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Abstract

We describe a construction of a point-line presheaf on a point-line geome-
try from a set of presheaves on subspaces of the geometry. Then we combine
our construction with theorems of M. Ronan to give a new proof of the fact
that all polar spaces of finite rank at least four, and several other Grassmann
geometries of spherical buildings, are embeddable in projective spaces.

1 Introduction

Regarding projective embeddings of building Grassmann geometries the follow-
ing is known. (1) For a number of spherical building geometries, there are con-
structions of embeddings, specific to each geometry. In particular, part of the
proof of the classification theorem of spherical buildings in [18] consists in show-
ing that every polar space of finite rank at least four embeds in a projective space.
(2) If B is a building arising from a (B, N)-pair of a Chevalley group of a finite-
dimensional semisimple Lie algebra L, and Γ is a Grassmann geometry of B, then
Γ embeds into the projective space of a highest weight module for L [2] (see also
[3]).

In the present paper we offer a construction of projective embeddings for a
point-line geometry Γ from a collection of embeddings for subspaces of Γ. When
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applied to Grassmannians of spherical buildings of rank at least four, our con-
struction does not require existence of an associated Lie algebra, and does not
use the classification of spherical buildings, except for the buildings of type An.
As an application of our construction, in Section 8 we obtain new proofs of the
following theorems. The diagrams are labeled as in [4]; the second subscript is
j ∈ I such that the points of the Grassmannian are the residues of the building of
type I − {j}, where I denotes the type set of the building.

Theorem 1.1. Let Γ = (P ,L) be a nondegenerate polar space of finite rank at least four
with thick lines. Then Γ is embeddable in a projective space.

Theorem 1.2. Let Γ = (P ,L) be one of the following building Grassmannians.
(i) F4,1 with embeddable symplecta.
(ii) D5,5.
(iii) En,n, n ∈ {6, 7, 8}; E6,2; E7,1.
Suppose that Γ has thick lines. Then Γ is embeddable in a projective space.

2 Presheaves and isomorphisms of presheaves

In this section we describe an abridged version of presheaves of Ronan [14].
Let Γ = (P ,L) be a point-line geometry, let M be the set of point-line flags of

Γ, and let D be a division ring. A point-line presheaf F = ({Fp}p, {FL}L, {φpL}pL)
on Γ over D, or just a D-presheaf on Γ, is a set of 1-dimensional left vector spaces
{Fp|p ∈ P} over D, a set of 2-dimensional left vector spaces {FL|L ∈ L} over
D, and a set of injective D-linear connecting maps {φpL : Fp → FL|(p, L) ∈ M}.
We require that, for every line L ∈ L, the set {(Fp)φpL|p ∈ L} be the set of all
1-spaces of FL.

Suppose F = ({Fp}p, {FL}L, {φpL}pL) and F ′ = ({F ′
p}p, {F ′

L}L, {φ′
pL}pL)

are two D-presheaves on a point-line geometry Γ. An isomorphism of presheaves
on Γ, ψ : F → F ′, is a set of bijective D-linear maps ψz : Fz → F ′

z, indexed by
z ∈ P ∪ L, that commute with the connecting maps. That is, for every point-line
flag (p, L) of Γ, we have ψp ◦ φ′

pL = φpL ◦ ψL.

Lemma 2.1. Let Γ = (P ,L) be a point-line geometry. Suppose D is a division ring, let
F = ({Fp}p, {FL}L, {φpL}pL) and F ′ = ({F ′

p}p, {F ′
L}L, {φ′

pL}pL) be D-presheaves

on Γ, and let ψ : F → F ′ be an isomorphism of presheaves. Then the following state-
ments hold.

(i) ψ is uniquely determined by its point terms, that is for every L ∈ L and for every

u ∈ FL we have (u)ψL = (u)[φ−1
pL ◦ ψp ◦ φ′

pL], where p ∈ L is such that u ∈ φpL(Fp).

(ii) ψ is uniquely determined by its line terms, that is for every p ∈ P , for every
u ∈ Fp and for every line L ∈ L containing p, we have (u)ψp = (u)[φpL ◦ ψL ◦

(φ′
pL)

−1].

Proof. Let L ∈ L and let u ∈ FL. By the definition of a presheaf the images of
the maps {φpL|p ∈ L} range through the set of all 1-spaces of FL, therefore there
exists p ∈ P such that u ∈ φpL(Fp). By the definition of a presheaf isomorphism

ψp ◦ φ′
pL = φpL ◦ ψL, and the map φpL is injective. Therefore (u)[φ−1

pL ◦ ψp ◦ φ′
pL] =
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(u)[φ−1
pL ◦ φpL ◦ ψL] = (u)ψL. This shows that (i) holds. The proof of (ii) is similar

and we omit it.

For a division ring D, we denote C(D) the center of D and we denote C(D)◦

the multiplicative group of C(D).
Let Γ = (P ,L) be a point-line geometry, suppose D is a division ring, and

let F = ({Fp}p, {FL}L, {φpL}pL) be a presheaf on Γ over D. Suppose α ∈ D.
For every z ∈ P ∪ L, let ψz = idFz

α and let ψ = {ψz|z ∈ P ∪ L}. We say that
the indexed set of maps ψ is multiplication of the presheaf F by α and we write
ψ = idFα; we write ψ = idF if α = 1.

Lemma 2.2. Let Γ = (P ,L) be a point-line geometry. Suppose D is a division ring and
let F = ({Fp}p, {FL}L, {φpL}pL) be a D-presheaf on Γ. Then, for every α ∈ C(D)◦,
idFα is an automorphism of F .

Proof. Let α ∈ C(D)◦ and let ψ = {idFz
α|z ∈ P ∪ L} be multiplication of F by α.

Since α ∈ C(D)◦, the constituent maps of ψ are D-linear and bijective. Suppose
(p, L) is a point-line flag of Γ. Since the map φpL is D-linear, (idFp

α) ◦ φpL =

φpL ◦ (idFL
α).

Lemma 2.3. Let V be a left vector space over a division ring D. Suppose that f : V →
V is a bijective D-linear map stabilizing all 1-dimensional subspaces of V. Then the
following statements hold.

(i) If dim(V) ≥ 2, then f = idVα for some α ∈ C(D)◦.
(ii) If dim(V) = 1 then V can be identified with D, regarded as a left vector space

over itself under left multiplication, and f is right multiplication by an element of D.

Proposition 2.4. Let Γ = (P ,L) be a point-line geometry. Suppose that L 6= ∅

and suppose that the geometry Γ is connected. Let D be a division ring and suppose
F = ({Fp}p, {FL}L, {φpL}pL) is a D-presheaf on Γ. Then the automorphisms of F are
precisely the morphisms idFα, where α ∈ C(D)◦.

Proof. By Lemma 2.2, for every α ∈ C(D)◦, multiplication by α is an automor-
phism of F . To prove the other direction, suppose ψ = {ψz|z ∈ P ∪ L} is an
automorphism of F . Then the fact that ψ = idFα for some α ∈ C(D)◦ follows
from the following three statements and from the connectedness of Γ.

1. For every line L ∈ L, there is αL ∈ C(D)◦ such that ψL = idFL
αL. Let L ∈ L,

let p ∈ L, and suppose 〈v〉 = (Fp)φpL. Since ψp maps Fp to Fp, the map ψL must
map 〈v〉 to itself. This shows that ψL stabilizes all 1-spaces of FL. Therefore by
Lemma 2.3(i) there is αL ∈ C(D)◦ such that ψL = idFL

αL.
2. If L ∈ L and p ∈ L, then ψp = idFpαL. This follows from (1) and Lemma

2.1(ii). For p ∈ P , if ψp = idFp
α for some α ∈ C(D)◦, then we let αp = α.

3. If L and M are intersecting lines of Γ, then αL = αM. Let L and M be two
intersecting lines of Γ and let p ∈ L ∩ N. By Step 2 αL = αp = αM.

We now define multiplication of a presheaf isomorphism by an element of
C(D)◦. Let Γ = (P ,L) be a point-line geometry. Suppose D is a division ring,
and let F and F ′ be D-presheaves on Γ. Suppose that ψ : F → F ′ is a presheaf
isomorphism and let α ∈ D. We define the product ψα as the composition of
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the presheaf isomorphism ψ with idFα; we call this operation multiplication of the
presheaf isomorphism ψ by α. We have ψα = {ψzα|z ∈ P ∪ L}. The following is
immediate from Lemma 2.2.

Lemma 2.5. Let Γ = (P ,L) be a point-line geometry. Suppose D is a division ring, let
F and F ′ be D-presheaves on Γ, and suppose ψ : F → F ′ is a presheaf isomorphism.
Then, for every α ∈ C(D)◦, the product ψα is a presheaf isomorphism F → F ′.

We have the following corollary of Proposition 2.4.

Corollary 2.6. Let Γ = (P ,L) be a point-line geometry. Suppose that L 6= ∅ and
suppose that Γ is connected. Let D be a division ring, let F and F ′ be D-presheaves on
Γ, and suppose ψ : F → F ′ and ψ′ : F → F ′ are presheaf isomorphisms. Then there
exists α ∈ C(D)◦ such that ψ′ = ψα.

Proof. By Proposition 2.4 ψ′ ◦ ψ−1 = idFα for some α ∈ C(D)◦. Therefore by the
linearity of the constituent maps of ψ we have ψ′ = ψα.

3 Additional definitions

Let S be a set. Suppose Y ⊆ S and suppose X is a set of subsets of S. We define
XY = {X ∈ X |X ∩ Y 6= ∅} and we say that XY is the X -shadow of Y.

Let G = (V, E) be a graph. Suppose S ⊆ V. We denote G|S or just S the
subgraph of G induced on S. For v ∈ V we denote G(v) the set of all neighbors
of v in G; we have v 6∈ G(v). A walk of length n in G is a sequence of vertices
(v0, . . . , vn) such that {vi, vi+1} ∈ E for all i ∈ {0, . . . , n− 1}; the walk w is circular
if v0 = vn. We denote C(G) the set of all circular walks of G. A path in a graph is
a walk all of whose vertices are pairwise distinct. A circuit is a circular walk all
of whose vertices, except its initial and its terminal vertices, are pairwise distinct;
circuits of length 3 are called triangles. Walks of length 1 in G will be called arcs.
For a walk w = (v0, . . . , vn) we define the inverse walk of w to be the walk w−1 =
(vn, . . . , v0). A backtrack is a circular walk of the form w ◦ w−1, where w is a walk.
If u = (u0, . . . , um) and v = (v0, . . . , vn), are walks in G, and um = v0, then the
concatenation of u and v is the walk u ◦ v = (u0, . . . , um, v1, . . . , vn). Suppose u and
v are walks. A segment of v is a decomposition v = v′ ◦ u ◦ v′′, where v′ and v′′ are
walks; we also say that the walk u is a segment of v. For a walk w in G we denote
its set of vertices by suppV(w). For x, y ∈ V we denote dG(x, y) the length of a
shortest walk from x to y in G.

Most of our point-line terminology can be found in Shult [15]. Let Γ = (P ,L)
be a point-line geometry. We identify every line L ∈ L with the subset of P con-
sisting of the points incident with L. A point-line geometry Γ has thick lines if
every line of Γ contains at least three points. A subgeometry of Γ is a point line ge-
ometry Γ′ = (P ′,L′), such that P ′ ⊆ P , L′ ⊆ L, and the graph of Γ′ is a subgraph
of Γ; we denote P(Γ′) = P ′ and L(Γ′) = L′. Intersection of subgeometries is de-
fined as the intersection of subgraphs. A subgeometry is full if, for every L ∈ L′

and for every p ∈ P incident with L in Γ, p ∈ P ′ and p is incident with L in Γ′.
A subspace S of Γ is a subset of P such that, for every L ∈ L, either |L ∩ S| ≤ 1
or L ⊆ S. For a subspace S of Γ, we denote Γ|S = (S,L|S) the geometry of all
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points and lines of Γ contained entirely in S, with the incidence inherited from
Γ; we have L(Γ|S) = L|S. We say that Γ|S is the subgeometry of Γ induced on
S; Γ|S is a full subgeometry of Γ. Let M be the set of all point-line flags of Γ

and suppose S is a subgeometry of Γ. We denote M(S) the set of the point-line
flags of S. Suppose F = ({Fp}p, {FL}L, {φpL}pL) is a presheaf on Γ over a di-
vision ring D, and let S be a full subgeometry of Γ. We denote F|S the presheaf
({Fp}p∈P(S), {FL}L∈L(S), {φpL}(p,L)∈M(S)) on Γ|S. If S is a subspace of Γ, then we

write M(S) for M(Γ|S), and F|S for F|(Γ|S).

4 The presheaf construction

The purpose of this section is to prove Theorem 4.2, in which we construct a
presheaf on a point-line geometry from a collection of presheaves on its sub-
spaces.

4.1 Main hypothesis

We consider the following situation that will be referred to as Hypothesis (PSh).

Γ = (P ,L) is a point-line geometry.

S is a family of full subgeometries of Γ, such that every point and every line of Γ lies
in at least one member of S .

G = (S , E) is a graph with the vertex set S , the edge set E , and the arc set A; D is a
division ring and {FS|S ∈ S} is a set of D-presheaves on the geometries S.

Ψ = {ψS,T|(S, T) ∈ A} is a set of presheaf isomorphisms ψS,T : FS|(S ∩ T) →
FT|(S ∩ T) satisfying the following condition

(PSh-inv) For every arc (S, T) ∈ A, ψT,S = ψ−1
S,T

Suppose that hypothesis (PSh) holds. We denote by M the set of all point-line
flags of Γ and by G the point-collinearity graph of Γ. Suppose S ∈ S . Then we
write FS = ({FS,p}p∈P(S), {FS,L}L∈L(S), {φS,pL}(p,L)∈M(S)). We denote FS,L,p the

1-dimensional subspace (FS,p)φS,pL of FS,L.

For p ∈ P we denote S(p) the set {S ∈ S|p ∈ S}, and for X ⊆ P we denote
S(X) the set {S ∈ S|X ⊆ S}. Suppose (S, T) ∈ A and suppose z ∈ P(S ∩ T) ∪
L(S ∩ T). Then the term FS,z → FT,z of the presheaf isomorphism ψS,T will be
denoted ψS,T,z. For X ⊆ S , we let PX = ∩S∈XP(S) and we let PX = ∪S∈XP(S);
we denote AX the set of arcs of the graph G|X .

Suppose w = (S0, . . . , Sn) is a walk in G, let S = S0, and let X = suppS(w).
We let Pw = PX and Pw = PX . Further, we denote Γw = (Pw,Lw) the geometry
∩S∈X S, and we denote Fw the presheaf FS|Γw. Suppose z ∈ Pw ∪ Lw. If n = 0,
we define ψw,z = idFS,z

. If n > 0, then we define ψw,z = ψS0,S1,z ◦ · · · ◦ ψSn−1,Sn,z.

We let ψw = {ψw,z|z ∈ Pw ∪ Lw}. Suppose that w is a circular walk and that
Pw 6= ∅. Then ψw is an automorphism of the presheaf Fw. For a set of walks
W in G and for p ∈ P , we denote Wp the set of all walks in W that lie in the
subgraph G|S(p).



602 A. Kasikova

4.2 Additional conditions

Suppose that hypotheses (PSh) holds. We introduce two further conditions.
Suppose X ∈ P or X ⊆ P .
(ConX) The graph G|S(X) is nonempty and connected.
If (Conp) holds for every p ∈ P , then we say that (ConP) holds; if (ConL)

holds for every L ∈ L, then we say that (ConL) holds.
Suppose that C is a set of circular walks in G.
(IdC) For every w ∈ C, we have Pw 6= ∅ and ψw = idFw

.
Let Z ∈ {P ,L}. If, for every z ∈ Z , condition (IdC ) holds with C = C(G|S(z)),

then we say that condition (IdZ ) holds.

Lemma 4.1. Suppose that hypothesis (PSh) holds. If condition (IdP ) holds, then condi-
tion (IdL) holds.

Proof. Suppose L ∈ L and suppose w is a circular walk in G|S(L). Let p ∈ L.
Then S(L) ⊆ S(p) and w is a circular walk in G|S(p). Therefore, ψw = idFw .

4.3 The construction

Suppose that hypothesis (PSh) holds. Let z ∈ P ∪L. We define V ′
z =

⊕
{FS,z|S ∈

S(z)}. Let V ′′
z be the subspace of V ′

z spanned by the set of vectors of the form
v− (v)ψS,T,z, where (S, T) runs through the arcs of G|S(z) and, for each arc (S, T),
v runs through the vectors of FS,z. We define Vz = V ′

z/V ′′
z and we denote λz the

corresponding quotient map V ′
z → Vz.

Theorem 4.2. Suppose that hypothesis (PSh) and conditions (ConP ), (ConL), and (IdP )
hold. Then the following statements are true.

(i) For every p ∈ P , dim(Vp) = 1. For every L ∈ L, dim(VL) = 2.
(ii) For every z ∈ P ∪ L and for every S ∈ S(z), the map (λz|FS,z) : FS,z → Vz is

bijective.
(iii) There exists a D-presheaf F = ({Vp}p∈P , {VL}L∈L, {φpL}(p,L)∈M) on Γ such

that, for every S ∈ S ,

(F|S) ∼= FS

More precisely, for every S ∈ S and for every flag (p, L) ∈ M(S)

φpL = (λp|FS,p)
−1 ◦ φS,pL ◦ (λL|FS,L)

Therefore, for every S ∈ S , the set of maps {(λz|FS,z)|z ∈ P(S) ∪ L(S)} is an
isomorphism of presheaves FS → (F|S).

Remark 4.3. For a point-line geometry uniqueness, up to an isomorphism, of an
embedding presheaf is equivalent to the existence of an absolutely universal em-
bedding (see Remark 8.8 of Subsection 8.2). When is the presheaf F of Theorem
4.2 unique? Consider the following hypothesis.

(R1) Suppose the hypothesis of Theorem 4.2 holds. Suppose further that, for every
S ∈ S , FS is the embedding presheaf on S unique up to multiplication by elements of
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C(D), and that the isomorphisms ψS,T are unique up to multiplication by elements of
C(D).

Let D be the set of all circular walks of G lying in the various subgraphs
G|S(p) and suppose g ∈ HomZ(FA

∗, C(D)) is such that
(R2) (([D]∗)∂[D]∗)g = 1 for all D ∈ D.

Define Ψ′ = {ψa (a∗)g|a ∈ A}. Since Ψ satisfies (IdP ) and g satisfies (R2), Ψ′

satisfies (IdP ). Denote F and F ′ the presheaves on Γ obtained from Ψ and Ψ′.
The presheaves F and F ′ will be isomorphic if and only if

(R3) there exists h : S → C(D)◦ such that, for every arc a = (x, y) of G, (a∗)g =
[(x)h]−1(y)h.

Therefore, under hypothesis (R1), the presheaf F is unique up to an isomor-
phism if and only if

(R4) for every g ∈ HomZ(FA
∗, C(D)) condition (R2) implies (R3).

(Consider the chain F[D]∗ → FA∗ → FS with the arrows being the boundary
maps ∂[D]∗ and ∂A∗ , where, for an arc (x, y) ∈ A, ((x, y)∗)∂A∗ = y − x. Then (R4)
says that every cocycle of FA∗ is a coboundary.) Condition (R4) holds if and only
if

(R5) for every circular walk C ∈ C(G), ([C]∗)∂[C(G)]∗ = (∑i Di)∂[C(G)]∗ , where
Di ∈ D.

In [10], Theorem 1 Case 1 (with condition (T1) holding) essentially states that,
for an embeddable geometry, (R1) and (R5) together imply existence of an abso-
lutely universal embedding (see also Subsection 6.1).

4.4 Proof of Theorem 4.2

First, we prove the following lemma that gives sufficient conditions for the map
(λz|FS,z) : FS,z → Vz to be an epimorphism or a monomorphism.

Lemma 4.4. Suppose G = (X, E) is a graph with the arc set A, and suppose that
{Vα|α ∈ X} is a set of left vector spaces over a division ring D. Suppose further that
{ψα,β : Vα → Vβ|(α, β) ∈ A} is a set of bijective D-linear maps, such that ψα,β = ψ−1

β,α

for all (α, β) ∈ A. Let V ′ =
⊕
{Vα|α ∈ X}, let V ′′ = 〈{v − (v)ψα,β|(α, β) ∈ A, v ∈

Vα}〉V ′ , and let V = V ′/V ′′; we denote λ the quotient map. The following statements
hold.

(i) Suppose that the graph G is connected. Then, for every α ∈ X, the map (λ|Vα) :
Vα → V is surjective and dim(V) ≤ dim Vα.

(ii) Suppose that, for every circular walk (α0, . . . , αn) of G, we have ψα0,α1
◦ · · · ◦

ψαn−1,αn = idU , where U = Vα0 . Then, for every α ∈ X, the map (λ|Vα) : Vα → V is
injective and dim(V) ≥ dim(Vα).

Proof. For a walk w = (x0, . . . , xn) we let ψw = ψx0,x1
. . . ψxn−1,xn .

(i) Let α ∈ X and let u ∈ V. We show that there is a vector v ∈ Vα, such that
λ(v) = u. By the definition of the space V, there are β ∈ X and v′ ∈ Vβ, such that
u = (v′)λ. By hypothesis the graph G is connected, therefore there is a walk w
from β to α in G. Let v = (v′)ψw. Then v ∈ Vα and (v)λ = (v′)λ = u.

(ii) It suffices to consider the case when G is connected. Let α ∈ X and suppose
that u, v ∈ Vα are distinct. We show that there exists f ∈ HomD(V, D) such that
((u)λ) f 6= ((v)λ) f .
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Suppose fα ∈ HomD(Vα, D) is such that (u) fα 6= (v) fα . First, we define
f ′ ∈ HomD(V ′, D) by the following rule. Let β ∈ X and let x ∈ Vβ. Since G
is connected, there exists a walk w in G from β to α. Let xα = (x)ψw. Then
xα ∈ Vα and we define (x) f ′ = (xα) fα. Suppose w′ is another walk from β to α
in G, and let x′α = (x)ψw′ . Then w′ ◦ w−1 is a circular walk and by hypothesis
(x)(ψw′ ◦ ψw−1) = x. Therefore x′α = (x)ψw′ = (x)ψw = xα. This shows that f ′

is well defined on the elements of ∪{Vα|α ∈ X} and we can extend it to V ′ by
D-linearity. We claim that V ′′ ⊆ Ker( f ′). Let β ∈ X, let x ∈ Vβ, and suppose
(β, β′) is an arc of G. Then there is a walk from α to β′ in G of the from w ◦ (β, β′),
where w is a walk from α to β in G. Therefore ((x)ψβ,β′ ) f ′ = (x) f ′ . This shows

that x − (x)ψβ,β′ ∈ Ker( f ′) and proves the claim. Since V ′′ ⊆ Ker( f ′), f ′ induces

a map f ∈ HomD(V, D) and, for every x ∈ Vα, ((x)λ) f = (x) f ′ = (x) fα. In
particular, ((u)λ) f = (u) fα 6= (v) fα = ((v)λ) f .

Corollary 4.5. Suppose that hypothesis (PSh) holds. Let Z ∈ {P ,L}. If Z = P then
let k = 1; if Z = L then let k = 2.

(i) Suppose condition (ConZ ) holds. Then, for every z ∈ Z and for every S ∈ S(z),
the map (λz|FS,z) : FS,z → Vz is surjective and dim(Vz) ≤ k.

(ii) Suppose condition (IdZ ) holds. Then, for every z ∈ Z and for every S ∈ S(z),
the map (λz|FS,z) : FS,z → Vz is injective, and dim(Vz) ≥ k.

Proof of Theorem 4.2. Parts (i) and (ii) are immediate from Corollary 4.5. To
prove (iii) we define a D-presheaf F = ({Vp}p∈P , {VL}L∈L, {φpL}(p,L)∈M) on Γ

as follows.
The spaces Vz, z ∈ P ∪ L, have been defined. Suppose (p, L) ∈ M. To define

φpL we choose S ∈ S(L); since S is a full subgeometry, (p, L) ∈ M(S). By part
(ii) of the present theorem the map (λp|FS,p) : FS,p → Vp is a bijection, therefore
we can define an injective D-linear map φpL : Vp → VL by

φpL = (λp|FS,p)
−1 ◦ φS,pL ◦ (λL|FS,L,p) (4.1)

We claim that the map φpL is independent of the choice of S ∈ S(L). Let
T ∈ S(L). By hypothesis the graph G|S(L) is connected, therefore it suffices to
consider T adjacent to S. Since ψT,S is a presheaf isomorphism, using the defini-
tions of Vp, VL, and φpL, we obtain

φT,pL ◦ (λL|FT,L,p) = ψT,S,p ◦ φS,pL ◦ ψ−1
T,S,L ◦ (λL|FT,L,p)

= ψT,S,p ◦ φS,pL ◦ (λL|FS,L,p)
= ψT,S,p ◦ (λp|FS,p) ◦ φpL

= (λp|FT,p) ◦ φpL

Therefore (λp|FT,p)
−1 ◦ φT,pL ◦ (λL|FT,L) = φpL.

5 Conditions implying (Id P )

In this section we prove Theorem 5.4 and its Corollary 5.5 that describe suffi-
cient conditions under which the set of presheaf isomorphisms Ψ in hypothesis
(PSh) can be replaced with a set Ψ′ satisfying condition (IdP ). Then we combine
Corollary 5.5 with Theorem 4.2 to obtain a criterion for existence of presheaves –
Corollary 5.6.
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5.1 Associates and nonpointed circular walks. C-homotopy in graphs

In this subsection we mostly follow [15]. Let G = (V, E) be a graph.
Suppose C = (v0, . . . , vn) is a circular walk in G. An associate of C is any

walk Ci = (vi, vi+1, . . . , vn−1, vn, v1, . . . , vi−1, vi), where i ∈ {0, . . . , n − 1} and the
indices are added mod n. We call the set of circular walks [C] = {C0, . . . , Cn−1}
the nonpointed circular walk corresponding to C or the oriented association class of
C. We let suppV([C]) = suppV(C). For a set C of circular walks in G, we denote
[C] the set of nonpointed circular walks corresponding to the walks in C.

Suppose (w, z) is a pair of walks in G, such that w and z have common initial
and terminal vertices, and suppose w = w1 ◦ w2 ◦ w3 and z = w1 ◦ z2 ◦ w3. Then

we say that the ordered pair (w, z) is a deformation of w by the circular walk w−1
2 ◦

z2, and that the circular walk w−1
2 ◦ z2 corresponds to the deformation (w, z). The

circular walk w−1
2 ◦ z2 corresponding to the deformation (w, z) is not unique.

Assume now that the graph G is connected.
Suppose that C is a set of circular walks in G, closed under orientation reversal

and taking associates. Let (w, z) be a pair of walks in G such that w = w1 ◦w2 ◦w3

and z = w1 ◦ z2 ◦ w3. If w−1
2 ◦ z2 ∈ C or w−1

2 ◦ z2 is a backtrack, then we say
that (w, z) is an elementary C-homotopy. Two walks w and z in G having common
initial and terminal vertices are said to be C-homotopic if there is a sequence of
elementary C-homotopies (w0, w1), . . . , (wp−1, wp) with w0 = w and wp = z. If a
circular walk w in G is C-homotopic to the walk of length 0 beginning at its initial
vertex, then we say that w is C-contractible.

Suppose that F is a subgraph of G and suppose every circular walk in F is
C-homotopic in G to a walk of length 0. Then we say that F is C-contractible in
G. If G itself is C-contractible, then we say that G is C-simply connected. If C is the
set of all triangles of G then we omit C and just say “contractible” and “simply
connected”.

There is some flexibility in the choice of the definition of C-homotopy. How-
ever, in any definition of C-homotopy one has to allow the deformations by back-
tracks to be C-homotopies since this has the following desired consequence. Sup-
pose v ∈ V and suppose that all circular walks in G with initial vertex v are
C-contractible. Then, using deformations by backtracks, one can show that every
circular walk in G is C-contractible (see Section 13.1 of [15]).

5.2 Boundary in graphs

Let X be a set. We denote FX the free Z-module with base X . Suppose that
i : X → X is an involution on X , that is i is a bijection and i2 = idX . Let M
be the submodule of FX generated by the set {X + (X)i|X ∈ X}. We define
FX ∗ = FX/M. For X ∈ X , we denote X∗ the image of X in FX ∗.

Let G = (V, E) be a graph with the arc set A.
The map a 7→ a−1 is an involution on A. We let FA∗ be the corresponding

Z-module defined as in the preceding paragraph and, for a ∈ A, we denote a∗

the image of a in FA∗ under the defining quotient map. For a walk W in G and for
a ∈ A, denote µ(W, a) the number of segments of W equal to a. Suppose W is a
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set of walks in G and consider the module FW . We define the boundary operator

∂W ∈ HomZ(FW , FA∗)

by the rule that, for X = ΣW∈WλWW, (X)∂W = Σa∈Aµaa∗, where µa =
ΣW∈WλWµ(W, a).

Let C be a set of circular walks in G closed under taking inverses and asso-
ciates. The map C 7→ C−1 is an involution on C and it induces an involution
i : [C] 7→ [C−1] on the set of nonpointed circular walks [C]. We let F[C]∗ be
the Z-module corresponding to [C] and i. Since F[C] ∼= FC/M, where M =
〈C − C′|C, C′ ∈ C and [C] = [C′]〉FC , the map ∂C induces a map

∂[C]∗ ∈ HomZ(F[C]
∗, FA∗)

that can be described by the rule that, for X = ΣC∈CλC[C]
∗, (X)∂[C]∗ = Σa∈Aµaa∗

(note that the representation of X is not unique, since it is allowed to contain
summands corresponding to walks C ∈ C that are associates or inverses of each
other). The map ∂[C]∗ is never surjective since, in every circular walk, every vertex
is incident with an even number of arcs, while in a single arc a vertex is incident
with exactly one arc – an odd number. We denote FA∗

[C]∗ the image of F[C]∗ in

FA∗ under ∂[C]∗ .

Lemma 5.1. Let G = (V, E) be a graph and suppose C is a set of circular walks in
G closed under taking inverses and associates. Let C ∈ C and suppose that C is ∅-
contractible. Then ([C]∗)∂[C]∗ = 0.

Proof. By hypothesis C is contractible by backtracks. If B is a backtrack then, for
every arc a of G, µ(B, a) = µ(B, a−1).

Lemma 5.2. Let G = (V, E) be a graph and let C be a set of circular walks in G closed
under taking inverses and associates. Suppose (C1, C2) is a C-homotopy corresponding
to a walk C ∈ C. Then ([C1]

∗ + [C]∗)∂[C]∗ = ([C2]
∗)∂[C]∗ .

Let G be a graph and let C be a set of circular walks in G closed under taking
inverses and associates. We extend the definition of suppV of Section 3 from
walks of G to the elements of F[C]∗. Let X ∈ F[C]∗. Then X can be written in the
form X = ΣC∈X λC[C]

∗, where X ⊆ C satisfies the following conditions.

(Supp1) For every C ∈ C, at most one associate of C is in X .

(Supp2) For every C ∈ X , C−1 6∈ X .

(Supp3) For every C ∈ X , λC > 0.

Any set X satisfying (Supp1)-(Supp3) will be denoted suppC(X), and the sum
ΣC∈X λC[C]

∗ will be called the positive expansion of X. Since C is a basis for FC, and
since λC > 0, suppC(X) is determined by X up to replacing a walk C ∈ suppC(X)
by an associate, and the coefficients λC are uniquely determined by X. We define
suppV(X) = ∪{suppV(C)|C ∈ suppC(X)}. If C, D ∈ C are associates of each
other then suppV(D) = suppV(C), therefore suppV(X) is independent of the
choice of the set suppC(X).
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5.3 Existence of a set of isomorphisms Ψ′ satisfying (Id C)

Suppose hypothesis (PSh) holds. Recall that, for a set of circular walks C in G and
for p ∈ P , we denote Cp = C ∩ C(G|S(p)). We consider the following additional
hypothesis that will be referred to as

Hypothesis (Crc). There exists a set of circular walks C in G closed under taking
inverses and associates and satisfying the following conditions.

(Crc-con) The graph G is C-simply connected.

(Crc-pnt) For every p ∈ P , the graph G|S(p) is Cp-simply connected.

(Crc-cir) For every C ∈ C, we have PC 6= ∅ and ψC = idFC
αC, where αC ∈ C(D)◦.

(Crc-ker) Let fΨ,[C]∗ ∈ HomZ(F[C]
∗, C(D)◦) be defined by ([C]∗) fΨ,[C]∗ = αC for

every C ∈ C. Then Ker(∂[C]∗) ⊆ Ker( fΨ,[C]∗).
Existence of the function fΨ,[C]∗ in condition (Crc-ker) follows from condition

(Crc-cir) and from the following lemma.

Lemma 5.3. Assume that hypothesis (PSh) holds. Suppose C is a circular walk in G
such that PC 6= ∅, let p ∈ PC, and suppose ψC,p = idVα for some α ∈ C(D)◦, where
V = FC,p. Then the following statements hold.

(i) For every associate C′ of C, ψC′,p = idWα, where W = FC′,p.

(ii) ψC−1,p = idVα−1.

Proof. First, we observe that if C′ = C−1 or C′ ∈ [C], then p ∈ PC′ .

(i) Suppose that C = (S0, . . . , Sn), where S0 = Sn. Let C′ = (Si, Si+1, . . . , Si−1)
be an associate of C and let w = (S0, . . . , Si). Since the map ψw,p is D-linear, we
obtain

ψC′,p = ψw−1,p ◦ ψw,p ◦ ψC′,p

= ψw−1,p ◦ ψC,p ◦ ψw,p

= ψw−1,p ◦ (idVα) ◦ ψw,p

= (ψw−1,p ◦ ψw,p)α

= idWα

(ii) We have ψC−1,p = (ψC,p)
−1 = [idVα]−1 = idVα−1.

Theorem 5.4. Suppose that hypotheses (PSh) and (Crc) hold, except possibly for the
condition (Crc-pnt). Then there exists a set of scalars {αa ∈ C(D)◦|a ∈ A} such that
the set of presheaf isomorphisms Ψ′ = {ψaαa|a ∈ A} satisfies condition (PSh-inv) of
hypothesis (PSh), and satisfies condition (IdC).

Corollary 5.5. Suppose that hypotheses (PSh) and (Crc) hold. Then the set Ψ′ of the
conclusion of Theorem 5.4 satisfies condition (IdP ).

Theorem 5.4 and Corollary 5.5 will be proved in Subsection 5.5. Combining
Corollary 5.5 with Theorem 4.2, and observing that (Crc-pnt) implies (ConP ), we
immediately obtain the following.

Corollary 5.6. Suppose that hypotheses (PSh), (ConL), and (Crc) hold. Then there exists
a D-presheaf F on Γ such that F|PS

∼= FS for every S ∈ S .
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5.4 Boundary and functionals

The main purpose of this subsection is to prove the following.

Proposition 5.7. Let G = (V, E) be a connected graph and let C be a set of circular
walks in G closed under taking inverses and associates, and suppose that G is C-simply
connected. Let A be an abelian group and suppose f ∈ HomZ(F[C]

∗, A). Then f =
∂[C]∗ ◦ g for some g ∈ HomZ(FA

∗, A) if and only if Ker(∂[C]∗) ⊆ Ker( f ).

First, we prove three lemmas, the first of which is meant for use in Subsection
6.4.

Lemma 5.8. Let G = (V, E) be a graph with the set of arcs A, and let C be a set of
circular walks in G closed under taking inverses and associates.

(i) Suppose X ∈ F[C]∗ and X = ΣC∈CλC[C]
∗. Then X ∈ Ker(∂[C]∗) if and only if

ΣC∈CλCµ(C, a) = ΣC∈CλCµ(C, a−1) for every a ∈ A.
(ii) Suppose A is an abelian group and suppose f ∈ HomZ(F[C]

∗, A). Then f =
∂[C]∗ ◦ g for some g ∈ HomZ(FA

∗
[C]∗ , A) if and only if Ker(∂[C]∗) ⊆ Ker( f ).

Proof. The proof of (i) is a straightforward verification and we omit it. If f =
∂[C]∗ ◦ g for some g ∈ HomZ(FA

∗
[C]∗ , A) then Ker(∂[C]∗) ⊆ Ker( f ). Suppose

Ker(∂[C]∗) ⊆ Ker( f ). Let g : FA∗
[C]∗ → A be defined by the rule that, for ev-

ery x ∈ FA∗
[C]∗

, (x)g = (X) f , where X ∈ F[C]∗ is such that (X)∂[C]∗ = x. Since

Ker(∂[C]∗) ⊆ Ker( f ), the map g is well defined. We have f = ∂[C]∗ ◦ g. Since f and
∂[C]∗ are both Z-linear, g is Z-linear.

Lemma 5.9. Let G = (V, E) be a connected graph with the set of arcs A. Then there is
a map γ : A → C(G), taking each a ∈ A to a circular walk C(a), whose initial vertex is
the terminal vertex of a, such that,

(i) for every a ∈ A, [C(a−1)] = [C(a)−1];
(ii) for every C ∈ C(G) with the sequence of arcs (a1, . . . , an), the walk a1 ◦ C(a1) ◦

· · · ◦ an ◦ C(an) is ∅-contractible.

Proof. Choose a vertex u ∈ V. For every vertex v ∈ V, choose a walk w(u, v)
from u to v in G; the latter is possible by the connectedness of G. For every arc
a = (x, y) ∈ A, let

C(a) = (y, x) ◦ w(u, x)−1 ◦ w(u, y)

Lemma 5.10. Let G = (V, E) be a connected graph with the set of arcs A, let A be
an abelian group, and suppose f ∈ HomZ(F[C(G)]∗ , A) is such that Ker(∂[C(G)]∗) ⊆
Ker( f ). Then there exists g ∈ HomZ(FA

∗, A) such that f = ∂[C(G)]∗ ◦ g.

Proof. We write the group A additively. For every a ∈ A, let C(a) be as in
Lemma 5.9. Then [C(a−1)] = [C(a)−1 ], therefore ([C(a−1)]∗) f = ([C(a)−1 ]∗) f =
−([C(a)]∗) f . We define g by (a∗)g = ([C(a)]∗) f for all a ∈ A and we claim that
f = ∂[C(G)]∗ ◦ g.

Let C ∈ C(G) be arbitrary. Then by Lemma 5.9(ii) and by Lemma 5.1
([C]∗)∂[C(G)]∗ = (∑a[C(a)]

∗)∂[C(G)]∗ , where a runs through the arcs of C. By hy-

pothesis Ker(∂[C(G)]∗) ⊆ Ker( f ), therefore

([C]∗) f = (∑
a

[C(a)]∗) f = ∑
a

([C(a)]∗) f = ∑
a

(a∗)g
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Proof of Proposition 5.7. We write the group A additively and we view the mod-
ule F[C]∗ as a submodule of F[C(G)]∗. If f = ∂[C]∗ ◦ g for some g ∈ HomZ(FA

∗, A),

then Ker(∂[C]∗) ⊆ Ker( f ). Suppose that Ker(∂[C]∗) ⊆ Ker( f ). We need to con-

struct g ∈ HomZ(FA
∗, A) such that f = ∂[C]∗ ◦ g. First, we prove the following

claim.
There exists f ′ ∈ HomZ(F[C(G)]∗ , A) such that f ′|F[C]∗ = f and Ker(∂[C(G)]∗) ⊆

Ker( f ′).
We define ([C]∗) f ′ for all C ∈ C(G) and extend the definition to F[C(G)]∗

by Z-linearity. First, we define f ′′ : [C(G)] → A as follows. Let C ∈ C(G)
and let v denote the initial vertex of C. By hypothesis the graph G is C-simply
connected, therefore there exists a sequence of elementary C homotopies s that
begins with (v) and ends with C. Let (C1, . . . , Cn) be a sequence of circular walks
in C corresponding to the homotopies in s. We define

([C]) f ′′ = ([C1]
∗) f + · · ·+ ([Cn]

∗) f (5.1)

Suppose C′ is an associate of C, let s′ be a sequence of elementary C-homotopies
beginning with a walk of length 0 and ending with C′, and suppose (D1, . . . , Dm)
is a sequence of circular walks in C corresponding to s′. Then by Lemma 5.2
([C1]

∗ + · · ·+ [Cn]
∗)∂[C]∗ = ([C]∗)∂[C]∗ = ([C′]∗)∂[C]∗ = ([D1]

∗ + · · ·+ [Dm]
∗)∂[C]∗ .

By hypothesis Ker(∂[C]∗) ⊆ Ker( f ), therefore ([C1]
∗ + . . . [Cn]

∗) f = ([D1]
∗ +

. . . [Dm]∗) f . Since f is Z-linear, this implies that ([C1]
∗) f + · · · + ([Cn]∗) f =

([D1]
∗) f + · · · + ([Dm]∗) f . This shows that f ′′ is well defined. By equation

5.1, for every C ∈ C(G), ([C−1]) f ′′ = −([C]) f ′′ , therefore f ′′ induces a map
[C(G)]∗ → A. We define f ′ ∈ HomZ(F[C(G)]∗ , A) as the Z-linear extension of
the last map. We have f ′|F[C]∗ = f .

To finish the proof of the claim it remains to show that Ker(∂[C(G)]∗) ⊆ Ker( f ′).

Let X ∈ Ker(∂[C(G)]∗) and suppose that X = ∑i∈I λi[Ci]
∗, where Ci ∈ C(G) and

I is a finite set. By hypothesis the graph G is C-simply connected. Therefore, for
every ∈ I, there is a sequence of elementary C-homotopies starting with a walk of
length 0 and ending with Ci; let {Ci,j ∈ C|j ∈ Ji} be a corresponding set of circular
walks in C. By Lemma 5.2, for every i ∈ I, ([Ci]

∗)∂[C(G)]∗ = (∑ j∈Ji
[Ci,j]

∗)∂[C(G)]∗ .

Since X ∈ Ker(∂[C(G)]∗), ∑i,j λi[Ci,j]
∗ ∈ Ker(∂[C]∗). Since Ker(∂[C]∗) ⊆ Ker( f ),

using the Z-linearity of f ′ and f we obtain

(X) f ′ = ∑
i

λi([Ci]
∗) f ′ = ∑

i,j

λi([Ci,j]
∗) f = (∑

i,j

λi[Ci,j]
∗) f = 0

Let f ′ be as in the claim. By Lemma 5.10 there exists g ∈ HomZ(FA
∗, A) such

that f ′ = ∂[C(G)]∗ ◦ g. Therefore f = f ′|F[C]∗ = (∂[C(G)]∗ ◦ g)|F[C]∗ = ∂[C]∗ ◦ g.

5.5 Proof of Theorem 5.4

Proof of Theorem 5.4. We write the abelian group C(D)◦ multiplicatively. We define
the set {αa|a ∈ A} as follows. By hypothesis the graph G is C-simply connected
and by (Crc-ker) Ker(∂[C]∗) ⊆ Ker( fΨ,[C]∗). Therefore by Proposition 5.7 there

exists g ∈ HomZ(FA
∗, C(D)◦) such that

fΨ,[C]∗ = ∂[C]∗ ◦ g (5.2)
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For every a ∈ A, define αa = [(a)g]−1. We claim that the set Ψ′ = {ψaαa|a ∈ A}
satisfies condition (IdC).

For C ∈ C(G), let ψ′
C = {ψ′

C,z|z ∈ PC ∪ LC}, where ψ′
C,z are defined similarly

to ψC,z but with the set Ψ replaced with Ψ′. Let C ∈ C and suppose that C has
length n ≥ 2 and the sequence of arcs a0, . . . , an−1. For all i ∈ {0, . . . , n − 1}, let
αi = αai

and, for p ∈ PC, let ψi,p = ψai,p; then ψ′
C,p = ψ1,pα1 ◦ · · · ◦ ψn,pαn. By

condition (Crc-cir) PC 6= ∅. By Lemma 2.1(i) to show that ψ′
C = idFC

it suffices
to show that, for every p ∈ PC, ψ′

C,p = idFC,p
. Let p ∈ PC and let V = FC,p. By

condition (Crc-cir) and by equation 5.2 we have ψC,p = idVΠn−1
i=0 α−1

i . Therefore
by the D-linearity of the maps ψi we obtain

ψ′
C,p = ψ0,p α0 ◦ · · · ◦ ψn−1,p αn−1

= ψC,pΠn−1
i=0 αi

= (idVΠn−1
i=0 α−1

i )Πn−1
i=0 αi

= idV

When the conclusion of Theorem 5.4 holds, for C ∈ C(G), we let ψ′
C be de-

fined as in the proof of Theorem 5.4. To prove Corollary 5.5 we use the following
lemma.

Lemma 5.11. Suppose that hypothesis (PSh) holds. Let p ∈ P , let G = G|S(p), an let C
and D be circular walks in G. Suppose that (C, D) is a deformation by a circular walk E,
and suppose that ψC,p = idFC,p

αC,p and ψE,p = idFE,p
αE,p, where αC,p, αE,p ∈ C(D)◦.

Then ψD,p = idFD,p
(αC,pαE,p).

Proof. Suppose that C = C1 ◦ C2 ◦ C3, D = C1 ◦ C′
2 ◦ C3, and E = C−1

2 ◦ C′
2. For

i ∈ {1, 2, 3} let ψi = ψCi,p and let ψ′
2 = ψC′

2,p. We have

ψD,p = ψ1 ◦ ψ′
2 ◦ ψ3

= ψ1 ◦ ψ2 ◦ ψC−1
2 ,p ◦ ψ′

2 ◦ ψ3

= ψ1 ◦ ψ2 ◦ ψE,p ◦ ψ3

= ψ1 ◦ ψ2 ◦ (idFE,pαE,p) ◦ ψ3

= (ψ1 ◦ ψ2 ◦ ψ3)αE,p

= ψC,pαE,p

= idFC,p
αC,pαE,p

Proof of Corollary 5.5. Suppose C ∈ C(G) and PC 6= ∅. We need to show that
ψ′

C = idFC
. By Lemma 2.1(i) it suffices to show that, for every p ∈ PC, ψ′

C,p = idV

where V = FC,p.

Let p ∈ PC and let V = FC,p. By hypothesis the graph G|S(p) is Cp-simply
connected, therefore there exists a sequence s of elementary Cp-homotopies begin-
ning with a walk of length 0 and ending with C. Let (C1, . . . , Cn) be a sequence of
circular walks corresponding to the homotopies in s. By the definition of Ψ′, for
every D ∈ {C1, . . . , Cn}, ψD,p = idW , where W = FD,p. Therefore by Lemma 5.11
ψ′

C,p = idV .
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6 Conditions implying (Crc-cir) and (Crc-ker)

Suppose hypothesis (PSh) holds. In this section we state conditions which imply
conditions (Crc-cir) and (Crc-ker).

6.1 Statement of results

Suppose that hypothesis (PSh) holds. Let X ⊆ S . We consider the following
conditions.

(PX-l) The geometry Γ|PX contains a line and is connected.
(PX-e) For every arc (S, T) ∈ AX , the isomorphism of presheaves FS|(S ∩ T) →

FT|(S ∩ T) is unique up to multiplication by an element of C(D)◦, and the geome-
try Γ|PX has an embedding such that, for every S ∈ X , the corresponding embedding
presheaf is isomorphic to FS.

Proposition 6.1. Suppose that hypotheses (PSh) holds. Let C be a circular walk in G
such that PC 6= ∅.

(i) If suppS(C) satisfies (PX-l), then ψC = idFC
αC, where αC ∈ C(D)◦.

(ii) If suppS(C) satisfies (PX-e), then ψC = idFC
αC, where αC ∈ C(D)◦.

To state the second result we need a definition. Suppose that hypothesis (PSh)
holds. Let C be a set of circular walks in G, closed under taking associates and
orientation reversal. For X ∈ F[C]∗, we define

PX = ∩{S|S ∈ suppS(X)} PX = ∪{S|S ∈ suppS(X)}

Proposition 6.2. Suppose that hypotheses (PSh) holds, and suppose C is a set of cir-
cular walks in G, closed under orientation reversal and taking associates, and satisfy-
ing (Crc-cir). Let fΨ,[C]∗ ∈ HomZ(F[C]

∗, C(D)◦) be defined as in (Crc-ker) and let

X ∈ Ker(∂[C]∗).

(i) If PX 6= ∅ and (Crc-pnt) holds, then X ∈ Ker( fΨ,[C]∗).

(ii) If suppS(X) satisfies (PX-e), then X ∈ Ker( fΨ,[C]∗).

Propositions 6.1 and 6.2 will be proved in Section 6.4 after some preparation.

6.2 Lemma for the case PX 6= ∅

We consider the following Hypothesis (Ctg):
G = (V, E) is a connected graph with the set of arcs A, V is a set of objects of a

category X , and f is a function, assigning to each arc (x, y) ∈ A an isomorphism x → y
in X , and satisfying condition (Ctg-inv):

(Ctg-inv) For all a ∈ A, (a−1) f = [(a) f ]−1 .
Suppose (Ctg) holds, except possibly for (Ctg-inv), and let w be a walk in G

with the sequence of arcs a1, . . . , an. We define (w) f = (a1) f ◦ · · · ◦ (an) f . Since
the composition is associative, (w) f is well defined and, for any triple of walks
w, w1, w2 in G such that w = w1 ◦ w2, we have (w) f = (w1) f ◦ (w2) f .
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Lemma 6.3. Suppose hypothesis (Ctg) holds. Then there exists a function g, assigning
to each arc (x, y) ∈ A an automorphism of y in X , and having the following properties.

(i) For every a ∈ A, (a)g = (C(a)) f , where C(a) is a circular walk in G beginning
at the terminal vertex of a, and [C(a−1)] = [C(a)−1];

(ii) For every a ∈ A, define (a) f ′ = (a) f ◦ (a)g. Then, for every circular walk C in
G, (C) f ′ = idx, where x denotes the initial vertex of C.

Proof. For every a ∈ A, let C(a) be as in the conclusion of Lemma 5.9. Define g
by (a)g = (C(a)) f for all a ∈ A and let f ′ be defined as in (ii). Then part (i) holds
by the definition of C(a) (see Lemma 5.9(i)). To prove part (ii) let C ∈ C(G) and
suppose (a1, . . . , an) is the sequence of arcs of C. Let C′ = a1 ◦ C(a1) ◦ · · · ◦ an ◦
C(an) and let (b1, . . . , bm) be the sequence of arcs of C′. Then

(C) f ′ = (a1) f ◦ (C(a1)) f ◦ · · · ◦ (an) f ◦ (C(an)) f = (b1) f ◦ · · · ◦ (bm) f (6.1)

By the definition of the walks C(a) the walk C′ is ∅-contractible (see Lemma
5.9(ii)), and by hypothesis f satisfies (Ctg-inv). Therefore (b1) f ◦ · · · ◦ (bm) f =
idx, where x is the initial vertex of C.

6.3 Lemma for the case (PX-e)

Lemma 6.4. Suppose that hypothesis (PSh) holds and suppose that X ⊆ S satisfies con-
dition (PX-e). Then there exists a map g : AX → C(D)◦ with the following properties.

(i) For every a ∈ AX , (a−1)g = ((a)g)−1 .

(ii) For every circular walk C in G|X with the sequence of arcs a1, . . . , an and such
that PC 6= ∅, we have ψC = idFC

[Πn
i=1(ai)g].

Proof. We construct the map g : AX → C(D)◦ as follows. By condition (PX-e)
the geometry Γ|PX has an embedding presheaf F ′ such that, for every S ∈ X ,
there is a presheaf isomorphism θS : FS → F ′

S. For every arc (S, T) ∈ AX , let
the presheaf isomorphism ψ′

S,T : FS|(S ∩ T) → FT|(S ∩ T) be defined by the rule

that, for every z ∈ (S ∩ T) ∪ [L|(S ∩ T)],

ψ′
S,T,z = θS,z ◦ (θT,z)

−1

By condition (PX-e) there is αS,T ∈ C(D)◦ such that ψS,T = ψ′
S,TαS,T. We let the

map g : AX → C(D)◦ be defined by (a)g = αa for every a ∈ AX .
By (PSh-inv), for every a ∈ AX , ψa−1 = ψ−1

a . By the definition of ψ′
a we have

ψ′
a−1 = (ψ′

a)
−1. Therefore αa−1 = (αa)

−1, that is (i) holds. Let C = (S0, . . . , Sn) be
as in (ii) and let p ∈ PC. Then

ψ′
C,p = (θS0,p ◦ θ−1

S1,p) ◦ · · · ◦ (θSn−1,p ◦ θ−1
Sn ,p) = θS0,p ◦ θ−1

Sn,p = idFC,p

Therefore by the Z-linearity of the maps ψS,T,z, we obtain

ψC = ψ′
C[Π

n
i=1(ai)g] = idFC

[Πn
i=1g(ai)]
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6.4 Proofs of Propositions 6.1 and 6.2

Proof of Proposition 6.1. Let X = suppS(C). If X satisfies condition (PX-l), then
the conclusion follows from Proposition 2.4. If X satisfies (PX-e), then the con-
clusion follows from Lemma 6.4(ii).

Proof of Proposition 6.2. We write the group C(D)◦ multiplicatively. Let X =
suppS(X), let G′ = G|X , and let CX = C ∩ C(G′). Since X ∈ Ker(∂[CX ]∗), by

Lemma 5.8(ii) to prove that (X) fΨ,[C]∗ = 1 it suffices to construct a map g : AX →

C(D)◦ such that (1) for every a ∈ AX , (a−1)g = (a)g−1 and (2) for every C ∈ X
with the sequence of arcs a1, . . . , an, ψC = idFC

[Πn
i=1(ai)g]. In case (ii) the map g

exists by Lemma 6.4. To prove existence of the map g in case (i) we use Lemma
6.3.

Choose p ∈ PX . Let G = G|S(p), let AG be the set of arcs of G, and let ΨG =
{ψa,p|a ∈ AG}. We apply Lemma 6.3 to G and ΨG. For every a ∈ AG, let C(a),
be as in the conclusion of the lemma, but denote the function of the conclusion
defined on AG by g′ instead of g. For every a ∈ AG, we define ψ′

a,p = ψa,p ◦ (a)g′ .

We claim that, for every a ∈ AG, (a)g′ = idFC(a),p
αa for some αa ∈ C(D)◦. By

condition (Crc-cir), for every C ∈ C, we have ψC,p = idFC,pαC. By condition
(Crc-pnt) every C ∈ C(G) is Cp-homotopic to a point. Therefore by Lemma 5.11,
for every C ∈ C(G), there exists αC,p ∈ C(D)◦ such that ψC,p = idFC,p

αC,p. In

particular, the claim holds. Therefore, for every a ∈ AG, ψ′
a,p = ψa,pαa for some

αa ∈ C(D)◦.
We have X ⊆ S(p). Define g : AX → C(D)◦ by (a)g = (αa)−1 for every a ∈

AX . By the definition of C(a), for every a ∈ AG, C(a−1) = C(a)−1 (see Lemma
6.3(i)). Therefore αa−1 = (αa)−1, that is g satisfies (1). Suppose C ∈ suppC(X) is
a walk with the sequence of arcs a1, . . . , an. Let ψi = ψai,p, let ψ′

i = ψ′
ai,p

, and let

αi = αai
for every i ∈ {1, . . . , n}. By the definition of the ψ′

i we have Πn
i=1ψ′

i =
idFC,p

(see Lemma 6.3(ii)), therefore

idFC,p
= Πn

i=1ψ′
i = Πn

i=1(ψiαi) = (Πn
i=1ψi)(Π

n
i=1αi) = ψC,p(Π

n
i=1αi)

This shows that ψC,p = idFC,p
[Πn

i=1(ai)g]. Since by (Crc-cir) ψC = idFC
αC for some

αC ∈ C(D)◦, this implies that ψC = idFC
[Πn

i=1(ai)g], that is g satisfies (2).

Remark 6.5. In Proposition 6.2(ii) condition (Crc-cir) is not necessary, since by
Proposition 6.1(ii) the fact that, for all C ∈ suppC(X), ψC = idFC

αC follows from
(PX-e).

7 Spanning set for Ker(∂[C]∗) in buildings and their Grassman-

nians

The results of this section are similar to “Auxiliary results” in [19], but we are
interested in homology instead of homotopy; the results of this section are also
related to the ordinary homology with integer coefficients of the simplicial com-
plex of a building, which was calculated for spherical buildings by Solomon and
Tits in [17]. The main results are Proposition 7.1 and Theorem 7.9.
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7.1 Spanning set for Ker(∂[C]∗) in building chamber systems

We view buildings as chamber systems and we refer the reader to [19], [13], and
[15] for definitions and notation.

Let B be a building with diagram M = (mij) over a type set I. Let C be the
set of walks of B consisting of the circuits of length 3 and of the “apartments” of
spherical residues of B of rank 2, that is of the circuits of B of all possible types
p2mij

(i, j) with {i, j} ⊆ I and mij an integer. Let ∂[C]∗ be defined as in Section 5.2.

We let K = Ker(∂[C]∗), and we let K3,sph consist of all X ∈ K with suppB(X) ⊆ R,
where R runs through the spherical residues of B of rank at most three. We will
refer to this situation as Hypothesis (HB). The purpose of this subsection is to
prove the following.

Proposition 7.1. Suppose that hypothesis (HB) holds. Then 〈K3,sph〉F[C]∗ = K.

Suppose G is a graph and let C be a set of circular walks in G closed under
taking inverses. An orientation of C is a subset O(C) of C such that, for every
C ∈ C, exactly one C or C−1 is in O(C).

Lemma 7.2. Suppose (HB) holds and suppose that B is a thin spherical building of rank
three. Suppose C, D ∈ C contain arcs a and a−1 respectively. Then there exists an
orientation O(C) of C such that (i) C, D ∈ C and (ii) ΣC∈O(C)[C]

∗ ∈ Ker(∂[C]∗).

Proof. The graph of the chamber system B has a planar embedding with the faces
being the residues of B of rank 2. Let O(C) ⊆ C consist of the elements of C
oriented in the plane the same way as C.

Let G = (V, E) be a graph. Suppose H = (V ′, E′) is a subgraph of G, and let
x ∈ V. We say that H is strongly gated in G with respect to x with gate g if, for all
y ∈ V ′, dG(x, y) = dG(x, g)+dH(g, y); the vertex g is denoted gateH(x). Suppose
X ⊆ V and let x ∈ V. We define maxG(X, x) = max{dG(x, y)|y ∈ X}. We let
rX = min{maxG(X, x)|x ∈ X}, that is rX is the radius of the graph G|X.

Suppose B is a building. Every residue R of B is strongly gated with respect
to every chamber x of B (see [15]); the chamber gateR(x) is denoted projR(x) and
is called the projection of x on R. For a walk W in B, we denote R(W) the minimal
by inclusion residue of B containing W.

Lemma 7.3. Let B be the building of a generalized m-gon over a type set I = {i, j},
where m is an integer. Suppose C is a circuit of type p2m(i, j) in B, and suppose x is a
chamber of B. Then there exists a set S of circuits in B, that consists of (1) triangles each
containing one arc of C, and (2) circuits of type p2m(i, j) containing x and a chamber of
C opposite to x in B, with the following properties.

Let C′ = suppB(C), let X = ΣD∈S[D]∗, and let X = ∪D∈SsuppB(D). Then
(i) [C]∗ − X ∈ Ker(∂[C]∗)

(ii) maxB(X , x) = maxB(C
′, x) and {y ∈ X |dB(x, y) = maxB(X , x)} =

{y ∈ C′|dB(x, y) = maxB(C
′, x)}.

Proof. For an arc (a, b) of C, there are exactly three possibilities:
(+1) dB(x, a) < dB(x, b)
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(0) dB(x, a) = dB(x, b)
(−1) dB(x, a) > dB(x, b)
and we say that (a, b) is of type +1, 0, or −1 with respect to x in these three

cases. Suppose (a, b, c) is a segment of C and let s = (s1, s2) be the types of the
arcs (a, b) and (b, c) with respect to x. There are nine possibilities for s:

(1) (1, 1) or (−1,−1).
(2) (1, 0) or (0,−1); in this case either b and c, or a and b, are opposite to x in

B.

(3) (1,−1); in this case b is opposite to x in B.

(4) (0, 1) or (−1, 0).
(5) (0, 0); in this case a, b, and c are opposite to x in B.

(6) (−1, 1).
First we describe the set S′ of circuits of type p2m(i, j) in S. Let O be the set

of all chambers of C that are opposite to x in B; since m < ∞, by (1)-(6) O 6= ∅.
For each b ∈ O, let Cb be the unique circuit of type p2m(i, j) with initial vertex x,
containing b and x, and oriented as follows. Suppose (a, b, c) is the segment of C
of length 2 containing b, and suppose that (b′, b, b′′) is the segment of Cb of length
2 containing b. Then the arcs (b′, b) and (a, b) lie in one panel of B on b, and the
arcs (b, b′′) and (b, c) lie in the other panel of B on b. We let S′ = {Cb|b ∈ O}.

Now we describe the set S′′ of triangles in S. Let Q be the set of all arcs in C
of type 0 with respect to x. Let q ∈ Q and suppose that q = (a, b). Let R be the
panel of B containing a and b, and let g = gateR(x). Let Tq = (g, a, b, g). We let
S′′ = {Tq|q ∈ Q}.

Let S = S′ ∪ S′′. The building B is a generalized m-gon. Using properties of
generalized polygons and (1)-(6) above, one can check that S satisfies (i) and (ii)
of the conclusion.

Proof of Proposition 7.1. First, we introduce some notation. Suppose x ∈ B, sup-
pose X ∈ F[C]∗, and let X = suppB(X). We define maxB(X, x) = maxB(X , x),
rX = rX , and (suppB(X))x = (X )x = {y ∈ X |dB(x, y) = maxB(X, x)}. We let
DX = min{|(X )x | |x ∈ X and maxB(X, x) = rX}.

Let r = min{rY|Y ∈ K − 〈K3,sph〉F[C]∗}, and let X ∈ K − 〈K3,sph〉F[C]∗ be such

that rX = r and DX = min{DY|Y ∈ K − 〈K3,sph〉F[C]∗ and rY = r}.

Suppose first that rX = 0. Then |X | = 1, therefore X ∈ K3,sph, a contradiction.
Suppose next that rX = 1. Then X ⊆ {x} ∪ B(x) for some x ∈ X . The subgraph
of B induced on the set {x} ∪ B(x) is the union of the panels of B on x, with any
two distinct panels sharing exactly one chamber x. Therefore X = Σi∈I ′Xi, where
I ′ ⊆ I is finite and, for each i ∈ I ′, Xi = ΣλCC with C ranging through a finite
set of triangles of the {i}-panel of B on x. Since X ∈ K, we obtain that, for each
i ∈ I ′, (Xi)∂[C]∗ = 0. Therefore X ∈ 〈K3,sph〉F[C]∗ , a contradiction.

Suppose now that rX ≥ 2. Let x ∈ X be such that maxB(X, x) = rX and
|(X )x | = DX. We obtain a contradiction by showing that there exists X′ ∈ K −
〈K3,sph〉F[C]∗ , such that either rX′ < rX or, else, rX′ = rX and DX′ < DX. This will
be done in three steps. On each step, we continue to call X the new element of
F[C]∗ obtained from X. For C ∈ suppC(X), we denote λC the coefficient of C in
the positive expansion of X.
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Step 1. Suppose that suppC(X) contains circuits of type p2mij
(i, j). We “re-

place” these circuits with other circuits of type p2mij
(i, j) and with triangles.

Suppose that C ∈ suppC(X) is of type p2mij
(i, j) for some {i, j} ⊆ I. Then

R(C) is of type {i, j} and mij is an integer. Let g = gateR(C)(x), and let S be the set

of circuits constructed from C and g as in Lemma 7.3. Then [C]∗ − ΣD∈S[D]∗ ∈
K3,sph, and we replace X with X + λC(−[C]∗ + ΣD∈S[D]∗). By Lemma 7.3(ii), this
does not increase rX, and does not add any new chambers to (X )x . From now on
we assume that (A1) holds.

(A1) For every circuit C ∈ suppC(X) of type p2mij
(i, j), C contains gateR(C)(x)

and a chamber opposite to gateR(C)(x) in R(C); no arc of C is of type 0 with respect
to x.

Step 2. Suppose suppC(X) contains triangles with all vertices in (X )x . We
“replace” all such triangles with triangles having exactly two vertices in (X )x .

Suppose T = (y0, y1, y2, y0) is a triangle such that T ∈ suppC(X) and yi ∈
(X )x for all i ∈ {0, 1, 2}. All yi lie in one panel Q of B. Let g = gateQ(x) and,

for i ∈ {0, 1, 2}, let Ti = (g, yi, yi+1, g), where the indices are added mod 3. Then
−[T]∗ + [T0]

∗ + [T1]
∗ + [T2]

∗ ∈ K3,sph and we replace X with X + λT(−[T]∗ +
[T0]

∗ + [T1]
∗ + [T2]

∗). This does not increase rX, and does not add any new cham-
bers to (X )x .

We claim that after Step 2 suppC(X) does not contain any triangles with ver-
tices in (X )x . Let a = (y0, y1) be an arc of B such that {y0, y1} ⊆ (X )x , let
g = gateR(a)(x), and suppose C ∈ suppC(X) contains a. By (A1) C is a tri-

angle and by Step 2 [C] = [(g, y0, y1, g)]. Since ∂[C]∗(X) = 0, there must exist

D ∈ suppC(X) containing a−1. By (A1) and by Step 2 [D] = [(g, y1, y0, g)]. There-
fore [D] = [C−1], contradicting the definition of suppC(X). Since the panels of B
are strongly gated in B, every triangle in suppC(X) having a vertex in (X )x must
have at least two vertices in (X )x , therefore we have proved the claim.

From now on we assume that condition (A2) holds

(A2) For all y ∈ (X )x , every circuit in suppC(X) on y is of type p2mij
(i, j) for

some {i, j} ⊆ I.

Let y ∈ (X )x . We are going to “remove” y from (X )x . To achieve this we
define a directed graph G = (V,A, α) with labeled arcs. The set of vertices V of G
is the set of all u ∈ X such that (u, y) or (y, u) is a segment of at least one circuit
C ∈ suppC(X). Before we define the arcs of G, we prove the following.

(*) For any walk w = (u, y, v) in B, there is at most one C ∈ suppC(X) con-
taining w or w−1.

Suppose w = (u, y, v) is a segment of some C ∈ suppC(X) and let Q = R(w).
By (A2) Q is of type {i, j} ⊆ I with mij finite, and by (A1) C is the unique circuit
in Q through y and gateQ(x). Therefore, C is the unique circuit in suppC(X)

containing w. By the same argument, any circuit D ∈ suppC(X) containing w−1

must be an associate of C−1. Since C ∈ suppC(X), by its definition suppC(X)

contains no associates of C−1.

We let (u, v) ∈ A if and only if there exists C ∈ suppC(X) containing the
segment (u, y, v), and we let α(u, v) = λC. By (*), if a ∈ A then a−1 6∈ A.

Step 3. We “remove” arcs from G until G contains no walks of length 2.
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Suppose (u1, u2, u3) is a walk of length 2 in G. By (*) u1 6= u3. Let C1,2, C2,3 ∈
suppC(X) be circuits containing the segments (u1, y, u2) and (u2, y, u3) respec-
tively. By (A2) C1,2 and C2,3 are of types p2mij

(i, j) and p2mjk
(j, k) for some i, j, k ∈ I.

Since the ui are pairwise distinct, by (A1) i, j, and k are pairwise distinct. Let Q be
the residue of B of type {i, j, k} containing {u1, u2, u3, y}, and let g = gateQ(x).

By (A1) dB(x, y) > dB(x, ui) for all i ∈ {1, 2, 3}, therefore the residue Q is spher-
ical, and g and y are opposite to each other in Q. Let A be the unique apartment
of Q containing g and y and let CA = C ∩ C(A). By convexity of A and by (A1),
we have C1,2, C2,3 ∈ CA. By Lemma 7.2 there exists an orientation O(CA) of A

containing C−1
1,2 and C−1

2,3 and such that ΣC∈O(CA)
[C]∗ ∈ K3,sph. We replace X with

X + ΣC∈O(CA)
[C]∗.

For the moment, denote the new X by X′, and let X ′ = suppB(X
′). Then X′

satisfies (A2). Let D = ΣC∈O(CA)
[C]∗. Since A is an apartment of Q containing

gateQ(x) and y, and gateQ(x) and y are opposite in A, (A1) holds for every C ∈

suppC(D). Since suppB(D) ⊆ A, no chamber of suppB(D) except y is at distance
rX or more from x. This shows that rX′ ≤ rX and (X ′)x ⊆ (X )x .

We construct G′ = (V ′,A′, α′) from X′ similarly to G. Then α′(u1, u2) =
α(u1, u2) − 1, α′(u2, u3) = α(u2, u3) − 1, and α′(u1, u3) = α(u1, u3) + 1; for the
other arcs a ∈ A′ we have α′(a) = α(a). Therefore

0 ≤ Σa∈A′α′(a) = Σa∈Aα(a)− 1 (7.1)

Equation 7.1 shows that we can repeat the transformation of Step 3 until we reach
X, such that the corresponding graph G contains no walks of length 2.

We claim that after Step 3 no circuit in suppC(X) contains y. Let G = (V,A, α)
be defined as before, and suppose V 6= ∅. Let v ∈ V. By the definition of
the set V, (v, y) or (y, v) is a segment of at least one circuit in suppC(X). Since
X ∈ Ker(∂[C]∗), there must be circuits C1 and C2 in suppC(X), such that (y, v) is

a segment of C1 and (v, y) is a segment of C2. Suppose (u1, y, v) and (v, y, u2) are
segments of C1 and C2 respectively. Then (u1, v, u2) is a walk of length 2 in G, a
contradiction.

On Steps 1-3, we did not increase rX, and did not add any new chambers
to (X )x . Therefore we have constructed X′ ∈ K − 〈K3,sph〉F[C]∗ , such that either

rX′ < rX (if |DX| was 1), or rX′ = rX and DX′ = DX − 1, contradicting the choice
of X.

7.2 Graph morphisms and walks

The main objective of this subsection is to prove Lemma 7.8 that applies to the
following situation (Geom).

Let H = (V, E) be a connected graph, and let P and L be sets of induced subgraphs
of H. Suppose the following conditions hold.

(Geom-geom) |PL| ≥ 2 for all L ∈ L, and PL 6= PN for all pairs L, N ∈ L with
L 6= N.

(Geom-vrt) Every vertex of H is a vertex of exactly one subgraph p ∈ P .
(Geom-edg) Every edge of H is an edge of at least one subgraph x ∈ P ∪ L.



618 A. Kasikova

Suppose (Geom) holds. We define Γ = (P ,L) as the point-line geometry in
which a point p ∈ P and a line L ∈ L are incident if and only if p ∈ PL. Let
G = (P , E) be the point-collinearity graph of Γ. By (Geom-vrt) there is a map
τ : V → P defined by (v)τ = p if and only if v ∈ p. By (Geom-edg) τ induces
a morphism of graphs H → G, which we also denote τ. Let W be a walk in H.
The image w of W under τ is a stammering walk, that is a sequence of vertices
in which any two consecutive vertices are either equal or adjacent. We denote
wG(W) the walk obtained from w by removing the repetitions. We denote AH

and AG the arc sets of H and G. In the next lemma we use the following condition.
(Geom-lin) For every L ∈ L and for every pair of distinct points p, q ∈ PL, there

exists an edge {x, y} in L with x ∈ p and y ∈ q.

Lemma 7.4. Suppose hypothesis (Geom) holds.
(i) The morphism τ is surjective on vertices; τ is surjective on edges if and only if

(Geom-lin) holds.
(ii) If walks W1 and W2 in H have a common initial vertex, or a common terminal

vertex, then wG(W1) and wG(W2) have a common initial vertex, or a common terminal
vertex.

(iii) For any concatenation of walks w1 ◦ w2 in H, wG(w1 ◦ w2) = wG(w1) ◦
wG(w2).

(iv) For every walk C in H, wG(C
−1) = [wG(C)]

−1. If C is a circular walk in H,
then wG(C) is a circular walk in G and, for every associate D of C, wG(D) is an associate
of wG(C).

Proof. Statement (i) is immediate from the definition of τ and from (Geom-lin).
Statements (ii)-(iv) are true since τ is a morphism of graphs.

Suppose (Geom) holds. Let C be a set of circular walks in H closed under
orientation reversal and taking associates. Define wG(C) = {wG(C)|C ∈ C}. The
set wG(C) consists of circular walks and is closed under orientation reversal and
taking associates.

Lemma 7.5. Suppose hypothesis (Geom) holds. Let C be a set of circular walks in H
closed under orientation reversal and taking associates. Then, for every C-homotopy
(W1, W2) in H, (wG(W1), wG(W2)) is a wG(C)-homotopy in G.

Proof. Suppose (w, z) is a C-homotopy in H, and suppose w = w1 ◦ w2 ◦ w3 and

z = w1 ◦ w′
2 ◦ w3, where w−1

2 ◦ w′
2 ∈ C. Then by Lemma 7.4 parts (iii) and (iv)

wG(w) = wG(w1) ◦ wG(w2) ◦ wG(w3), wG(z) = wG(w1) ◦ wG(w
′
2) ◦ wG(w3),

and wG(w2)
−1 ◦ wG(w

′
2) = wG(w

−1
2 ◦ w′

2) ∈ wG(C).

Suppose (Geom) holds. In the next lemma we use condition (Geom-lin) to-
gether with the following condition.

(Geom-con) All subgraphs p ∈ P are connected.

Lemma 7.6. Suppose hypothesis (Geom) and conditions (Geom-lin) and (Geom-con)
hold. Let C be a set of circular walks in H closed under orientation reversal and tak-
ing associates.

(i) For every walk w in G there exists a walk W in H, circular if w is circular, such
that wG(W) = w.

(ii) If H is C-simply connected, then G is wG(C)-simply connected.
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Proof. (i) Suppose w = (p0, . . . , pn) is a walk in G. For every i ∈ {0, . . . , n − 1}
choose ai ∈ pi and bi+1 ∈ pi+1 adjacent to each other; this is possible by (Geom-
lin). By (Geom-con), for every i ∈ {0, . . . , n − 1}, there exists a walk wi from bi to
ai in pi; we let wn be a walk from bn to a0 in pn if w is circular, and the empty walk
if w is not circular. Let W = (a0, b1) ◦ w1 ◦ · · · ◦ (an−1, bn) ◦ wn.

(ii) Suppose C = (p0, . . . , pn) is a circular walk in G. By part (i) there exists a
circular walk D in H such that wG(D) = C. Since H is C-simply connected, there
exists a sequence of C-homotopies s = (D0, . . . , Dr) that starts with D0 = D and
ends with a walk Dr of length 0. Let s′ = (wG(D0), . . . , wG(Dr)). By Lemma 7.5
s′ is a sequence of wG(C)-homotopies in G; it begins with C, and it ends with a
walk wG(Dr) of length 0.

Suppose hypothesis (Geom) holds. Suppose C is a set of circular walks in H
closed under orientation reversal and taking associates, and let D = wG(C). Let
F[C]∗ and F[D]∗ be Z-modules defined as in Section 5.2. The map wG induces an
element of HomZ(F[C]

∗, F[D]∗), which we also denote wG, defined by the rule
that, for every X = ΣC∈CλC[C]

∗,

wG(X) = ΣC∈CλC[wG(C)]
∗

Similarly, wG induces an element of HomZ(FA
∗
H , FA∗

G), also denoted wG. Let
∂[C]∗ ∈ HomZ(F[C]

∗, F[AH ]
∗) and ∂[D]∗ ∈ HomZ(F[D]∗, F[AG]

∗) be the boundary
maps defined in Section 5.2.

Lemma 7.7. Suppose hypothesis (Geom) holds. Let C be a set of circular walks in H,
closed under orientation reversal and taking associates, and let D = wG(C).

(i) For every X ∈ F[C]∗, we have wG(([X]∗)∂[C]∗) = (wG([X]∗))∂[D]∗ .

(ii) If X ∈ Ker(∂[C]∗), then wG(X) ∈ Ker(∂[D]∗).

Proof. Statement (ii) follows from (i). Since wG, ∂[C]∗ , and ∂[D]∗ are Z-linear, to

prove (i) it suffices to show that wG(([C]
∗)∂[C]∗) = (wG([C]

∗))∂[D]∗ for every

C ∈ C. Suppose C ∈ C and let D = wG(C). For b ∈ AG define AH(b) =
{a ∈ AH|wG(a) = b}. For every b ∈ AG, wG induces a bijection from the set of
segments of C in AH(b), to the set of segments of wG(C) equal to b. Therefore
µ(D, b) = Σ{µ(C, a)|a ∈ AH(b)}. This implies ([D]∗)∂[D]∗ = Σb∈AG

µ(D, b)b∗ =

Σb∈AG
Σa∈AH(b)µ(C, a)(wG(a))

∗ = wG(([C]
∗)∂[C]∗).

Suppose (Geom) holds. Let C be a set of circular walks in H closed under
orientation reversal and taking associates. For z ∈ P ∪ L we denote Cz the walks
in C lying in the subgraph z. Consider the following conditions.

(Geom-pl) The geometry Γ is a partial linear space.

(Geom-flg) For every point-line flag (p, L) of Γ, the graph p ∩ L is connected.

(Geom-conC ) Every subgraph z ∈ P ∪ L is Cz-simply connected.

Lemma 7.8. Suppose that hypothesis (Geom) holds. Let C be a set of circular walks in
H closed under orientation reversal and taking associates, and let D = wG(C). Suppose
conditions (Geom-pl), (Geom-flg), and (Geom-conC) hold. Suppose X ∈ Ker(∂[D]∗). Let
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X = suppD(X), and let X ′ and X ′′ be the sets of vertices and edges of G appearing in
the walks C ∈ X . Then

X = X0 − [Σp∈X ′D(p) + Σe∈X ′′D(e)]

where (1) X0 ∈ wG(Ker(∂[C]∗), (2) for every p ∈ X ′, suppP(D(p)) = {p}, and (3)

for every e ∈ X ′′, suppP (D(e)) is contained in the line 〈e〉 and D(e) ∈ Ker(∂[D]∗).

Proof. We are going to construct Y ∈ F([C]∗),

Y = Y1 + Σp∈X ′C(p) + Σe∈X ′′C(e) (7.2)

such that Y ∈ Ker(∂[C]∗), wG(Y1) = X, and X0 := wG(Y) and D(z) := wG(C(z)),

z ∈ X ′ ∪ X ′′, satisfy the conclusion.
First, we define Y1 ∈ F[C]∗. Let Y1 ⊆ C be such that X = {wG(C)|C ∈ Y1}.

Define
Y1 = ΣC∈Y1

λ1,C[C]
∗

where λ1,C = λD for D = wG(C). We have wG(Y1) = X.
Next, for every e ∈ X ′′, we define C(e). Let e ∈ X ′′ and suppose e = {p, q},

p, q ∈ P . Let a = (p, q). Let B and B′ be the sets of arcs appearing in the
walks C ∈ Y1, mapped by wG to a and a−1 respectively. We have B ∪ B′ 6= ∅,
since e is an edge of at least one walk D ∈ X ⊆ wG(C). By (Geom-pl) there
is L ∈ L such that B ∪ B′ ⊆ L. To each b ∈ B ∪ B′ we assign the weight
ρ1(b) = ΣC∈Y1

λ1,Cµ(C, b). Since, for every C ∈ Y1, Σb∈Bµ(C, b) = µ(wG(C), a),

Σb∈B′µ(C, b−1) = µ(wG(C), a−1), and X ∈ Ker(∂[D]), we have

Σb∈Bρ1(b) = ΣD∈X λDµ(D, a) = ΣD∈X λDµ(D, a−1) = Σb∈B′ρ1(b) > 0 (7.3)

Suppose b = (u, v) ∈ B. Then ρ1(b) 6= 0, therefore by equation 7.3 there exists
b′ = (v′, u′) ∈ B′. By (Geom-flg) there exist walks wp and wq in L ∩ p and L ∩ q,
connecting u′ and u, and v and v′ respectively. Let

C1 = (b ◦ wq ◦ b′ ◦ wp)
−1 (7.4)

and reduce each of ρ1(b) and ρ1(b
′) by 1. We repeat this step until, after an integer

number of steps n ≥ 1, ρ1(b) = 0 for every b ∈ B ∪ B′; this produces circular
walks C1, . . . , Cn of the form 7.4. By (Geom-conC ) and by Lemma 5.2, for each Ci

there are walks Cij ∈ C, j ∈ {1, . . . , ni}, such that (Ci)∂[C]∗ = (Σni
j=1Cij)∂[C]∗ . Let

C(e) = Σn
i=1Σ

ni
j=1[Cij]

∗. Since by equation 7.4, for every i ∈ {1, . . . , n}, wG(Ci) ∈

Ker(∂[D]∗), by the Z-linearity of wG we have wG(C(e)) ∈ Ker(∂[D]∗). We let

Y2 = Y1 + Σe∈X ′′C(e).
Finally, we define C(p), p ∈ X ′. Let Y2 = Y1 +Σe∈X ′′C(e), let Y2 = suppC(Y2),

let Y2 = ΣC∈Y2
λ2,C[C]

∗ be the positive expansion for Y2, and let Y ′
2 and Y ′′

2 be the
sets of vertices and arcs of H appearing in the walks C ∈ Y2. We consider the
directed graph H(Y2) = (Y ′

2,Y ′′
2 , ρ2) with weighted arcs, where the weight of an

arc b ∈ Y ′′
2 is ρ2(b) = ΣC∈Y2

λ2,Cµ(C, b). By the definition of Y2, if b ∈ Y ′′
2 connects

two different subgraphs p, q ∈ P , then

ρ2(b) = ρ2(b
−1) (7.5)



On existence of embeddings for point-line geometries 621

Suppose p ∈ X ′, let Vp = Y ′
2 ∩ p, let Ap = Y ′′

2 ∩ p, and let H(p) = H(Y2)|Vp.
Suppose v ∈ Vp and let A−

p (v) and A+
p (v) be the sets of arcs in Ap with the

terminal vertex v and with the initial vertex v respectively. We claim that

Σb∈A−
p (v)

ρ2(b) = Σb∈A+
p (v)

ρ2(b) (7.6)

Let B−
p (v) and B+

p (v) be the sets of arcs in Y ′′
2 −Ap with the terminal vertex v

and with the initial vertex v. Equation 7.5 implies that

Σb∈B−
p (v)

ρ2(b) = Σb∈B+
p (v)

ρ2(b) (7.7)

Suppose C ∈ Y2 has a segment s = (u, v, w). There are the following mutually
excluding possibilities:

(1) {u, w} ⊆ p; in this case s contributes λ2,C to each side of equation 7.6, and
contributes 0 to each side of equation 7.7.

(2) {u, w} ⊆ V − p; then s contributes 0 to each side of equation 7.6, and
contributes λ2,C to each side of equation 7.7.

(3) u ∈ V − p and w ∈ p; then s contributes 0 to the A−
p (v) side and λ2,C to the

A+
p (v) side of equation 7.6; and contributes λ2,C to the B−

p (v) side and 0 to B+
p (v)

side of equation 7.7.
(4) u ∈ p and w ∈ V − p; then s contributes λ2,C to the A−

p (v) side and 0 to the

A+
p (v) side of equation 7.6, and contributes 0 to the B−

p (v) side and λ2,C to the

B+
p (v) side of equation 7.7.

Comparing the contributions made by s to the sums in equations 7.6 and 7.7,
we see that equation 7.6 follows from equation 7.7.

We call a directed graph a circuit if its vertices and arcs are comprised by a
single circuit. Since equation 7.6 holds for every v ∈ Vp, the graph H(p) is a union
of not necessarily distinct circuits C1, . . . , Cn. By (Geom-conC ) and by Lemma
5.2, for each Ci there are walks Cij ∈ C, j ∈ {1, . . . , ni}, such that (Ci)∂[C]∗ =

(Σni
j=1Cij)∂[C]∗ . Let C(p) = Σn

i=1Σ
ni
j=1[Cij]

∗.

Define Y by equation 7.2. Then Y ∈ Ker(∂[C]∗).

7.3 Spanning set for Ker(∂[wG (C)]∗
) in building Grassmannians

Suppose B is a chamber system and let Y be a set of chambers of B. We define
typ(Y) = ∪typ(e), where e runs through the edges of B|Y and typ(e) is the type
of the edge e.

Let B be a building of type M, a Coxeter diagram over a type set I. Suppose
J ⊆ I and let I ′ = I − J. The Grassmann geometry Γ = (P ,L) of B of type J is a
point-line geometry whose points P are the residues of B of type I ′. The lines L
of Γ are the P-shadows of the panels of B of all possible types {j} ⊆ J, where we
regard any two equal shadows as the same line; a point p ∈ P and a line L ∈ L
are incident if and only if p ∈ L.

Given L ∈ L, more than one panel of B can have the point shadow L. More
precisely, suppose P is a panel of B whose point shadow is L ∈ L. Then P is of
type {j} ⊆ J. Let T = {j} ∪ [I ′ − D0,1(j)], where D0,1(j) denotes the set consisting
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of j and the nodes i ∈ I of the diagram M connected to the node j by at least
one bond, and let R be the residue of B of type T containing P. The panels of B
whose point shadow is L are precisely the panels of R of type {j}, therefore we
can regard R as a line of Γ. The residue R is the unique maximal by inclusion
residue of B with point shadow L (see [18] Chapter 12, [12] Chapter 5, [8]). The
residue R is also the unique maximal by inclusion residue of B containing P and
having the form P × P′, where × denotes the direct product of chamber systems
and P′ is a residue of B intersecting P such that typ(P′) ⊆ I ′.

For p ∈ P , the residue p of B will be denoted Rp when we want to emphasize
that we are looking at a residue of B. For L ∈ L, we denote RL the maximal by
inclusion residue of B whose point shadow is L.

Theorem 7.9. Suppose hypothesis (HB) of Subsection 7.1 holds, and let D = wG(C).
Let Γ = (P ,L) be a Grassmann geometry of B with point-collinearity graph G. Suppose
X ∈ Ker(∂[D]∗). Let X = suppD(X), and let X ′ and X ′′ be the sets of vertices and
edges of G appearing in the walks C ∈ X . Then

X = X0 + Σp∈X ′D(p) + Σe∈X ′′D(e)

where (1) X0 ∈ 〈wG(K3,sph)〉F[D]∗ , (2) for every p ∈ X ′, suppP(D(p)) = {p}, and (3)

for every e ∈ X ′′, suppP (D(e)) is contained in the line 〈e〉 and D(e) ∈ Ker(∂[D]∗).

Proof. Since Γ is a Grassmann geometry of B, hypothesis (Geom) and conditions
(Geom-pl) and (Geom-flg) hold for the graphs B and G (see [8]). Since buildings
are 2-simply connected chamber systems and every residue of a buildings is a
building ([19]; see also [15]), condition (Geom-conC ) holds. Therefore the conclu-
sion follows from Proposition 7.1, Lemma 7.8, and the Z-linearity of wG .

8 Embeddings of building geometries

In this section we prove Theorems 1.1 and 1.2. All geometries considered in The-
orems 1.1 and 1.2 are Grassmann geometries of spherical buildings. Theorem 1.1
was first proved by Veldkamp [21]; a different proof was given by Tits [18]; the
infinite rank version of Theorem 1.1 is proved in Shult [15].

8.1 Projective embeddings and presheaves

Let V be a left vector space over a division ring D. The projective space P(V) =
(P1(V), P2(V)) of V is the point-line geometry of 1- and 2-dimensional subspaces
of V in the roles of points and lines, with the incidence being symmetrized con-
tainment. The projective dimension of P(V) is dim(V)− 1. Suppose Γ = (P ,L) is
a point-line geometry. A projective embedding or just an embedding ξ : Γ → P(V)
of Γ over D is a pair of injective maps P → P1(V) and L → P2(V) such that (1)
for every L ∈ L, the image of L regarded as a set of points is a full line of P(V),
and (2) the images of the points of Γ span P(V). For an embedding ξ, we denote
by the same symbol ξ the corresponding maps P → P1(V) and L → P2(V). A
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morphism of embeddings ξ1 → ξ2 over a division ring D is a D-semilinear trans-
formation of the underlying vector spaces that, for every p ∈ P , maps (p)ξ1 to
(p)ξ2 . An embedding of Γ over D is absolutely universal over D if every embed-
ding of Γ over D is its homomorphic image. An embedding ξ of Γ over D is
universal relatively to an embedding ξ1 of Γ over D if every embedding of Γ over
D, with a homomorphic image ξ1, is a homomorphic image of ξ.

Every projective embedding ξ of Γ over D gives rise to a point-line presheaf
Fξ = ({Fξ,p}p, {Fξ,L}L, {φξ,pL}pL) on Γ over D where, for every z ∈ P ∪ L,
Fξ,z = (z)ξ and, for every point-line flag (p, L) of Γ, the connecting map φξ,pL is
the inclusion (p)ξ →֒ (L)ξ. We say that Fξ is an embedding presheaf on Γ arising
from ξ. Every morphism of embeddings induces an isomorphism of the corre-
sponding embedding presheaves. Therefore, if Γ is a connected geometry and
τ : ξ1 → ξ2 is a morphism of projective embeddings of Γ, then by Lemma 2.3(ii)
and by Proposition 2.4 τ is unique up to multiplication by an element of D.

8.2 H-chains

In this subsection we adapt results from [14] to our needs. We are unable to sim-
ply quote [14] since the exact statements we need, although all implicit, cannot
be found there. What we call a projective embedding of a point-line geometry is
a faithful projective embedding in the terminology of [14].

Let Γ = (P ,L) be a point-line geometry. A geometric hyperplane or just a hy-
perplane of Γ is a proper subspace H of Γ such that, for every L ∈ L, L ∩ H 6= ∅.
Suppose that F = ({Fp}p, {FL}L, {φpL}pL) is a point-line presheaf on Γ over D

and let H be a hyperplane of Γ. Let H∗ = P − H and let L∗ = {L ∈ L|L 6⊆ H}.
An H-chain in F is a set of vectors {vp ∈ Fp|p ∈ H∗} such that, for every line
L ∈ L∗ and for every pair of points p, q ∈ L − H, we have

(vp)φpL − (vq)φqL ∈ (Fr)φrL (8.1)

where {r} = L ∩ H.

Remark 8.1. If C = {vp|p ∈ P} is an H-chain in a presheaf F = ({Fp}p, {FL}L,
{φpL}pL) over a division ring D then, since the connecting maps φpL are D-linear,
for every α ∈ D − {0} the set C′ = {αvp|p ∈ P} is also an H-chain.

We construct the following graph GF ,H = (VF ,H, EF ,H) associated with F and
H. Let VF ,H = ∪{Fp|p ∈ H∗}. Suppose p, q ∈ H∗ are distinct points and suppose
u ∈ Fp and v ∈ Fq. Then {u, v} ∈ EF ,H if and only if there exists a line L ∈ L
incident with both p and q, and

(u)φpL − (v)φqL ∈ (Fr)φrL, (8.2)

where {r} = L ∩ H. We define a map τF ,H : VF ,H → H∗ by

(u)τF ,H = p

for every p ∈ H∗ and for every u ∈ Fp. Let G = (P , E) be the point-collinearity
graph of Γ. The map τF ,H induces a morphism of graphs GF ,H → (G|H∗) which
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we also denote τF ,H. Suppose w = (p1, . . . , pn) is a walk in G|H∗ and let W =
(u1, . . . , un) be a walk in GF ,H, such that (ui)τF ,H = pi for every i ∈ {1, . . . , n}.
Then we say that W is a lift of w under τF ,H. If Γ is not a partial linear space,
then w can have more than one lift at each point in the preimage under τF ,H of its
initial vertex.

Suppose that Γ|H∗ is connected. Then, following [14], we say that the map
τF ,H is a trivial covering if GF ,H is a union of connected components isomorphic
to G|H∗, and τF ,H maps each connected component isomorphically onto G|H∗.
Using equations 8.1 and 8.2 and Remark 8.1 one can prove the following.

Proposition 8.2 (cf. Corollary 1 of Theorem 1 of Ronan [14]). Let Γ be a point-line
geometry, let F be a point-line presheaf on Γ, and let H be a geometric hyperplane of Γ.
Suppose that Γ|H∗ is connected. Then an H-chain exists in F if and only if τF ,H is a
trivial covering.

Remark 8.3. Under the hypothesis of Proposition 8.2 the morphism τF ,H is a triv-
ial covering if and only if every lift of every circular walk is a circular walk (see
[15]).

Corollary 8.4 (cf. Corollary 3 of Theorem 1 of Ronan [14]). Let Γ be a point-line
geometry with point-collinearity graph G, let F be a point-line presheaf on Γ, and let
H be a geometric hyperplane of Γ. Suppose that there is a set of full subgeometries S of
Γ with point-collinearity graphs G(S) such that (1) the graph G|(P − H) is C-simply
connected, where C is the set consisting of the circular walks of the graphs G(S), S ∈ S ,
and (2) for every S ∈ S , a (P(S) ∩ H)-chain exists in F|S. Then an H-chain exists in
F .

Proof. Let H∗ = P − H. By Proposition 8.2 and Remark 8.3 we need to show that,
for every circular walk in G|H∗, every lift under τF ,H is a circular walk in GF ,H.
Since G|H∗ is C-simply connected, it suffices to show that every lift of every walk
in C is a circular walk.

Let C ∈ C and let C′ be a lift of C under τF ,H. By the definition of C there exists
S ∈ S such that C is a walk in G(S). Let F ′ = F|S, let H′ = H ∩ P(S), and let
V ′ = ∪{Fp|p ∈ P(S) − H′}. Then H′ is a hyperplane of S, GF ′,H′ is a subgraph
of GF ,H, and τF ′,H′ = τF ,H|GF ′,H′ . Therefore C′ is a lift of C under τF ′,H′ . By
hypothesis a H′-chain exists in F ′ therefore, by Proposition 8.2 applied to F ′ and
H′, C′ is a circular walk in GF ,H.

Suppose that Γ = (P ,L) is a point-line geometry and let V be a left vector
space over a division ring. Suppose ξ is a map P → {{0}} ∪ P1(V), and assume
that the image of ξ spans V. We say that a hyperplane H of Γ arises from a hyper-
plane of V under the map ξ, or just that H arises from a hyperplane of V when
ξ is understood, if there exists a subspace V ′ of V of codimension 1 such that
(H)ξ = (P)ξ ∩ ({{0}} ∪ P1(V

′)). If the map ξ induces an embedding, then we
say that H arises from the embedding.

Let Γ = (P ,L) be a point-line geometry and let F = ({Fp}p, {FL}L, {φpL}pL)
be a point-line presheaf on Γ over a division ring D. We define the following
vector space H0(F ) associated with F . Let V ′ =

⊕
{Fz|z ∈ P ∪ L}. Let V ′′ be

the subspace of V ′ spanned by all vectors of the form v − (v)φpL, where (p, L)
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runs through the point-line flags of Γ and, for each flag (p, L), v runs through the
vectors of Fp. Define

H0(F ) = V ′/V ′′ (8.3)

We denote ξF the map P → {{0}} ∪ P1(V) that takes each z ∈ P to the image
of Fz in H0(F ) under the quotient map of equation 8.3. One can show that, for
a hyperplane H, existence of an H-chain in F is equivalent to existence of f ∈
HomD(H0(F ), D) that vanishes on (H)ξF and does not vanish on (P − H)ξF .
Therefore the following holds.

Theorem 8.5 (Theorem 2 of Ronan [14]). Suppose Γ = (P ,L) is a point-line geome-
try, let F be a presheaf on Γ, and let H be a hyperplane of Γ. Then H arises from a vector
space hyperplane of H0(F ) under the map ξF if and only if an H-chain exists in F .

Theorem 8.6 (Corollary 3 of Theorem 2 of Ronan [14]). Suppose Γ = (P ,L) is a
point-line geometry and let F be a presheaf on Γ. Then the map ξF induces a projective
embedding of Γ into P(H0(F )) if and only if for every pair of distinct points of Γ there
is a geometric hyperplane H of Γ, containing one point but not the other, such that an
H-chain exists in F .

Proposition 8.7 (Proposition 3 of Ronan [14]). Suppose Γ is a point-line geometry,
let ǫ be a projective embedding of Γ, and let F = Fǫ. Then the map ξF induces an
embedding ǫ : Γ → P(H0(F )), universal relatively to ǫ.

Remark 8.8. Since a morphism of embeddings induces an isomorphism of the
corresponding embedding presheaves, it follows from Proposition 8.7 that a point-
line geometry, embeddable over a division ring D, has an an absolutely universal
embedding over D if and only if all its embedding presheaves over D are iso-
morphic to each other.

8.3 Polar spaces

In this subsection we follow Chapter 7 of [15] (see also [18] and [5]). For a point-
line geometry Γ = (P ,L) and for p ∈ P , we denote p⊥ the set of all points of Γ

collinear with p (the set p⊥ includes p itself).
A polar space is a point-line geometry (P ,L) with the property (PolSp).
(PolSp) For every p ∈ P and for every L ∈ L not on p, the intersection p⊥ ∩ L is

either a single point or all of L.
A polar space Γ = (P ,L) is nondegenerate if, for all p ∈ P , p⊥ 6= P . Suppose

Γ = (P ,L) is a nondegenerate polar space. Then, for all p ∈ P , p⊥ is a hyper-
plane of Γ and, for all pairs of distinct points p and q, p⊥ 6= q⊥. Suppose that Γ is
a nondegenerate polar space with thick lines. Then all singular subspaces of Γ are
projective spaces. If there is a maximal singular subspace of Γ of finite projective
dimension n, then all maximal singular subspaces of Γ have projective dimension
n, and the polar rank or just the rank of Γ is defined to be n + 1. A nondegenerate
polar space of rank 1 is any set of cardinality at least 2. By Theorem 4 of Bueken-
hout and Shult [5] and by Theorem 7.4 of Tits [18] the nondegenerate polar spaces
of finite rank n ≥ 2 are precisely the buildings of type (B/C)n. The chambers of
the building B are the maximal flags S1 ≤ · · · ≤ Sn of the polar space Γ, where Si
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denotes a singular subspace of Γ of projective dimension i − 1; two chambers are
i-adjacent in B if and only if the flags differ by exactly one subspace, of projective
dimension i − 1.

Theorem 8.9 (Cooperstein and Shult [6]; Shult [15]). Suppose Γ = (P ,L) is a non-
degenerate polar space of rank at least 3 with thick lines, and let G be the point-collinearity
graph of Γ. Then, for every geometric hyperplane H of Γ, the graph G|(P − H) is simply
connected.

Theorem 8.9 can also be deduced from Corollary of Theorem 5 of Pasini [11]
(stated as Propositions 8.29 and 12.50 in [12]), combined with Theorem 12.64 of
Pasini [12].

8.4 Proofs of Theorems 1.1 and 1.2

We need the following facts regarding projective spaces all of which can be found
in [15]. Suppose Γ and Γ′ are projective spaces of projective dimension n ≥ 2, and
suppose φ : Γ → Γ′ is an isomorphism of point-line geometries. If ξ : Γ → P(V)
and ξ′ : Γ′ → P(V ′) are embeddings of Γ and Γ′ over division rings D and D

′,
then D = D

′ and there is a D-semilinear map V → V ′ inducing φ (this is the Fun-
damental Theorem of Projective Geometry). Therefore, up to isomorphism, ξ is
the unique projective embedding of Γ and Fξ is the unique embedding presheaf
on Γ. Embeddable projective spaces are called classical. Every projective space of
projective dimension at least 3 is classical (Veblen and Young [20]). Every hyper-
plane of a classical projective space Γ arises from every embedding of Γ. Using
Theorem 8.5 and Proposition 8.7 we obtain the following (one can also prove this
directly).

Lemma 8.10. Let Γ = (P ,L) be a projective space and suppose F is an embedding
presheaf on Γ. Then, for every hyperplane H of Γ, there is an H-chain in F .

We will need the following facts regarding Grassmann geometries of build-
ings.

Remark 8.11. Let B be a building with diagram M over a type set I, let J ⊆ I,
and let Γ = (P ,L) be the J-Grassmann geometry of B (see Subsection 7.3 for
definition).

1. Suppose B is spherical. If R is a residues of B of type opposite to I − J,
then the set HR = {p ∈ P|Rp is not opposite to R in B} is a hyperplane of Γ ([1]).
Therefore, for every pair of distinct points in P , there is a hyperplane of Γ of the
form HR containing exactly one of the points. If Γ = (P ,L) is a nondegenerate
polar space, then the hyperplanes HR are precisely the hyperplanes of Γ of the
form p⊥, p ∈ P .

2. Every triangle of the point-collinearity graph of Γ is contained in a sub-
space of Γ which is a projective plane. For every projective plane π of Γ, there
is a residue R of B such that π = PR, the diagram M|typ(R) has exactly one
connected component K meeting J, and M|K is A2 ([9]).
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Lemma 8.12. Let Γ = (P ,L) be (1) a nondegenerate polar space of rank at least three,
all of whose planes are embeddable, or (2) one of the geometries of Theorem 1.2. Suppose
that Γ has thick lines.

Let S be the set of projective planes of Γ and suppose F = ({Fp}p, {FL}L, {φpL}pL)
is a presheaf on Γ over D such that, for every S ∈ S , F|S is an embedding presheaf on
Γ|S. Then the following statements hold.

(i) For every hyperplane H of Γ, there is an H-chain in F .
(ii) ξF induces a projective embedding of Γ into the space P(H0(F )).

Proof. Let G be the point-collinearity graph of Γ.
(i) Suppose H is a hyperplane of Γ and let H∗ = P − H. The graph G|H∗ is

simply connected. This was proved by Cooperstein and Shult [6, 15] for polar
spaces (we stated this as Theorem 8.9), D5,5, and E6,6; by Shult [16] for E7,7; by
Kasikova [7] for F4,1, E6,2, E7,1, and E8,8. In all cases the proof relies on point-line
properties of the geometry. By Remark 8.11(2) every triangle of G is contained
in a plane of Γ. If Γ is a polar space, then the planes of Γ are embeddable by
hypothesis. If Γ is one of the geometries of Theorem 1.2, then using Remark
8.11(2) and looking at the diagrams of the buildings we see that every plane π of
Γ is contained (1) in a symplecton of Γ in the case of F4,1 or (2) in a projective space
of projective dimension at least 3 for the rest of the geometries. Therefore π is
embeddable (in the case of F4,1 the symplecta are embeddable by hypothesis). By
Lemma 8.10, for every plane of Γ, there exists an (H ∩ S)-chain in F|S. Therefore
by Corollary 8.4 there exists an H-chain in F .

(ii) By Remark 8.11(1), for every pair of distinct points in Γ, there is a hyper-
plane H containing one point but not the other, and by part (i) there exists an
H-chain in F . Therefore (ii) holds by Theorem 8.6.

Lemma 8.13. Let B be a building with diagram M over a type set I. Suppose {i, j, k} ⊆
I, let P and S be the sets of residues of B of types I − {i} and I − {j}, and let R be a
residue of B of type I − {k}.

(i) If there is a unique path in M from i to j, and k is on that path, then PR ⊆ PS for
every S ∈ SR.

(ii) If there is a unique path in M from i to j, and k is on that path, then PR ⊆
∩{PS|S ∈ SR}.

(iii) If there is a unique path in M from i to k, and j is on that path, then ∪{PS|S ∈
SR} ⊆ PR.

Proof. (i) By hypothesis of (i) i and j lie in different connected components of the
diagram M|typ(R). Therefore R = R′ × R′′, where R′ and R′′ are residues of B of
types I ′ and I ′′, i ∈ I ′, and j ∈ I ′′. Suppose p ∈ PR and suppose S ∈ SR. Then
p ∩ R contains a residue Q′′ of R of type I ′′, and S ∩ R contains a residue Q′ of R
of type I ′. Therefore p ∩ S 6= ∅, that is p ∈ PS.

Statement (ii) is immediate from (i). To prove (iii) let S ∈ SR. Applying (i) to
S and R with their roles interchanged we obtain PS ⊆ PR.

Proof of Theorems 1.1 and 1.2. Let Γ be one of the geometries in Theorems 1.1
and 1.2. Let B be the building associated with Γ. We denote M the diagram of B
over the type set I = {1, . . . , n}, and in case of Theorem 1.1 we assume that M is
(B/C)n
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For each geometry Γ we define a geometry Γ′ = (S ,LS), where S is a set of
subspaces of Γ such that every plane of Γ is contained in a member of S . Let G ′

denote the point-collinearity graph of Γ′. We show that the hypothesis of Corol-
lary 5.6 holds for G ′. Therefore there exists a presheaf F on Γ over a division ring
D such that, for every S ∈ S , F|S is an embedding presheaf on Γ|S. Since by
Remark 8.11(2) every plane of Γ is contained in a member of S , by Lemma 8.12(ii)
Γ has a projective embedding into the space P(H0(F )).

First, we describe the geometries Γ′ = (S ,LS).
If Γ is a polar space, then Γ′ = (S ,LS) is the dual polar space; it is a building

Grassmannian of type (B/C)n,n. The points S of Γ′ are the maximal singular
subspaces of Γ; as singular subspaces of Γ they have projective dimension n− 1 ≥
3 and, therefore, are embeddable. The lines LS of Γ′ are the hyperplanes of the
maximal singular subspaces of Γ (viewed as sets of the elements of S containing
them); they have projective dimension n − 2 ≥ 2.

For F4,1 the geometry Γ′ = (S ,LS) is F4,4. The points of Γ′ are the symplecta
of Γ; by hypothesis they are embeddable. The lines of Γ′ are the planes of Γ.

For D5,5 the geometry Γ′ = (S ,LS) is D5,1. The points of Γ′ are the symplecta
of Γ; they are polar spaces of type D4 and are embeddable by Theorem 1.1. The
lines of Γ′ are the maximal singular subspaces of Γ of projective dimension 3.

For Dn,1 the geometry Γ′ = (S ,LS) is Dn,n. The points of Γ′ are one class of
maximal singular subspaces of Γ; they have projective dimension n − 1 ≥ 4 and
therefore are embeddable. The lines of Γ′ are the subspaces of codimension 2
of the maximal singular subspaces of Γ; they are the singular subspaces of Γ of
projective dimension n − 3 ≥ 2.

For En,n, n ∈ {6, 7, 8}, and for E7,1 the geometry Γ′ = (S ,LS) is En,2. In
all cases the points of Γ′ are the maximal singular subspaces of Γ of projective
dimension n − 1 ≥ 5, therefore they are embeddable. In the case of En,n the lines
of Γ′ are the singular subspaces of Γ of projective dimension n − 4 ≥ 2; in the case
of E7,1 the lines of Γ′ are the planes of Γ.

For E6,2 the geometry Γ′ = (S ,LS) is E6,1, The points of Γ′ are the shadows
of the residues of B of type I − {1}; they are one class of convex subspaces of
E6,2 isomorphic to D5,5, and are embeddable by part (ii) of Theorem 1.2. The lines
of Γ′ are one class of the maximal singular subspaces of Γ; they have projective
dimension 4.

We denote A′ the set of arcs of G ′. We let i, j, k ∈ I be the nodes of M cor-
responding to P , L, and S . That is, the points P are the residues of B of type
I − {i}, the lines L are the residues of type I − {j}, and the elements of S are the
residues of type I − {k}.

1. Hypothesis (PSh). Suppose (S, T) ∈ A′. It was remarked in each case that
S and T are embeddable; we denote D and D

′ the corresponding division rings,
and we denote FS and FT the corresponding embedding presheaves. It was also
noted in each case that the intersection S ∩ T is a singular subspace of Γ of pro-
jective dimension at least 2. Therefore D = D

′ and there exists an isomorphism
of embedding presheaves ψS,T : FS|(S ∩ T) → FT|(S ∩ T). It follows from the
connectedness of G ′ that all S ∈ S are embeddable over the same division ring
D. We let F = {FS|S ∈ S} and let Ψ = {ψS,T|(S, T) ∈ A′}, where the presheaf
isomorphisms ψS,T are chosen so that (PSh-inv) holds.
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2. Condition (ConL). Let L ∈ L. The graph G ′|S(L) is the point-collinearity
graph of a Grassmann geometry of the residue of B of type I −{j} corresponding
to L, therefore it is connected.

3. Hypothesis (Crc). We use the notation of hypothesis (HB) of Subsection 7.1,
and we let D = wG ′(C). We show that D satisfies (Crc) of Section 5.3.

3.1 Conditions (Crc-con) and (Crc-pnt). Suppose p ∈ P . The graphs G ′ and
G ′|S(p) are point-collinearity graphs of a Grassmann geometry of B, and of a
Grassmann geometry of the residue of B of type I − {i} corresponding to the
point p. The buildings B and Rp are respectively C- and Cp-simply connected.
Therefore by Theorem 12.64 of [12] or, alternatively, by Lemma 7.6(ii), the graph
G ′ is D-simply connected and the graph G ′|S(p) is Dp-simply connected.

To prove conditions (Crc-cir) and (Crc-ker) we use the following. In all cases,
in the diagram M, the nodes i and k are connected by a unique path w, and the
node j lies on w. The length of w is at least 4, and the length of the segment w′

of w, starting with j and ending with k, is at least 3. For example, if Γ is a polar
space and B is of type (B/C)n, then i = 1, j = 2, k = n, w = (1, 2, . . . , n), and
w′ = (2, 3, . . . , n). We write the group C(D)◦ multiplicatively.

3.2 Condition (Crc-cir). We show that, for every D ∈ D, the set suppS(D)
satisfies condition (PX-l), therefore by Proposition 6.1(i) D satisfies (Crc-cir).

Let D ∈ D. Let C ∈ C be such that D = wG ′(C), and let Q be a residue of B of
rank 2 containing C. Let l be a vertex of the walk w′ not contained in typ(Q), and
let R be the residue of B of type I − {l} containing Q. Then, by Lemma 8.13(i) PR

contains a line of Γ, and by Lemma 8.13(ii) PR ⊆ ∩{S|S ∈ SR} ⊆ PD.

3.3 Condition (Crc-ker). Suppose X ∈ Ker(∂[D]∗). By Theorem 7.9 X = X0 +

ΣS∈X ′D(S) + Σe∈X ′′D(e), where X ′ and X ′′ are sets of vertices and edges of G ′,
and the following conditions hold: (1) X0 ∈ 〈wG ′(K3,sph)〉F[D]∗ , (2) for every S ∈

X ′, suppS(D(S)) = {S}, and (3) for every e ∈ X ′′, suppS(D(e)) is contained
in the line 〈e〉Γ′ and D(e) ∈ Ker(∂[D]∗). In each case, from the definition of the

geometry Γ′ we see that, for every e ∈ X ′′, PD(e) 6= ∅. Therefore, since (Crc-

pnt) holds, by Proposition 6.2(i) and by the Z-linearity of fΨ,[D]∗ , (Σp∈X ′D(p) +

Σe∈X ′′D(e)) fΨ,[D]∗ = 1. It remains to show that (X0) fΨ,[D]∗ = 1.

Suppose Z ∈ wG ′(K3,sph). Let Y ∈ K3,sph be such that wG ′(Y) = Z and let Q be
a residue of B of rank 3 containing Y. Let l be a vertex of the path w not contained
in typ(Q), and let R be the residue of B of type I − {l} containing Q. Then PR

contains a point of Γ, and by Lemma 8.13(ii) PR ⊆ ∩{S|S ∈ SR} ⊆ PZ. Therefore
PZ 6= ∅ and, since (Crc-pnt) holds, by Proposition 6.2(i) (Z) fΨ,[D]∗ = 1. It follows

by the Z-linearity of fΨ,[D]∗ that (X0) fΨ,[D]∗ = 1.

Remark 8.14. (1) All geometries considered in Theorems 1.1 and 1.2 are build-
ing Grassmannians corresponding to an end node of the diagram, for which it is
known that the subgraph of the point-collinearity graph induced on the comple-
ment of an arbitrary hyperplane is simply connected.

(2) In the proof of Theorem 1.2 there are other choices for geometries Γ′. For
example, if Γ is En,n one can let S be the set of symplecta of Γ and let LS be the set
of the maximal singular subspaces of Γ of projective dimension n − 2 ≥ 4; then
Γ′ is the geometry En,1.
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Now, we give a different proof of Theorem 1.1 which illustrates the use of
condition (PX-e) of Section 6.

Second proof of Theorem 1.1. We let B denote the building with diagram M of
type (B/C)n, associated with Γ.

Let S be the set of planes of Γ and let Γ′ = (S ,LS), where the set LS consists
of the sets {π ∈ S|L ⊆ π ⊆ X}, such that L ∈ L and X is a singular sub-
space of Γ of projective dimension 3; Γ′ is the Grassmann geometry of B of type
(B/C)n,3. We denote G ′ the point-collinearity graph of Γ′ and we denote A′ the set
of arcs of G ′. We show that the hypothesis of Corollary 5.6 holds, therefore there
exists a presheaf on Γ such that, for every plane S of Γ, F|S is the unique embed-
ding presheaf on Γ|S. Then by Lemma 8.12(ii) Γ has a projective embedding into
P(H0(F )).

Hypothesis (PSh). Let (S, T) ∈ A′. Then S ∪ T ⊆ X, where X is a singu-
lar subspace of Γ of projective dimension 3. The space X is embeddable over a
division ring D. Therefore S and T are embeddable over D and, if we denote
FS and FT the corresponding embedding presheaves, then there exists an iso-
morphisms of presheaves ψS,T : FS|(S ∩ T) → FT|(S ∩ T). It follows from the
connectedness of Γ′ that all S ∈ S are embeddable over the same division ring
D. Let F = {FS|S ∈ S} and let Ψ = {ψS,T|(S, T) ∈ A′}, where the presheaf
isomorphisms ψS,T are chosen so that they satisfy (PSh-inv).

Condition (ConL). Let L ∈ L. The graph G ′|S(L) is the point-collinearity graph
of a Grassmann geometry of a residue of B of type I − {j}, therefore it is con-
nected (this geometry is a polar space of rank n − 2 ≥ 2).

Hypothesis (Crc). Let C be as in hypothesis (HB) and let D = wG ′(C). We show
that D satisfies (Crc) of Section 5.3. The proof of conditions (Crc-con) and (Crc-
pnt) is as in the first proof of Theorem 1.1 and we omit it. To prove (Crc-cir) and
(Crc-ker), first, we observe that, for every S ∈ S , Γ|S is a projective space and, for
every (S, T) ∈ A′, Γ|(S ∩ T) is a line. Therefore using Corollary 2.6 we obtain the
following.

(**) For every S ∈ S , FS is the unique embedding presheaf on Γ|S. For every (S, T) ∈
A′, the presheaf isomorphism ψS,T is unique up to multiplication by an element of C(D)◦.

We write the group C(D)◦ multiplicatively.
Condition (Crc-cir). We show that every D ∈ D satisfies (PX-l) or (PX-e), there-

fore by Proposition 6.1(i) or (ii) D satisfies (Crc-cir).
Let D ∈ D, let C ∈ C be such that wG ′(C) = D, and let Q be a residue of B

of rank 2 containing C. Suppose, first that there exists a residue R of B of type
I − {l} containing Q with l ∈ {2, 3}. Then PR is a line or plane of Γ and by
Lemma 8.13(ii) PR ⊆ ∩{S|S ∈ SR} ⊆ PD. Therefore (PX-l) holds for D.

Suppose now that Q is of type {2, 3}. Then C is contained in a residue R of B
of type I − {4}. The set PR is a singular subspace of Γ of projective dimension 3
and by Lemma 8.13(iii) PD ⊆ ∪{S|S ∈ SR} ⊆ PR. Therefore Γ|PD is embeddable
over D. Since (**) holds, (PX-e) holds for D.

Condition (Crc-ker). As in the first proof of Theorem 1.1, we need to show that,
for every Z ∈ wG ′(K3,sph), (Z) fΨ,[D]∗ = 0. Suppose Z ∈ wG ′(K3,sph). Let Y ∈

K3,sph be such that wG ′(Y) = Z and let Q be a residue of B of rank 3 containing Y.
Suppose first that there exists a residue R of B of type I − {l} containing

Q with l ∈ {1, 2, 3}. Then PR is a point, line, or plane of Γ and by Lemma
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8.13(i) PR ⊆ ∩{S|S ∈ SR} ⊆ PX . Therefore PZ 6= ∅ and by Proposition 6.2(i)
(Z) fΨ,[D]∗ = 0.

Suppose now that Q is of type {1, 2, 3}. Let R be the residue of Γ of type
I − {4} containing Q. The point shadow PR of R is a singular subspace of Γ of
projective dimension 3 and by Lemma 8.13(iii) PX ⊆ ∪{S|S ∈ SR} ⊆ PR. There-
fore Γ|PX is embeddable over D. Since (**) holds, (PX-e) holds for suppS(X).
Therefore by Proposition 6.2(ii) (Z) fΨ,[D]∗ = 0.
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