Homoclinic solutions for second order Hamiltonian systems with small forcing terms*

Dong-Lun Wu Xing-Ping Wu ${ }^{\dagger} \quad$ Chun-Lei Tang

Abstract

The existence of homoclinic solutions is obtained for a class of nonautonomous second order Hamiltonian systems $\ddot{u}(t)+\nabla V(t, u(t))=f(t)$ as the limit of the $2 k T$-periodic solutions which are obtained by the Mountain Pass theorem, where $V(t, x)=-K(t, x)+W(t, x)$ is T-periodic with respect to $t, T>0$, and $W(t, x)$ satisfies the superquadratic condition: $W(t, x) /|x|^{2} \rightarrow$ $+\infty$ as $|x| \rightarrow \infty$ uniformly in t, which needs not to satisfy the global Ambro-setti-Rabinowitz condition.

1 Introduction and main results

In this paper, we put our attention to the existence of homoclinic orbits for the second order Hamiltonian system

$$
\begin{equation*}
\ddot{u}(t)+\nabla V(t, u(t))=f(t), \quad \forall t \in R, \tag{1}
\end{equation*}
$$

where $f: R \rightarrow R^{N}$ is a continuous, bounded function. As usual, we say that a solution $u(t)$ of problem (1) is nontrivial homoclinic(to 0) if $u \neq 0, u(t) \rightarrow 0$ and $\dot{u}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. Here and subsequently, $\nabla V(t, x)$ denotes the gradient with respect to the x variable, and $(\cdot, \cdot): R^{N} \times R^{N} \rightarrow R$ denotes the standard inner product in R^{N} and $|\cdot|$ is the induced norm.

[^0]The existence of homoclinic orbits is a very important problem in the theory of Hamiltonian systems. It has been studied by many authors (see[1-13]). In 1990, Rabinowitz in [10] showed the existence of homoclinic orbits for problem (1) as the limit of the $2 k T$-periodic solutions of problem (1) when $f=0$ and the function V considered by the author is of the form

$$
\begin{equation*}
V(t, x)=-\frac{1}{2}(L(t) x, x)+W(t, x) \tag{2}
\end{equation*}
$$

where L is a continuous T-periodic positive definite symmetric matrix valued function for all $t \in[0, T], W$ is T-periodic and satisfies the so-called global Ambro-setti-Rabinowitz condition, that is,
$\left(W_{1}\right)$ there exists a constant $\lambda>2$ such that

$$
0<\lambda W(t, x) \leq(x, \nabla W(t, x))
$$

for every $t \in R$ and $x \in R^{N} \backslash\{0\}$. As we know, condition $\left(W_{1}\right)$ implies that

$$
\left(W_{1}^{\prime}\right) W(t, x) /|x|^{2} \rightarrow+\infty \text { as }|x| \rightarrow \infty \text { uniformly in } t
$$

which is weaker than $\left(W_{1}\right)$. Then, by replacing $\left(W_{1}\right)$ with $\left(W_{1}^{\prime}\right)$, the authors in [8] obtained the existence of homoclinic orbits for problem (1) while $f=0$ and V is of the form (2). Via the same method of Rabinowitz in [10], Izydorek and Janczewska in [5] proved problem (1) possesses a nontrivial homoclinic solution when $V(t, x)=-K(t, x)+W(t, x)$ rather than the form (2), and K is assumed to be periodic in t, satisfying the pinching condition $b_{1}|x|^{2} \geq K(t, x) \geq b_{2}|x|^{2}$. After then, by weakening the pinching condition, Tang and Xiao in [12] generalized the results of [5], which are the following theorems.

Theorem $\mathbf{A}([12])$. Suppose that V and f satisfy $\left(W_{1}\right)$ and the following conditions
(V) $V(t, x)=-K(t, x)+W(t, x)$, where $K, W: R \times R^{N} \rightarrow R$ are C^{1}-maps, T-periodic with respect to $t, T>0$,
$\left(K_{1}\right)$ there are constants $b>0$ and $\gamma \in(1,2]$ such that

$$
K(t, 0)=0, \quad K(t, x) \geq b|x|^{\gamma}
$$

for all $(t, x) \in R \times R^{N}$,
$\left(K_{2}\right)$ there is a constant $\theta \in[2, \lambda)$ such that

$$
(x, \nabla K(t, x)) \leq \theta K(t, x)
$$

for all $(t, x) \in R \times R^{N}$,
$\left(W_{2}\right) \nabla W(t, x)=o(|x|)$ as $x \rightarrow 0$ uniformly with respect to t,
(f)

$$
0<\int_{R}|f(t)|^{2} d t<2\left(\min \left\{\frac{v}{2}, b v^{\gamma-1}-m v^{\lambda-1}\right\}\right)^{2}
$$

where $m=\sup \left\{W(t, x)\left|t \in[0, T], x \in R^{N},|x|=1\right\}\right.$, and $v \in(0,1]$ such that

$$
b \nu^{\gamma-1}-m v^{\lambda-1}=\max _{x \in[0,1]}\left(b x^{\gamma-1}-m x^{\lambda-1}\right) .
$$

Then problem (1) possesses a nontrivial homoclinic solution.
When $f=0$, under one stronger condition on K, they also proved system (1) possesses a nontrivial homoclinic solution, which is the following theorem

Theorem B([12]). Suppose that $f=0$ and V satisfies $(V),\left(K_{1}\right),\left(W_{1}\right),\left(W_{2}\right)$ and the following condition
$\left(K_{2}^{\prime}\right)$ there is a constant $\theta \in[2, \lambda)$ such that

$$
K(t, x) \leq(x, \nabla K(t, x)) \leq \theta K(t, x)
$$

for all $(t, x) \in R \times R^{N}$.
Then problem (1) possesses a nontrivial homoclinic solution.
Motivated by the papers above, in this paper, we will obtain the homoclinic solution of problem (1) by using the more general condition $\left(W_{1}^{\prime}\right)$ rather than $\left(W_{1}\right)$. The main results are the following theorems.

Theorem 1.1. Suppose that $f \neq 0$ and V satisfies $(V),\left(K_{1}\right),\left(W_{1}^{\prime}\right)$ and the following conditions
$\left(K_{2}^{\prime \prime}\right)(x, \nabla K(t, x)) \leq 2 K(t, x)$ for all $(t, x) \in R \times R^{N}$,
$\left(W_{2}^{\prime}\right) \nabla W(t, x)=o\left(|x|^{\gamma-1}\right)$ as $x \rightarrow 0$ uniformly with respect to t,
$\left(W_{3}\right)$ there are constants $\beta \geq 0$ and $d_{1}>0$ such that

$$
|W(t, x)| \leq d_{1}|x|^{\beta}
$$

for all $(t, x) \in R \times R^{N}$,
$\left(W_{4}\right)$ there exist constants $\mu>\max \{\beta-\gamma, 1\}, d_{2}>0$ and function $g \in L^{1}\left(R, R^{+}\right)$such that

$$
(x, \nabla W(t, x))-2 W(t, x) \geq d_{2}|x|^{\mu}-g(t)
$$

for all $(t, x) \in R \times R^{N}$.
Then there is a constant $\delta>0$ such that, for any f satisfying

$$
\begin{equation*}
\max \left\{\int_{R}|f(t)|^{2} d t, \int_{R}|f(t)|^{\mu /(\mu-1)} d t\right\}<\delta \tag{3}
\end{equation*}
$$

system (1) possesses at least one nontrivial homoclinic solution.

Theorem 1.2. Suppose that $f=0$ and V satisfies $(V),\left(K_{1}\right),\left(W_{1}^{\prime}\right),\left(W_{2}^{\prime}\right),\left(W_{3}\right)$ and the following conditions
$\left(K_{2}^{\prime \prime \prime}\right)$ there is a constant $2 \geq \rho>0$ such that

$$
\rho K(t, x) \leq(x, \nabla K(t, x)) \leq 2 K(t, x)
$$

for all $(t, x) \in R \times R^{N}$,
$\left(W_{4}^{\prime}\right)$ there exist constants $\mu>\beta-\gamma, d_{2}>0$ and function $g \in L^{1}\left(R, R^{+}\right)$such that

$$
(x, \nabla W(t, x))-2 W(t, x) \geq d_{2}|x|^{\mu}-g(t)
$$

for all $(t, x) \in R \times R^{N}$.
Then problem (1) possesses a nontrivial homoclinic solution.

Remark 1.1. Condition $\left(K_{2}^{\prime \prime \prime}\right)$ implies $K(t, 0)=0$ and $\left(K_{2}^{\prime \prime}\right)$.
Remark 1.2. There are functions K and W which satisfy our Theorem 1.1 and Theorem 1.2 without satisfying the corresponding assumptions in [5, 12]. For example, let

$$
K(t, x)=|x|^{\frac{11}{6}}+|x|^{\frac{9}{5}}, \quad W(t, x)= \begin{cases}|x|^{2} \ln |x|^{2} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

where $t \in R, x \in R^{N}$, then $V(t, x)=-K(t, x)+W(t, x)$ cannot be represented as the form $V(t, x)=-K_{0}(t, x)+W_{0}(t, x)$ with $K_{0}(t, x)$ and $W_{0}(t, x)$ satisfying Theorem A or Theorem B because W satisfies $\left(W_{1}^{\prime}\right)$ and does not satisfy $\left(W_{1}\right)$ while V satisfies our conditions with $b=\frac{1}{2}, \gamma=\rho=\frac{9}{5}, \beta=\frac{11}{4}, d_{1}=\mu=2$, $d_{2}=1, g(t)=0$.

2 Proof of Theorems

For each $k \in N$, let $L_{2 k T}^{2}\left(R, R^{N}\right)$ denote the Hilbert space of $2 k T$-periodic functions on R with values in R^{N} under the norm

$$
\|u\|_{L_{2 k T}^{2}\left(R, R^{N}\right)}:=\left(\int_{-k T}^{k T}|u(t)|^{2} d t\right)^{1 / 2}
$$

and $L_{2 k T}^{\infty}\left(R, R^{N}\right)$ be a space of $2 k T$-periodic essentially bounded measurable functions from R into R^{N} under the norm

$$
\|u\|_{L_{2 k T}^{\infty}\left(R, R^{N}\right)}:=\operatorname{esssup}\{|u(t)|: t \in[-k T, k T]\}
$$

In order to obtain a homoclinic solution of problem (1), we consider a sequence of systems of differential equations:

$$
\begin{equation*}
\ddot{u}(t)+\nabla V(t, u(t))=f_{k}(t) \tag{4}
\end{equation*}
$$

where, for each $k \in N, f_{k}: R \rightarrow R^{N}$ is a $2 k T$-periodic extension of restriction of f to the interval $[-k T, k T]$.

For each $k \in N$, let $E_{k}:=W_{2 k T}^{1,2}\left(R, R^{N}\right)$ denote the Hilbert space of $2 k T$ periodic function from R to R^{N} under the norm

$$
\|u\|_{E_{k}}:=\left(\int_{-k T}^{k T}\left(|\dot{u}(t)|^{2}+|u(t)|^{2}\right) d t\right)^{1 / 2}
$$

Moreover, let $\eta_{k}: E_{k} \rightarrow[0,+\infty)$ be given by

$$
\begin{equation*}
\eta_{k}(u):=\left(\int_{-k T}^{k T}\left(|\dot{u}(t)|^{2}+2 K(t, u(t)) d t\right)^{1 / 2}\right. \tag{5}
\end{equation*}
$$

and $I_{k}: R \rightarrow R^{N}$ be the corresponding functional of (4) defined by

$$
\begin{equation*}
I_{k}(u)=\int_{-k T}^{k T}\left(\frac{1}{2}|\dot{u}(t)|^{2}+K(t, u(t))-W(t, u(t))+\left(f_{k}(t), u(t)\right)\right) d t \tag{6}
\end{equation*}
$$

then one can easily check that $I_{k} \in C^{1}\left(E_{k}, R\right)$ and

$$
\begin{equation*}
\left\langle I_{k}^{\prime}(u), v\right\rangle=\int_{-k T}^{k T}\left((\dot{u}(t), \dot{v}(t))-(\nabla V(t, u(t)), v(t))+\left(f_{k}(t), v(t)\right)\right) d t . \tag{7}
\end{equation*}
$$

It follows from (5) and (6) that

$$
\begin{equation*}
I_{k}(u)=\frac{1}{2} \eta_{k}^{2}(u)+\int_{-k T}^{k T}\left(-W(t, u(t))+\left(f_{k}(t), u(t)\right)\right) d t . \tag{8}
\end{equation*}
$$

Now, we prove the existence of a homoclinic solution of problem (1) as the limit of the $2 k T$-periodic solutions of system (4) which are obtained via the Mountain Pass theorem. We have divided the proof of Theorem 1.1 into a sequence of lemmas. We can obtain a conclusion directly from the estimation made in [12], which is our first lemma.

Lemma 2.1. There is a positive constant C which is independent of k such that for each $k \in N$ and $u \in E_{k}$ the following inequality holds

$$
\begin{equation*}
\|u\|_{L_{2 k T}^{\infty}\left(R, R^{N}\right)} \leq C\|u\|_{E_{k}} \tag{9}
\end{equation*}
$$

Lemma 2.2. Suppose that $\left(K_{2}^{\prime \prime}\right)$ holds. Then we have

$$
\begin{equation*}
K(t, x) \leq K\left(t, \frac{x}{|x|}\right)|x|^{2} \tag{10}
\end{equation*}
$$

for all $t \in[0, T]$ and $|x| \geq 1$.
Proof. Set $f(s)=s^{-2} K(t, s \xi)$. By $\left(K_{2}^{\prime \prime}\right)$, we have

$$
\begin{aligned}
f^{\prime}(s) & =-2 s^{-3} K(t, s \tilde{\xi})+s^{-2}(\nabla K(t, s \tilde{\xi}), \xi) \\
& =s^{-3}(-2 K(t, s \xi)+(\nabla K(t, s \xi), s \xi)) \\
& \leq 0
\end{aligned}
$$

then if $s \geq 1$ we have $f(s) \leq f(1)$, that is,

$$
s^{-2} K(t, s \xi) \leq K(t, \xi)
$$

set $s=|x|$ and $\xi=x /|x|$, we obtain our inequality.

By (V) we can set

$$
M:=\sup \left\{K(t, x)\left|t \in[0, T], x \in R^{N},|x| \leq 1\right\}\right.
$$

then from Lemma 2.2 we have

$$
\begin{equation*}
K(t, x) \leq M\left(|x|^{2}+1\right) \tag{11}
\end{equation*}
$$

for all $(t, x) \in R \times R^{N}$.
Lemma 2.3. Suppose that $f \neq 0$ and V satisfies $(V),\left(K_{1}\right),\left(K_{2}^{\prime \prime}\right),\left(W_{1}^{\prime}\right),\left(W_{2}^{\prime}\right),\left(W_{3}\right)$ and $\left(W_{4}\right)$, then there is a constant $\delta>0$ such that, for any f satisfying (3), system (4) possesses a $2 k T$-periodic solution $u_{k} \in E_{k}$ for every $k \in N$.

Proof. It is known that the Mountain Pass theorem holds when the usual (PS) condition is replaced by condition (C). Then we apply the Mountain Pass theorem to obtain the critical point of I_{k} under condition (C).

First of all, we prove a property of W. It follows from $\left(W_{2}^{\prime}\right)$ that, for any $\varepsilon>0$, there exists $\sigma>0$ such that

$$
|\nabla W(t, x)| \leq \gamma \varepsilon|x|^{\gamma-1}, \quad|x| \leq \sigma, \forall t \in[0, T],
$$

which implies that

$$
\begin{align*}
|W(t, x)| & =\left|\int_{0}^{1}(\nabla W(t, s x), x) d s\right| \\
& \leq \int_{0}^{1}|\nabla W(t, s x)||x| d s \\
& \leq \int_{0}^{1} \gamma \varepsilon|s x|^{\gamma-1}|x| d s \\
& =\varepsilon|x|^{\gamma} . \tag{12}
\end{align*}
$$

We can choose $\varepsilon=\frac{1}{2} b$, then there is a $1 \geq \sigma_{0}>0$ such that (12) holds when $|x| \leq \sigma_{0}$ for all $t \in[0, T]$.

Our proof involves three steps.
Step 1: I_{k} satisfies condition (C). We can choose $\delta>0$ such that $\delta<\frac{\sigma_{0}}{2 C} \min \{1, b\}$. Assumption $\left(W_{3}\right)$ yields $W(t, 0)=0$ which means $I_{k}(0)=0$. Then we show that I_{k} satisfies the (C) condition. Assume that $\left\{u_{j}\right\}_{j \in N} \subset E_{k}$ is a sequence such that $\left\{I_{k}\left(u_{j}\right)\right\}_{j \in N}$ is bounded and $\left\|I_{k}^{\prime}\left(u_{j}\right)\right\| \rightarrow 0$ as $j \rightarrow \infty$. Then there exists a constant $C_{k}>0$ such that

$$
\begin{equation*}
I_{k}\left(u_{j}\right) \leq C_{k}, \quad\left\|I_{k}^{\prime}\left(u_{j}\right)\right\|\left(1+\left\|u_{j}\right\|_{E_{k}}\right) \leq C_{k} \tag{13}
\end{equation*}
$$

Then $\left\{u_{j}\right\}$ is bounded. If not, passing to a subsequence if necessary, we can sup-
pose that $\left\|u_{j}\right\|_{E_{k}} \rightarrow \infty$ as $j \rightarrow \infty$. By (13), ($K_{2}^{\prime \prime}$), (W_{4}) and (3) we have

$$
\begin{align*}
3 C_{k} & \geq 2 I_{k}\left(u_{j}\right)+\left\|I_{k}^{\prime}\left(u_{j}\right)\right\|\left(1+\left\|u_{j}\right\|_{E_{k}}\right) \\
& \geq 2 I_{k}\left(u_{j}\right)-\left\langle I_{k}^{\prime}\left(u_{j}\right), u_{j}\right\rangle \\
& \geq \int_{-k T}^{k T}\left(\left(\nabla W\left(t, u_{j}(t)\right), u_{j}(t)\right)-2 W\left(t, u_{j}(t)\right)\right)+\int_{-k T}^{k T}\left(f_{k}(t), u_{j}(t)\right) d t \\
& \geq d_{2} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t-\int_{-k T}^{k T} g(t) d t-\delta\left(\int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t\right)^{1 / \mu} \\
& \geq d_{2} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t-\delta\left(\int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t\right)^{1 / \mu}-G \tag{14}
\end{align*}
$$

for some $G>0$. Since $\mu>1$, it follows from (14) that, there is $D_{k}>0$ such that

$$
\begin{equation*}
\int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t \leq D_{k} . \tag{15}
\end{equation*}
$$

Moreover, from $\left(W_{3}\right)$ and $\left(W_{4}\right)$ we can conclude $\beta \geq \mu$, then by (6), (3), (W_{3}), (15) and Lemma 2.1 we obtain

$$
\begin{align*}
\frac{1}{2} \eta_{k}^{2}\left(u_{j}\right) & \leq I_{k}\left(u_{j}\right)+\int_{-k T}^{k T} W\left(t, u_{j}(t)\right) d t-\int_{-k T}^{k T}\left(f_{k}(t), u_{j}(t)\right) d t \\
& \leq C_{k}+d_{1} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\beta} d t+\delta\left(\int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t\right)^{1 / \mu} \\
& \leq C_{k}+\delta D_{k}^{1 / \mu}+d_{1} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\beta} d t \\
& \leq C_{k}+\delta D_{k}^{1 / \mu}+d_{1} C^{\beta-\mu}\left\|u_{j}\right\|_{E_{k}}^{\beta-\mu} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\mu} d t \\
& \leq C_{k}+\delta D_{k}^{1 / \mu}+d_{1} C^{\beta-\mu} D_{k}\left\|u_{j}\right\|_{E_{k}}^{\beta-\mu} . \tag{16}
\end{align*}
$$

Since $\mu>\beta-\gamma$, it follows from (16) that there is a constant $\gamma_{0} \in(\beta-\mu, \gamma)$ such that

$$
\begin{equation*}
\frac{\eta_{k}^{2}\left(u_{j}\right)}{\left\|u_{j}\right\|_{E_{k}}^{\gamma_{0}}} \rightarrow 0 \tag{17}
\end{equation*}
$$

as $j \rightarrow \infty$. When j is big enough, we have $\left\|u_{j}\right\|_{E_{k}} \geq 1$, by $\left(K_{1}\right)$ and Lemma 2.1, we get

$$
\begin{aligned}
\eta_{k}^{2}\left(u_{j}\right) & \geq \int_{-k T}^{k T}\left|\dot{u}_{j}(t)\right|^{2} d t+2 b \int_{-k T}^{k T}\left|u_{j}(t)\right|^{\gamma} d t \\
& \geq \int_{-k T}^{k T}\left|\dot{u}_{j}(t)\right|^{2} d t+2 b C^{\gamma-2}\left\|u_{j}\right\|_{E_{k}}^{\gamma-2} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{2} d t \\
& \geq \min \left\{1,2 b C^{\gamma-2}\right\}\left(\int_{-k T}^{k T}\left|\dot{u}_{j}(t)\right|^{2} d t+\left\|u_{j}\right\|_{E_{k}}^{\gamma-2} \int_{-k T}^{k T}\left|u_{j}(t)\right|^{2} d t\right) \\
& \geq \min \left\{1,2 b C^{\gamma-2}\right\}\left\|u_{j}\right\|_{E_{k^{\prime}}}^{\gamma}
\end{aligned}
$$

which implies that

$$
\frac{\eta_{k}^{2}\left(u_{j}\right)}{\left\|u_{j}\right\|_{E_{k}}^{\gamma_{0}}} \rightarrow \infty
$$

as $j \rightarrow \infty$. This is a contradiction. Then $\left\{u_{j}\right\}_{j \in N}$ is bounded in E_{k}. By a standard argument, we see that $\left\{u_{j}\right\}_{j \in N}$ has a convergent subsequence in E_{k}. Hence I_{k} satisfies the (C) condition.

Step 2: Now, we show that there exist constants $\varrho, \alpha>0$ independent of k such that $I_{k} \geq \alpha$ on $\partial B_{\varrho}(0)=\left\{u \in E_{k} \mid\|u\|_{E_{k}}=\varrho\right\}$. Set

$$
\begin{equation*}
\varrho=\frac{\sigma_{0}}{C}, \quad \alpha=\frac{\frac{1}{2} \min \{1, b\} \sigma_{0}^{2}-C \delta \sigma_{0}}{C^{2}}>0 \tag{18}
\end{equation*}
$$

which implies $0<\|u\|_{L_{2 k T}^{\infty}} \leq \sigma_{0} \leq 1$. It follows from (8), (K_{1}), (12) and (3) that

$$
\begin{align*}
I_{k}(u)= & \frac{1}{2} \eta_{k}^{2}(u)+\int_{-k T}^{k T}\left(-W(t, u(t))+\left(f_{k}(t), u(t)\right)\right) d t \\
\geq & \frac{1}{2} \int_{-k T}^{k T}|\dot{u}(t)|^{2} d t+b \int_{-k T}^{k T}|u(t)|^{\gamma} d t-\frac{1}{2} b \int_{-k T}^{k T}|u(t)|^{\gamma} d t \\
& \quad+\int_{-k T}^{k T}\left(f_{k}(t), u(t)\right) d t \\
\geq & \frac{1}{2} \int_{-k T}^{k T}|\dot{u}(t)|^{2} d t+\frac{1}{2} b \int_{-k T}^{k T}|u(t)|^{\gamma} d t-\delta\|u\|_{E_{k}} \\
\geq & \frac{1}{2} \min \{1, b\}\left(\int_{-k T}^{k T}|\dot{u}(t)|^{2} d t+\int_{-k T}^{k T}|u(t)|^{\gamma} d t\right)-\delta\|u\|_{E_{k}} \\
\geq & \frac{1}{2} \min \{1, b\}\|u\|_{E_{k}}^{2}-\delta\|u\|_{E_{k}} . \tag{19}
\end{align*}
$$

By the definition of ϱ and α, if $\|u\|_{E_{k}}=\varrho$, (19) implies $I_{k}(u) \geq \alpha$.
Step 3: We only need to prove that for each $k \in N$ there is $e_{k} \in E_{k}$ such that $\left\|e_{k}\right\|_{E_{k}}>\varrho$ and $I_{k}\left(e_{k}\right) \leq 0$. By (8) and (11), for every $r \in R \backslash\{0\}$ and $u \in E_{k} \backslash\{0\}$, the following inequality holds

$$
\begin{align*}
I_{k}(r u) \leq & \left(\frac{1}{2} \int_{-k T}^{k T}|\dot{u}(t)|^{2} d t+M \int_{-k T}^{k T}|u(t)|^{2} d t\right)|r|^{2}-\int_{-k T}^{k T} W(t, r u) d t \\
& +|r| \delta\|u\|_{E_{k}}+2 k T M . \tag{20}
\end{align*}
$$

Fix $Q \in C_{0}^{\infty}(-T, T) \backslash\{0\} \subset E_{1}$, then there exists $t_{0} \in(-T, T)$ such that $Q\left(t_{0}\right) \neq 0$, which implies that there are $\delta_{0}>0, L_{1}>0$ such that

$$
\begin{equation*}
|Q(t)| \geq L_{1} \tag{21}
\end{equation*}
$$

for all $\left|t-t_{0}\right|<\delta_{0}$. By $\left(W_{1}^{\prime}\right)$ and $\left(W_{3}\right)$, we can conclude, there exists $L_{2}>0$ such that

$$
\begin{equation*}
W(t, x) \geq-L_{2} \tag{22}
\end{equation*}
$$

for all $(t, x) \in R \times R^{N}$. Moreover, $\left(W_{1}^{\prime}\right)$ also implies that for every $\zeta>0$, there exists $L_{3}>0$ such that

$$
\begin{equation*}
\frac{W(t, x)}{|x|^{2}} \geq \zeta \tag{23}
\end{equation*}
$$

for all $|x| \geq L_{3}$ uniformly in $t \in R$. When $r \geq L_{3} / L_{1}$, combining (21), (22), (23) we have

$$
\begin{aligned}
\int_{-T}^{T} \frac{W(t, r Q)}{|r|^{2}} d t & =\int_{-T}^{t_{0}-\delta_{0}} \frac{W(t, r Q)}{|r|^{2}} d t+\int_{t_{0}-\delta_{0}}^{t_{0}+\delta_{0}} \frac{W(t, r Q)}{|r|^{2}} d t+\int_{t_{0}+\delta_{0}}^{T} \frac{W(t, r Q)}{|r|^{2}} d t \\
& \geq-\frac{2 L_{2}\left(T-\delta_{0}\right)}{|r|^{2}}+\int_{t_{0}-\delta_{0}}^{t_{0}+\delta_{0}} \frac{W(t, r Q)}{|r Q|^{2}}|Q|^{2} d t \\
& \geq-\frac{2 L_{2} L_{1}^{2}\left(T-\delta_{0}\right)}{L_{3}^{2}}+2 \delta_{0} L_{1}^{2} \zeta
\end{aligned}
$$

then by the arbitrariness of $\zeta>0$ we obtain

$$
\begin{equation*}
\int_{-T}^{T} \frac{W(t, r Q)}{|r|^{2}} d t \rightarrow+\infty \quad \text { as } \quad|r| \rightarrow+\infty \tag{24}
\end{equation*}
$$

Hence (20) implies that there exists $r_{0} \in R \backslash\{0\}$ such that $\left\|r_{0} Q\right\|_{E_{1}}>\varrho$ and $I_{1}\left(r_{0} Q\right)<0$. Set $e_{1}(t)=r_{0} Q(t)$ and $e_{k}(t)=e_{1}(t)$. Then $e_{k} \in E_{k},\left\|e_{k}\right\|_{E_{k}}=$ $\left\|e_{1}\right\|_{E_{1}}>\varrho$ and $I_{k}\left(e_{k}\right)=I_{1}\left(e_{1}\right)<0$ for each $k \in N$. By the Mountain Pass theorem, I_{k} possesses a critical value $c_{k} \geq \alpha$ given by

$$
\begin{equation*}
c_{k}=\inf _{g \in \Gamma_{k}} \max _{s \in[0,1]} I_{k}(g(s)), \tag{25}
\end{equation*}
$$

where

$$
\Gamma_{k}=\left\{g \in C\left([0,1], E_{k}\right) \mid g(0)=0, g(1)=e_{k}\right\}
$$

Hence, for each $k \in N$, there exists $u_{k} \in E_{k}$ such that

$$
\begin{equation*}
I_{k}\left(u_{k}\right)=c_{k}, \quad I_{k}^{\prime}\left(u_{k}\right)=0 \tag{26}
\end{equation*}
$$

Then the function u_{k} is a desired classical $2 k T$-periodic solution of system (4).
Lemma 2.4. Let $u_{k} \in E_{k}$ be the solution of system (4) which satisfies (26) for all $k \in N$. Then there is a constant $M_{1}>0$ independent of k such that

$$
\begin{equation*}
\left\|u_{k}\right\|_{E_{k}} \leq M_{1} \tag{27}
\end{equation*}
$$

for all $k \in N$.
Proof. For each $k \in N$, let $g_{k}:[0,1] \rightarrow E_{k}$ be a curve given by $g_{k}(s)=s e_{k}$ where e_{k} is defined in Lemma 2.3. Then $g_{k} \in \Gamma_{k}$ and $I_{k}\left(g_{k}(s)\right)=I_{1}\left(g_{1}(s)\right)$ for all $k \in N$ and $s \in[0,1]$. Therefore, by (25) we have

$$
\begin{equation*}
c_{k} \leq \max _{s \in[0,1]} I_{1}\left(g_{1}(s)\right) \equiv M_{0} \tag{28}
\end{equation*}
$$

where M_{0} is independent of $k \in N$, then from (26) we obtain

$$
\begin{equation*}
I_{k}\left(u_{k}\right) \leq M_{0}, \quad\left\|I_{k}^{\prime}\left(u_{k}\right)\right\|\left(1+\left\|u_{k}\right\|_{E_{k}}\right)=0 \tag{29}
\end{equation*}
$$

In a way similar to proof of Step 1 in Lemma 2.3, there exists $M_{1}>0$ independent of k such that

$$
\left\|u_{k}\right\|_{E_{k}} \leq M_{1}
$$

for all $k \in N$, which completes the proof.
Lemma 2.5. Let $u_{k} \in E_{k}$ be the solution of system (4) which satisfies (27) for $k \in N$. Then there exists a subsequence $\left\{u_{k_{j}}\right\}$ of $\left\{u_{k}\right\}_{k \in N}$ convergent to u_{0} in $C_{l o c}^{1}\left(R, R^{N}\right)$.

Proof. In order to finish the proof via the Arzelà-Ascoli theorem, we divide our proof into two steps.

First, we show that $\left\{\dot{u}_{k}\right\}_{k \in N}$ and $\left\{\ddot{u}_{k}\right\}_{k \in N}$ are uniformly bounded sequence. By (27), we know that $\left\{u_{k}\right\}_{k \in N}$ is a uniformly bounded sequence, and combining Lemma 2.1 we get

$$
\begin{equation*}
\left\|u_{k}\right\|_{L_{2 k T}^{\infty}} \leq C\left\|u_{k}\right\|_{E_{k}} \leq C M_{1} \tag{30}
\end{equation*}
$$

Since u_{k} is a $2 k T$-periodic solution of system (4), it follows that

$$
\begin{equation*}
\ddot{u}_{k}(t)=-\nabla V\left(t, u_{k}(t)\right)+f_{k}(t) \tag{31}
\end{equation*}
$$

for every $t \in[-k T, k T)$, then we have

$$
\begin{aligned}
\left|\ddot{u}_{k}(t)\right| & \leq\left|\nabla V\left(t, u_{k}(t)\right)\right|+\left|f_{k}(t)\right|=\left|\nabla V\left(t, u_{k}(t)\right)\right|+|f(t)| \\
& \leq\left|\nabla V\left(t, u_{k}(t)\right)\right|+\sup _{t \in R}|f(t)|
\end{aligned}
$$

for $k \in N$. By (30) and (V) we conclude that there is a constant $M_{2}>0$ independent of k such that

$$
\begin{equation*}
\left\|\ddot{u}_{k}\right\|_{L_{2 k T}} \leq M_{2} . \tag{32}
\end{equation*}
$$

Finally, from the Mean Value Theorem, for each $k \in N$ and $t \in R$, there is $t_{k} \in[t-1, t]$ such that

$$
\dot{u}_{k}\left(t_{k}\right)=\int_{t-1}^{t} \dot{u}_{k}(s) d s=u_{k}(t)-u_{k}(t-1)
$$

and

$$
\dot{u}_{k}(t)=\int_{t_{k}}^{t} \ddot{u}_{k}(s) d s+\dot{u}_{k}\left(t_{k}\right)
$$

hence

$$
\begin{aligned}
\left|\dot{u}_{k}(t)\right| & =\left|\int_{t_{k}}^{t} \ddot{u}_{k}(s) d s+u_{k}(t)-u_{k}(t-1)\right| \\
& \leq \int_{t-1}^{t}\left|\ddot{u}_{k}(s)\right| d s+\left|u_{k}(t)-u_{k}(t-1)\right| .
\end{aligned}
$$

By (30) and (32), we obtain

$$
\begin{aligned}
\left\|\dot{u}_{k}\right\|_{L_{2 k T}}^{\infty} & \leq \int_{t-1}^{t}\left|\ddot{u}_{k}(s)\right| d s+\left|u_{k}(t)-u_{k}(t-1)\right| \\
& \leq M_{2}+2 C M_{1}
\end{aligned}
$$

for each $k \in N$.
Second, we need to prove that $\left\{u_{k}\right\}_{k \in N}$ and $\left\{\dot{u}_{k}\right\}_{k \in N}$ are equicontinuous. Actually, by (32) we get

$$
\left|\dot{u}_{k}\left(t_{1}\right)-\dot{u}_{k}\left(t_{2}\right)\right| \leq\left|\int_{t_{2}}^{t_{1}} \ddot{u}_{k}(s) d s\right| \leq \int_{t_{2}}^{t_{1}}\left|\ddot{u}_{k}(s)\right| d s \leq M_{2}\left|t_{1}-t_{2}\right|
$$

for each $k \in N$ and $t_{1}, t_{2} \in R$, which shows $\left\{\dot{u}_{k}\right\}_{k \in N}$ is equicontinuous, and $\left\{u_{k}\right\}_{k \in N}$ remains in the same way. Then there is a subsequence $\left\{u_{k_{j}}\right\}_{k \in N}$ convergent to u_{0} in $C_{l o c}^{1}\left(R, R^{N}\right)$ by the Arzelà-Ascoli theorem.

Lemma 2.6. Let $u_{0}: R \rightarrow R^{N}$ be a function determined by Lemma 2.5. Then u_{0} is a nontrivial homoclinic solution of problem (1).

Proof The proof will be divided into three steps.
Step 1: we will show that u_{0} satisfies (1). By Lemma 2.3 and Lemma 2.5, we have $u_{k_{j}} \rightarrow u_{0}$ in $C_{l o c}^{1}\left(R, R^{N}\right)$ as $j \rightarrow \infty$, and

$$
\ddot{u}_{k_{j}}(t)=-\nabla V\left(t, u_{k_{j}}(t)\right)+f_{k_{j}}(t)
$$

for each $j \in N$ and $t \in\left[-k_{j} T, k_{j} T\right)$. Take $a, b \in R$ such that $a<b$. There exists $j_{0} \in N$ such that for all $j>j_{0}$ and for every $t \in[a, b]$ we have

$$
\ddot{u}_{k_{j}}(t)=-\nabla V\left(t, u_{k_{j}}(t)\right)+f(t) .
$$

In consequence, for $j>j_{0}, \ddot{u}_{k_{j}}(t)$ is continuous in $[a, b]$ and $\ddot{u}_{k_{j}}(t) \rightarrow$ $-\nabla V\left(t, u_{0}(t)\right)+f(t)$ uniformly on $[a, b]$. So it follows that $\ddot{u}_{k_{j}}$ is a classical derivative of $\dot{u}_{k_{j}}$ in (a, b) for each $j>j_{0}$. Moreover, since $\dot{u}_{k_{j}} \rightarrow \dot{u}_{0}$ uniformly on $[a, b]$, we get

$$
-\nabla V\left(t, u_{0}(t)\right)+f(t)=\ddot{u}_{0}(t)
$$

for every $t \in(a, b)$. Since a and b are arbitrary, we conclude that u_{0} satisfies (1).
Step 2: We prove that $u_{0}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. For every $l \in N$, there is $j_{0} \in N$ such that

$$
\int_{-l T}^{l T}\left(\left|u_{k_{j}}(t)\right|^{2}+\left|\dot{u}_{k_{j}}(t)\right|^{2}\right) d t \leq\left\|u_{k_{j}}\right\|_{E_{k_{j}}}^{2} \leq M_{1}^{2}
$$

for all $j>j_{0}$. From this and Lemma 2.5 it follows that

$$
\int_{-l T}^{l T}\left(\left|u_{0}(t)\right|^{2}+\left|\dot{u}_{0}(t)\right|^{2}\right) d t \leq M_{1}^{2}
$$

for each $l \in N$. Letting $l \rightarrow+\infty$, we obtain

$$
\int_{-\infty}^{+\infty}\left(\left|u_{0}(t)\right|^{2}+\left|\dot{u}_{0}(t)\right|^{2}\right) d t \leq M_{1}^{2}
$$

then

$$
\begin{equation*}
\int_{|t| \geq r}\left(\left|u_{0}(t)\right|^{2}+\left|\dot{u}_{0}(t)\right|^{2}\right) d t \rightarrow 0 \tag{33}
\end{equation*}
$$

as $r \rightarrow+\infty$. Fix $t \in R$, then we have

$$
\begin{equation*}
\left|u_{0}(t)\right| \leq\left|u_{0}(\omega)\right|+\left|\int_{\omega}^{t} \dot{u}_{0}(s) d s\right| \tag{34}
\end{equation*}
$$

for each $\omega \in R$. From (34) and Hölder inequality we obtain

$$
\begin{align*}
\left|u_{0}(t)\right| & \leq \int_{t-1}^{t}\left(\left|u_{0}(\omega)\right|+\left|\int_{\omega}^{t} \dot{u}_{0}(s) d s\right|\right) d \omega \\
& \leq\left(\int_{t-1}^{t}\left(\left|u_{0}(\omega)\right|+\left|\int_{\omega}^{t} \dot{u}_{0}(s) d s\right|\right)^{2} d \omega\right)^{1 / 2} \\
& \leq\left(2 \int_{t-1}^{t}\left(\left|u_{0}(\omega)\right|^{2}+\left|\int_{\omega}^{t} \dot{u}_{0}(s) d s\right|^{2}\right) d \omega\right)^{1 / 2} \\
& \leq \sqrt{2}\left(\int_{t-1}^{t}\left(\left|u_{0}(\omega)\right|^{2}+\int_{\omega}^{t}\left|\dot{u}_{0}(s)\right|^{2} d s\right) d \omega\right)^{1 / 2} \\
& \leq \sqrt{2}\left(\int_{t-1}^{t}\left|u_{0}(\omega)\right|^{2} d \omega+\int_{t-1}^{t} \int_{t-1}^{t}\left|\dot{u}_{0}(s)\right|^{2} d s d \omega\right)^{1 / 2} \\
& \leq \sqrt{2}\left(\int_{t-1}^{t}\left(\left|u_{0}(s)\right|^{2}+\left|\dot{u}_{0}(s)\right|^{2}\right) d s\right)^{1 / 2} \tag{35}
\end{align*}
$$

then by (33), we obtain $u_{0}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$.
Step 3: We now show that $\dot{u}_{0}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. Similar to (35) we obtain

$$
\begin{equation*}
\left|\dot{u}_{0}(t)\right|^{2} \leq 2 \int_{t-1}^{t}\left(\left|\dot{u}_{0}(s)\right|^{2}+\left|\ddot{u}_{0}(s)\right|^{2}\right) d s \tag{36}
\end{equation*}
$$

for each $t \in R$. From (33), one has

$$
\begin{equation*}
\int_{t-1}^{t}\left|\dot{u}_{0}(s)\right|^{2} d s \rightarrow 0 \tag{37}
\end{equation*}
$$

as $t \rightarrow \pm \infty$. And since u_{0} is a solution of problem (1), we have

$$
\begin{aligned}
& \int_{t-1}^{t}\left|\ddot{u}_{0}(s)\right|^{2} d s=\int_{t-1}^{t}\left(\left|\nabla V\left(s, u_{0}(s)\right)\right|^{2}+|f(s)|^{2}\right) d s \\
&-2 \int_{t-1}^{t}\left(\nabla V\left(s, u_{0}(s)\right), f(s)\right) d s
\end{aligned}
$$

From $\left(K_{1}\right)$ and $\left(W_{2}^{\prime}\right)$, we can conclude that $\nabla K(s, 0)=0$ and $\nabla W(s, 0)=0$, which yield $\nabla V(s, 0)=0$ for all $s \in R$. Since $V(s, x)$ is T-periodic with respect to $s, \nabla V(s, x)$ has the same property. Then for every $s \in[0, T]$ and $\varepsilon>0$, there is $\rho_{s}>0$ such that

$$
|\nabla V(w, x)|<\varepsilon
$$

for all $w \in B\left(s ; \rho_{s}\right) \cap[0, T]$ and $|x|<\rho_{s}$, which implies $B\left(s ; \rho_{s}\right)(s \in[0, T])$ is an open coverage of $[0, T]$. By the compactness of $[0, T]$, we can see that there exist $B\left(s_{1} ; \rho_{s_{1}}\right), B\left(s_{2} ; \rho_{s_{2}}\right), \cdots, B\left(s_{m} ; \rho_{s_{m}}\right)$ such that $[0, T] \subset \cup_{i=1}^{m} B\left(s_{i} ; \rho_{s_{i}}\right)$. Let $\rho_{0}=$ $\min \left\{\rho_{s_{1}}, \rho_{s_{2}}, \cdots, \rho_{s_{m}}\right\}$, then we have

$$
|\nabla V(s, x)|<\varepsilon
$$

for all $|x|<\rho_{0}$ and uniformly in $s \in[0, T]$. Since $u_{0}(s) \rightarrow 0$ as $s \rightarrow \pm \infty$, there is $p>0$ such that $\left|u_{0}(s)\right|<\rho_{0}$ for $|t| \geq p$. Hence, when $|t| \geq p+1$,

$$
\int_{t-1}^{t}\left|\nabla V\left(s, u_{0}(s)\right)\right|^{2} d s<\varepsilon^{2}
$$

Noting that $\int_{t-1}^{t}|f(s)|^{2} d s \rightarrow 0$ as $t \rightarrow \pm \infty$, we have

$$
\begin{equation*}
\int_{t-1}^{t}\left|\ddot{u}_{0}(s)\right|^{2} d s \rightarrow 0 \tag{38}
\end{equation*}
$$

then we obtain our conclusion.
Since $\nabla V(t, 0)=0$, then $u=0$ is not a solution of problem (1) for $f \neq 0$, which shows $u_{0} \neq 0$.

From Lemma 2.3 - Lemma 2.6, we complete the proof of Theorem 1.1. Finally, we will prove Theorem 1.2.

Proof of Theorem 1.2. Under conditions of Theorem 1.2, the conclusions of Lemma 2.1 - Lemma 2.4 for the system (1) are still true, which means there is a $2 k T$ periodic solution $u_{k} \in E_{k}$ satisfies

$$
\begin{equation*}
\ddot{u}(t)+\nabla V(t, u(t))=0 \tag{39}
\end{equation*}
$$

for $k \in N$. Since V is T-periodic with respect to t, we can see $u_{k}(t+n T)$ is still a $2 k T$-periodic solution of (39) for every $n \in Z$. By replacing earlier, if necessary, u_{k} by $u_{k}(t+n T)$ for some $n \in Z$, we can assume that the maximum of u_{k} occurs in $[-T, T]$.

Similar to the proofs of Lemma 2.5 and Lemma 2.6, we choose a subsequence $\left\{u_{k_{j}}\right\}$ of $\left\{u_{k}\right\}$ convergent to a u_{0} in $C_{l o c}^{1}\left(R, R^{N}\right), u_{0}$ is a homoclinic solution of problem (1). Finally, we have to show that $u_{0} \neq 0$. As Rabinowitz in [10], we set

$$
\psi(s)=\max _{t \in[0, T],|u| \leq s} \frac{(\nabla W(t, u), u)}{|u|^{2}}
$$

for $s>0$ and $\psi(0)=0$. Then it is easy to verify that ψ is continuous, nondecreasing and $\psi(s) \rightarrow+\infty$ as $s \rightarrow+\infty$. By the definition of ψ, we have

$$
\begin{equation*}
\int_{-k_{j} T}^{k_{j} T}\left(\nabla W\left(t, u_{k_{j}}(t)\right), u_{k_{j}}(t)\right) d t \leq \psi\left(\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T}}\right)\left\|u_{k_{j}}\right\|_{E_{k_{j}}}^{2} \tag{40}
\end{equation*}
$$

for all $j \in N$. Since $I_{k_{j}}^{\prime}\left(u_{k_{j}}\right) u_{k_{j}}=0$, it follows from (7) that

$$
\begin{align*}
& \int_{-k_{j} T}^{k_{j} T}\left(\nabla W\left(t, u_{k_{j}}(t)\right), u_{k_{j}}(t)\right) d t= \\
& \quad \int_{-k_{j} T}^{k_{j} T}\left|\dot{u}_{k_{j}}(t)\right|^{2} d t+\int_{-k_{j} T}^{k_{j} T}\left(\nabla K\left(t, u_{k_{j}}(t)\right), u_{k_{j}}(t)\right) d t . \tag{41}
\end{align*}
$$

From (40), (41), $\left(K_{1}\right),\left(K_{2}^{\prime \prime \prime}\right)$, Lemma 2.1 and (27), we obtain

$$
\begin{aligned}
\psi\left(\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T} T}\right)\left\|u_{k_{j}}\right\|_{E_{k_{j}}}^{2} & \geq \int_{-k_{j} T}^{k_{j} T}\left|\dot{u}_{k_{j}}(t)\right|^{2} d t+\int_{-k_{j} T}^{k_{j} T}\left(u_{k_{j}}(t), \nabla K\left(t, u_{k_{j}}(t)\right)\right) d t \\
& \geq \int_{-k_{j} T}^{k_{j} T}\left|\dot{u}_{k_{j}}(t)\right|^{2} d t+b \rho \int_{-k_{j} T}^{k_{j} T}\left|u_{k_{j}}(t)\right|^{\gamma} d t \\
& \geq \int_{-k_{j} T}^{k_{j} T}\left|\dot{u}_{k_{j}}(t)\right|^{2} d t+b \rho\left(C\left\|u_{k_{j}}\right\|_{E_{k}}\right)^{\gamma-2} \int_{-k_{j} T}^{k_{j} T}\left|u_{k_{j}}(t)\right|^{2} d t \\
& \geq \int_{-k_{j} T}^{k_{j} T}\left|\dot{u}_{k_{j}}(t)\right|^{2} d t+b \rho\left(C M_{1}\right)^{\gamma-2} \int_{-k_{j} T}^{k_{j} T}\left|u_{k_{j}}(t)\right|^{2} d t \\
& \geq C_{1}\left\|u_{k_{j}}\right\|_{E_{k_{j}}}^{2}
\end{aligned}
$$

where $C_{1}=\min \left\{1, b \rho\left(C M_{1}\right)^{\gamma-2}\right\}$, and hence

$$
\begin{equation*}
\psi\left(\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T}^{\infty}}\right) \geq C_{1}>0 . \tag{42}
\end{equation*}
$$

By the property of ψ, there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T}^{\infty}} \geq C_{2} \tag{43}
\end{equation*}
$$

for each $j \in N$. Consequently we get

$$
\max _{t \in[-T, T]}\left|u_{k_{j}}(t)\right|=\left\|u_{k_{j}}\right\|_{L_{2 k_{j} T}^{\infty}} \geq C_{2}, \quad j \in N,
$$

which implies that

$$
\max _{t \in[-T, T]}\left|u_{0}(t)\right| \geq C_{2}
$$

Hence $u_{0} \neq 0$. The proof is completed.

References

[1] A. Ambrosetti, Vittorio Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova 89 (1993), 177-194.
[2] Paolo Caldiroli, Louis Jeanjean, Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations 136 (1997), no. 1, 76-114.
[3] Y. H. Ding, S. J. Li, Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl. 189 (1995), no. 2, 585-601.
[4] Patricio L. Felmer, Elves A. De B. Silva, Homoclinic and periodic orbits for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 2, 285-301.
[5] M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations 219 (2005), no. 2, 375389.
[6] M. Izydorek, J. Janczewska, Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl. 335 (2007), no. 2, 1119-1127.
[7] Y. Lv, C.-L. Tang, Existence of even homoclinic orbits for second-order Hamiltonian systems, Nonlinear Anal. 67 (2007), no. 7, 2189-2198.
[8] Z. Q. Ou, C.-L. Tang, Existence of homoclinic solution for the second order Hamiltonian systems, J. Math. Anal. Appl. 291 (2004), no. 1, 203-213.
[9] Eric Paturel, Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var. Partial Differential Equations 12 (2001), no. 2, 117-143.
[10] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 1-2, 33-38.
[11] P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z. 206 (1991), no. 3, 473-499.
[12] X. H. Tang, L. Xiao, Homoclinic solutions for a class of second order Hamiltonian systems, Nonlinear Anal. 71 (2009), 1140-1152.
[13] X. H. Tang, L. Xiao, Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl. 351 (2009), no. 2, 586-594.

School of Mathematics and Statistics, Southwest University, Chongqing 400715, People's Republic of China.
email: wuxp@swu.edu.cn

[^0]: *Supported by National Natural Science Foundation of China (No.11071198) and Project of Innovation in Science and Technology for Graduate Students of Southwest University (ky2008003).
 ${ }^{\dagger}$ Corresponding author. wuxp@swu.edu.cn
 Received by the editors May 2011.
 Communicated by J. Mawhin.
 Key words and phrases : Homoclinic orbits; Second order Hamiltonian systems; (C) condition; Mountain pass theorem; Superquadratic condition.

