n, u2n)} is bounded. In a way similar to the proof of Theorem 1.1,
we have
∣

∣

∣

∣

∫ T

0
(∇x1

F(t, u1n(t), u2n(t)), ũ1n(t))dt +
∫ T

0
(∇x2 F(t, u1n(t), u2n(t)), ũ2n(t))dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T

0
(∇x1

F(t, u1n(t), u2n(t)), ũ1n(t))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

0
(∇x2 F(t, u1n(t), u2n(t)), ũ2n(t))dt

∣

∣

∣

∣

≤

(

1

2q
+ ǫ1c10

)

‖u̇1‖
q
q + c7h1

q′(|ū1|) + c9‖u̇1‖q +

(

1

2p
+ ǫ2c12

)

‖u̇2‖
p
p

+ c5h2
p′(|ū2|) + c11‖u̇2‖p

for all n. Hence, we get

‖(ũ1n, ũ2n)‖W ≥ (ϕ′(u1n, u2n), (ũ1n, ũ2n))

=
∫ T

0

[

(∇x1
F(t, u1n(t), u2n(t)), ũ1n(t)) + (|u̇1n(t)|

q−2u̇1n(t), u̇1n(t))

+ (∇x2 F(t, u1n(t), u2n(t)), ũ2n(t)) + (|u̇2n(t)|
p−2u̇2n(t), u̇2n(t))

]

dt

≥

(

1 −
1

2q
− ǫ1c10

)

‖u̇1n‖
q
q − c7h1

q′(|ū1|)− c9‖u̇1‖q

+

(

1 −
1

2p
− ǫ2c12

)

‖u̇2n‖
p
p − c5h2

p′(|ū2|)− c11‖u̇2‖p (3.3)
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for large n. On the other hand, it follows from Wirtinger’s inequality that

‖(ũ1n, ũ2n)‖W = ‖ũ1n‖W
1,q
T

+ ‖ũ2n‖W
1,p
T

≤ (1 + c
q
2)

1
q ‖u̇1n‖q + (1 + c

p
2)

1
p‖u̇2n‖p

:= c13‖(u̇1n, u̇2n)‖Lq×Lp (3.4)

for all n. Combing (3.3) with (3.4), we obtain

c13‖(u̇1n, u̇2n)‖Lq×Lp ≥

(

1 −
1

2q
− ǫ1c10

)

‖u̇1n‖
q
q − c7h1

q′(|ū1|)− c9‖u̇1‖q

+

(

1 −
1

2p
− ǫ2c12

)

‖u̇2n‖
p
p − c5h2

p′(|ū2|)− c11‖u̇2‖p,

for ǫ1, ǫ2 small enough, which implies that

c14[h1
q′(|ū1n|) + h2

p′(|ū2n|) + 1] ≥ ‖u̇1n‖
q
q + ‖u̇2n‖

p
p (3.5)

for all large n. By the proof of (3.1), we also have

∫ T

0
[F(t, u1n(t), u2n(t)) − F(t, ū1n , ū2n)]dt

≤

(

1

2q
+ ǫ1c10

)

‖u̇1‖
q
q + c7h1

q′(|ū1|) + c9‖u̇1‖q +

(

1

2p
+ ǫ2c12

)

‖u̇2‖
p
p

+ c5h2
p′(|ū2|) + c11‖u̇2‖p. (3.6)

Thus, by (3.5), (3.6), Proposition 2.1 and (H3), one has

ϕ(u1n, u2n) =
1

q

∫ T

0
|u̇1n|

qdt +
1

p

∫ T

0
|u̇2n|

pdt

+
∫ T

0
[F(t, u1n(t), u2n(t))− F(t, ū1n , ū2n)]dt +

∫ T

0
F(t, ū1n , ū2n)dt

≤

(

3

2q
+ ǫ1c10

)

‖u̇1n‖
q
q +

(

3

2p
+ ǫ2c12

)

‖u̇2n‖
p
p + c9‖u̇1n‖q

+ c11‖u̇2n‖p + c7h1
q′(|ū1n|) + c5h2

p′(|ū2n|) +
∫ T

0
F(t, ū1n , ū2n)dt

≤ c15

[

h1
q′(|ū1n|) + h2

p′(|ū2n|) + 1
]

+ c16

[

h1
q′(|ū1n|)

+h2
p′(|ū2n|) + 1

]
1
q
+ C17

[

h1
q′(|ū1n|) + h2

p′(|ū2n|) + 1
]

1
p

+ c7h1
q′(|ū1n|) + c5h2

p′(|ū2n|) +
∫ T

0
F(t, ū1n , ū2n)dt

≤ c18h1
q′(|ū1n|) + c19h2

p′(|ū2n|) + c20h1

q′

q (|ū1n|) + c21h2

p′

q (|ū2n|)

+ c22h1

q′

p (|ū1n|) + c23h2

p′

p (|ū2n|) + c24 +
∫ T

0
F(t, ū1n , ū2n)dt
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= (H1(|ū1n|) + H2(|ū2n|))

[

c18h1
q′(|ū1n|)

H1(|ū1n|) + H2(|ū2n|)
+

c19h2
p′(|ū2n|)

H1(|ū1n|) + H2(|ū2n|)

+
c20h1

q′

q (|ū1n|)

H1(|ū1n|) + H2(|ū2n|)
+

c21h2

p′

q (|ū2n|)

H1(|ū1n|) + H2(|ū2n|)

+
c22h1

q′

p (|ū1n|)

H1(|ū1n|) + H2(|ū2n|)
+

c23h2

p′

p (|ū2n|)

H1(|ū1n|) + H2(|ū2n|)

+
c24

H1(|ū1n|) + H2(|ū2n|)
+

∫ T
0 F(t, ū1n , ū2n)dt

H1(|ū1n|) + H2(|ū2n|)

]

,

note p, q > 1, which implies that

ϕ(u1n, u2n) → −∞ as
√

|ū1n|2 + |ū2n|2 → +∞. (3.7)

This contradicts the boundedness of {ϕ(u1n, u2n)}. So, {|ū1n|
2 + |ū2n|

2} is bounded,
by (3.5), we know {(u1n, u2n)} is bounded. Using the same arguments of [4], we
conclude that the (PS) condition is satisfied.

Let W̃ := W̃
1,q
T × W̃

1,p
T be the subspace of W given by

W̃ : {(u1, u2) ∈ W| (ū1, ū2) = (0, 0)}.

Then, for (u1, u2) ∈ W̃, we have

ϕ(u1, u2) → +∞ as ‖(u1, u2)‖W → +∞. (3.8)

Indeed, for D1, D2 > 0 and ǫ1, ǫ2 small enough, by the proof of (3.6), we get

ϕ(u1, u2) =
1

q

∫ T

0
|u̇1(t)|

qdt +
1

p

∫ T

0
|u̇2(t)|

pdt

+
∫ T

0
[F(t, u1(t), u2(t))− F(t, D1, D2)]dt +

∫ T

0
F(t, D1, D2)dt

≥

(

1

2q
− ǫ1c10

)

‖u̇1‖
q
q − c7h1

q′(D1)− c9‖u̇1‖q +

(

1

2p
− ǫ2c12

)

‖u̇2‖
p
p

− c5h2
p′(D2)− c11‖u̇2‖p +

∫ T

0
F(t, D1, D2)dt

≥ c25‖u̇1‖
q
q − c9‖u̇1‖q − c26‖u̇2‖

p
p − c11‖u̇2‖p − c27

for all (u1, u2) ∈ W̃. By the Wirtinger’s inequality, the norm

‖(u1, u2)‖ = ‖(u̇1, u̇2)‖Lq×Lp = ‖u̇1‖q + ‖u̇2‖p

is an equivalent norm on W̃. Hence, (3.8) follows from the equivalence and the
above inequality.

On the other hand, by (H3) and Proposition 2.1, we have

ϕ(u1, u2) → −∞ as |(u1, u2)| → +∞ in R
N × R

N.

Then, by Saddle Point Theorem [7], problem (1.2) has at least one solution in W,
and the proof hereby is complete.



New existence results on periodic solutions Hamiltonian systems 165

References

[1] Yongkun Li, Tianwei Zhang - Infinitely many periodic solutions for second-order
(p, q)–Laplacian differential systems, Nonlinear Analysis, vol. 74 (2011) 5215-
5221.

[2] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems,
Springer-Verlag, New York, 1989.
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