On certain results of C. Bereanu and J. Mawhin

Stanisław Sȩdziwy

Abstract

It is shown that the assumption of the singularity of φ-Laplacian permits to get for the scalar differential equations the existence results of the Dirichlet, Dirichlet-Neumann, Neuman-Steklov or periodic problems using a simple elementary argument.

1 Introduction

In [1] and [2] C. Bereanu and J. Mawhin considered the boundary value problems for the scalar differential equation

$$
\begin{equation*}
\left(\varphi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right) \tag{1.1}
\end{equation*}
$$

with a singular φ-Laplacian, i.e. assuming that φ is an increasing homeomorphism such that $\varphi:(-a, a) \rightarrow \mathbb{R}(a \in(0, \infty), \varphi(0)=0)$.

Among others, using the Leray-Schauder theory, they proved the existence of solutions to various boundary value problems under, as they claim, rather general conditions (only the continuity of f is required). The paper [3] presents generalization of works [1], [2] to the vector differential equations as well as new results.

Rather general conditions on f and boundary functions could be assumed since the condition $\varphi:(-a, a) \rightarrow \mathbb{R}$ is in fact very strong: it permits to define the compact set K_{0} containing all possible solutions of BVPs in question. Once the set K_{0} is known it is possible, in the scalar case, to prove results of [1], [2], [3] by elementary methods.

Received by the editors November 2011.
Communicated by J. Mawhin.
2010 Mathematics Subject Classification : Primary: 24B16; Secondary: 34B15.
Key words and phrases : boundary value problem, singular ϕ-Laplacian.

2 Results

Theorem 1. Let $\varphi:(-a, a) \rightarrow \mathbb{R}, \varphi(0)=0$, be an increasing homeomorphism and let $f:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Then:
(A) (cf [1, Corollary 1],[2, Corollary 1]) If $|B-A|<a T$, then there exists at least one solution of (1.1) subject to Dirichlet boundary conditions

$$
\begin{equation*}
u(0)=A, \quad u(T)=B \tag{2.1}
\end{equation*}
$$

(B) (cf $[3$, Corollary 2, 4]) For each A and C, if $|C|<a$ then the boundary value problems (1.1),

$$
\begin{array}{lll}
u(0)=A & u^{\prime}(T)=C, & \text { Dirichlet-Neumann } \\
u^{\prime}(0)=C, & u(T)=A & \text { Neumann-Dirichlet } \tag{2.3}
\end{array}
$$

have at least one solution.

Theorem 2. Let $f:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}, g_{0}, g_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be continuous.
Suppose there exists $R>0$ such that f satisfies one of the following conditions:

$$
\begin{gather*}
\int_{0}^{T} f\left(t, u(t), u^{\prime}(t)\right) d t-\left(g_{T}(u(T))-g_{0}(u(0))>0 \quad \text { if } \min _{t \in[0, T]} u(t) \geq R,\right. \\
\int_{0}^{T} f\left(t, u(t), u^{\prime}(t)\right) d t-\left(g_{T}(u(T))-g_{0}(u(0))<0 \quad \text { if } \max _{t \in[0, T]} u(t) \leq-R,\right. \tag{2.4}\\
\int_{0}^{T} f\left(t, u(t), u^{\prime}(t)\right) d t>0 \quad \text { if } \min _{t \in[0, T]} u(t) \geq R, \\
\int_{0}^{T} f\left(t, u(t), u^{\prime}(t)\right) d t<0 \quad \text { if } \max _{t \in[0, T]} u(t) \leq-R, \tag{2.5}
\end{gather*}
$$

then:
(C) (cf [2, Thm 2],[3, Cor.2]) equation (1.1) with Neumann-Steklov boundary conditions

$$
\begin{equation*}
\varphi\left(u^{\prime}(0)\right)=g_{0}(u(0)), \quad \varphi\left(u^{\prime}(T)\right)=g_{T}(u(T)) \tag{2.6}
\end{equation*}
$$

has at least one solution, provided (2.5) holds,
(D) (cf [1, Thm 2]) BVP (1.1),

$$
\begin{equation*}
u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T) \tag{2.7}
\end{equation*}
$$

has a solution, provided (2.5) holds.
Remark 1. Without the loss of generality weak inequalities (2.4) appearing in [2] may be replaced by the strong ones.

An immediate consequence of the differential inequalities theory (see e.g. [4, $\mathrm{Ch} . \mathrm{III}]$) is the following remark.

Remark 2. If the initial problem for (1.1) has the unique solution and $f(t, u, w)$ is increasing with respect to u, then solutions of (1.1), subject to boundary conditions (2.1), (2.2) or (2.3) are unique for arbitrary values of parameters A, B or A, C.

3 Proofs

Observe that if $u(t)$ is the solution of (1.1), then $\left|u^{\prime}(t)\right|<a$ and any of conditions (2.1), (2.2) or (2.3) implies that $|u(t)-A|<a T$ for $t \in[0, T]$.

Similarly, the sign conditions imply that solutions to BVP (1.1),(2.6) satisfy $|u(t)|<R$ for $t \in[0, T]$.

In both cases solutions to (1.1) with mentioned boundary conditions are in the compact sets $K_{0}=[A-a T, A+a T] \times[-a, a]$ or $K_{0}=[-R, R] \times[-a, a]$.Let $K=[0, T] \times K_{0}$.

Denote $M=\max _{K}|f(t, u, w)|$.
Proof of Theorem 1. Replace (1.1) by the equivalent first order system

$$
\begin{equation*}
u^{\prime}=\varphi^{-1}(v), \quad v^{\prime}=f\left(t, u, \varphi^{-1}(v)\right) . \tag{3.1}
\end{equation*}
$$

Assume additionally that for any S the initial value problem (IVP) (3.1), $(u(0), v(0))=(A, S)$ have the unique solution $(u(t, S), v(t, S))$.

Proof of (A). Choose $a_{1}, a_{2} \in(-a, a)$ as follows: if $B<A$, then $-a<a_{1}<$ $(B-A) / T$ and for $B>A$ let $(B-A) / T<a_{2}<a$. Set $v_{i}=\varphi\left(a_{i}\right)$.

The formula $|v(t, S)-S| \leq \int_{0}^{T}\left|f\left(t, u(t, S), \varphi^{-1}(v(t, S))\right)\right| d t \leq M T$ implies that $\lim _{S \rightarrow \pm \infty} v(t, S)= \pm \infty$ uniformly in $t \in[0, T]$. Since $\lim _{z \rightarrow \pm \infty} \varphi^{-1}(z)= \pm a$, there exist constants $S_{i}, i=1, \ldots, 4$ such that $\varphi^{-1}(v(t, S))$ satisfy for $t \in[0, T]$ the inequalities

$$
\varphi^{-1}(v(t, S)) \begin{cases}<\varphi^{-1}\left(v_{1}\right)=a_{1}, & \text { for } S=S_{1} \\ >\varphi^{-1}\left(v_{2}\right)=a_{2}, & \text { for } S=S_{2} \\ >\varphi^{-1}\left(v_{2} / 2\right)>0, & \text { for } S=S_{3} \\ <\varphi^{-1}\left(v_{1} / 2\right)<0, & \text { for } S=S_{4}\end{cases}
$$

from which, by the formulae $u\left(T, S_{i}\right)=A+\int_{0}^{T} \varphi^{-1}\left(v\left(t, S_{i}\right)\right) d t$ and $a_{i} T=B-A$, it follows that:

$$
\begin{array}{lll}
\text { for } & B<A & u\left(T, S_{1}\right)<B, \quad u\left(T, S_{4}\right)>A>B \\
\text { for } & B>A & u\left(T, S_{2}\right)>B, \\
\text { for } & A=B\left(T, S_{3}\right)<A<B \quad u\left(T, S_{3}\right)<A, & u\left(T, S_{4}\right)>A
\end{array}
$$

The continuity of $u(T, \cdot)$ and the inequalities above imply in each case the existence of a number D such that $u(T, D)=B$, completing the proof of (A).

Proof of (B). BVPs (1.1), (2.2), (1.1), (2.3) are equivalent to BVPs for (3.1) subject to one of the boundary conditions

$$
\begin{gather*}
u(0)=A, \quad \varphi^{-1}(v(T))=C \tag{3.2}\\
\varphi^{-1}(v(0))=C, \quad u(T)=A \tag{3.3}
\end{gather*}
$$

To show the existence of solution to BVP (3.1), (3.2) note that since $S-M T \leq v(t, S) \leq S+M T, t \in[0, T]$, the conclusion follows from the continuity of $v(T, \cdot)$, inequality $\mid \varphi^{-1}(v(T, S)|=|C|<a$ and the observation that $\lim _{S \rightarrow \pm \infty} \varphi^{-1}(v(T, S))= \pm a$. The remaining case is proven similarly.

The case of lack of uniqueness to IVPs is reduced to the previous one by a standard procedure (cf [4, Ch.1, Thm 2.4]). It consists in approximation (3.1) by equations with the uniqueness property:

$$
\begin{equation*}
u^{\prime}=g_{n}(v) \quad v^{\prime}=h_{n}(t, u, v), \tag{3.4}
\end{equation*}
$$

with smooth with respect to arguments u, v right hand sides, such that

$$
\lim _{n \rightarrow \infty}\left(g_{n}(v), h_{n}(t, u, v)\right)=\left(\varphi^{-1}(v), f\left(t, u, \varphi^{-1}(v)\right)\right.
$$

uniformly in a compact set K_{1} containing K_{0} in its interior (cf [4, Ch. 1]).
By the Ascoli theorem, the sequence $\left\{\left(u_{n}\left(t, S_{n}\right), v\left(t, S_{n}\right)\right)\right\}$ of solutions to BVPs for (3.4), contains the subsequence converging to the solution of the corresponding BVP.

Proof of Theorem 2. Proof of (C)
Boundary conditions of (3.1) are equivalent to

$$
\begin{equation*}
v(0)=g_{0}(u(0)), \quad v(T)=g_{T}(u(T)) . \tag{3.5}
\end{equation*}
$$

At first assume additionally that IVP (3.1), $(u(0), v(0))=(A, B))$ is uniquely solvable. Since $(u(t, A, B), v(t, A, B))$ satisfies conditions

$$
\begin{equation*}
u(t)=\int_{0}^{t} \varphi^{-1}(v(s)) d s+A, \quad v(t)=\int_{0}^{t} f\left(s, u(s), \varphi^{-1}(v(s))\right) d s+B \tag{3.6}
\end{equation*}
$$

(to simplify notations arguments A, B in u, v are dropped) from (3.5) it follows that $(u(t, A, B), v(t, A, B))$ is the solution of BVP (3.1),(3.5) iff

$$
\int_{0}^{T} f\left(t, u(t), u^{\prime}(t)\right) d t-\left(g_{T}(u(T))-g_{0}(u(0))\right)=0
$$

By (3.6), $A-a T \leq u(t, A, B) \leq A+a T$, for $t \in[0, T]$, so for sufficiently large $P>0$ for any B and all $t \in[0, T]$ we have

$$
\begin{equation*}
u(t,-P, B)<-R, \quad u(t, P, B)>R \tag{3.7}
\end{equation*}
$$

which, by (2.4) and the intermediate value theorem completes the proof of (C).
Proof of (D)
By (3.6), $B-M T \leq v(t, A, B) \leq B+M T$, hence there exists $Q>0$ such that for any A and $t \in[0, T]$

$$
\begin{equation*}
v(t, A,-Q)<0, \quad v(t, A, Q)>0 . \tag{3.8}
\end{equation*}
$$

Let $K=(-R, R) \times(-Q, Q)$ and define the $\operatorname{map} \Phi: \bar{K} \rightarrow \mathbb{R}^{2}$ by $\Phi(A, B)=$ $(u(T, A, B)-u(0, A, B), v(T, A, B)-v(0, A, B))$.

Observe that by (3.7), (3.8)

$$
\begin{array}{cc}
\Phi(-R,[-Q, Q])<0, & \Phi(R,[-Q, Q])>0, \\
\Phi([-R, R],-Q)<0, & \Phi([-R, R],-Q)<0
\end{array}
$$

hence for all $\alpha \in[1 / 2,1]$ and every $(A, B) \in \partial K$,

$$
\alpha \Phi(A, B) \neq(1-\alpha) \Phi(-A,-B)
$$

which implies that Φ vanishes in a certain point of K (cf [5, 3.31. Corollary]), i.e. conditions (2.7) hold. This completes the proof in the uniqueness case.

The case of non uniqueness is treated as in Theorem 1.

References

[1] C. Bereanu, J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Diff. Equations, 243 (2007), 536-555.
[2] C. Bereanu, J. Mawhin, Nonhomogeneous boundary value problems for some nonlinear equations with singular ϕ-Laplacian, J. Math. Anal. Appl., 352 (2009), 218-233.
[3] C. Bereanu, J. Mawhin, Boundary value problems for some nonlinear systems with singular ϕ-Laplacian, J. Fixed Point Analysis Appl., 4 (2008), $37-75$.
[4] P. Hartman, Ordinary Differential Equations, Acad. Press, New York, 1964.
[5] J.T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, London, Paris 1969.

Theoretical Computer Science,
Faculty of Mathematics and Computer Science, Jagiellonian University ul. Łojasiewicza 6, 31-348 Kraków, Poland email:sedziwy@tcs.uj.edu.pl

