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Abstract

We present common fixed point theorems for a pair of weakly isotone
increasing multivalued mappings satisfying general weak contractive con-
ditions, as well as almost contractive conditions in ordered complete metric
spaces. Examples are presented to show the usage of these results.

1 Introduction and preliminaries

Fixed point theory for multivalued mappings was originally initiated by von
Neumann in the study of Game theory. Fixed point theorems for multivalued
mappings are quite useful in Control theory and have been frequently used in
solving problems in Economics and Game theory.

The study of fixed points for multivalued contraction mappings has been an
active topic, as well. The development of geometric fixed point theory for multi-
functions was initiated by the work of Nadler [22] in 1969. He used the concept
of Hausdorff metric to establish the multivalued contraction principle containing
the Banach contraction principle as a special case, as follows.

Theorem 1.1. Let (X , d) be a complete metric space and T be a mapping from X into
CB(X ) such that for all x, y ∈ X ,

H(T x, T y) ≤ λd(x, y)
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where, 0 ≤ λ < 1. Then T has a fixed point.

Since then, this discipline has been developed further, and many profound
concepts and results have been established with considerable generality; see, for
example, the works of Hong [13], Hong et al. [15], Itoh and Takahashi [16],
Kaneko [18], Kaneko and Sessa [19], Mizoguchi and Takahashi [21], Rhoades
[27], Rouhani and Moradi [28], and references cited therein.

Let (X , d) be a metric space. We denote the classes of nonempty, resp. nonem-
pty and bounded subsets of X by N(X ), resp. B(X ). For A, B ∈ B(X ), expres-
sions D(A,B) and δ(A,B) are defined as follows:

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

If A = {a}, then we write D(A,B) = D(a,B) and δ(A,B) = δ(a,B). If, addition-
ally, B = {b}, then D(A,B) = δ(A,B) = d(a, b). Obviously, D(A,B) ≤ δ(A,B).

For all A,B, C ∈ B(X ), the definition of δ(A,B) yields the following:

δ(A,B) = δ(B,A),

δ(A,B) ≤ δ(A, C) + δ(C,B),

δ(A,B) = 0 iff A = B = {a}.

One can refer to above notation in [11, 12].

Definition 1.2. A point x∗ ∈ X is called a fixed point of a multivalued operator
T : X → B(X ) if x∗ ∈ T x∗.

Definition 1.3. [20]. A function F : [0,+∞) → [0,+∞) is called an altering distance
function if the following properties are satisfied:

1. F is nondecreasing and continuous,

2. F(t) = 0 if and only if t = 0.

Weak contractive conditions with functions of this and related types have
been used to establish fixed point results in a number of works, some of which
are noted in [5, 8, 10, 23, 26, 29, 30].

On the other hand, fixed point theory has developed rapidly in metric spaces
endowed with a partial ordering. The first result in this direction was given by
Ran and Reurings [25, Theorem 2.1] who presented its applications to matrix
equations. Subsequently, Nieto and Rodrı́guez-López [24] extended the result of
[25] for nondecreasing mappings and applied it to obtain a unique solution for
a first order ordinary differential equation with periodic boundary conditions.
Thereafter, several authors obtained many fixed point theorems in ordered metric
spaces. Beg and Butt [2] worked on set-valued mappings and proved common
fixed point results for mappings satisfying implicit relation in partially ordered
metric space. Recently, Choudhury and Metiya [6] have proved fixed point the-
orems for multivalued mappings in the framework of a partially ordered metric
space. Hong [14] proved new hybrid fixed point theorems involving multivalued
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operators which satisfy weakly generalized contractive conditions in an ordered
complete metric space and presented an application to hyperbolic differential in-
clusions.

We will use the following terminology

Definition 1.4. Let X be a nonempty set. Then (X , d,�) is called an ordered metric
space if:

(i) (X , d) is a metric space,

(ii) (X ,�) is a partially ordered set.

Elements x, y ∈ X are called comparable if x � y or y � x holds.

Definition 1.5. [2]. Let A and B be two nonempty subsets of a partially ordered set
(X ,�). The relation �1 between A and B is defined as follows:

A �1 B ⇐⇒ for each a ∈ A there exists b ∈ B such that a � b.

The results of this paper are divided in two parts. First, in Section 2, we
establish the existence of common fixed points for a pair of weakly isotone in-
creasing multivalued mappings under a general weakly contractive condition
in partially ordered metric spaces. The consequences of the main theorem are
also mentioned. Section 3 is devoted to common fixed point results for a pair
of weakly isotone increasing multivalued mappings under a variant of so-called
almost contractive conditions of Berinde [3]. Our results generalize the results
of Choudhury and Metiya [6] by considering comparatively more general con-
tractive and weakly contractive conditions for a pair of weakly isotone increasing
multivalued mappings. They also extend results of Choudhury et al. [5], Berinde
[4] and Babu et al. [1] from single valued mappings in metric spaces to multival-
ued mappings in ordered metric spaces (see also the recent paper of Ćirić et al.
[7]). Examples are presented to show the usage of the results and, in particular,
that the order can be crucial.

2 Common fixed point results under weak contractive condi-

tions

In this section, we prove common fixed point theorems for a pair of weakly iso-
tone increasing multivalued mappings under general weak contractive condition.
In order to formulate the results, we extend to multivalued mappings the notion
of weakly isotone increasing mappings given by Dhage, O’Regan and Agarwal
[9].

Definition 2.1. Let (X ,�) be a partially ordered set. Two maps S , T : X → N(X ) are
said to be weakly isotone increasing if for any x ∈ X we have Sx �1 T y for all y ∈ Sx
and T x �1 Sy for all y ∈ T x.
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Note that, in particular, single-valued mappings T ,S : X → X are weakly
isotone increasing [9] if Sx � T Sx and T x � ST x hold for each x ∈ X .

In what follows, F will denote the set of altering distance functions (see Def-
inition 1.3). Ψ will be the set of functions ψ : [0,+∞) → [0,+∞) which are
nondecreasing, right-continuous and ψ(t) > 0 for t > 0.

The main result of this section is the following

Theorem 2.2. Let (X , d,�) be an ordered complete metric space. Let T ,S : X →
B(X ) be multivalued mappings such that

F(δ(T x,Sy)) ≤ F(M(x, y)) − ψ(F(max{d(x, y), δ(x, T x), δ(y,Sy)})) (2.1)

for all comparable x, y ∈ X , where F ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), D(x, T x), D(y,Sy),
1

2
[D(x,Sy) + D(y, T x)]

}

. (2.2)

Also suppose that S and T are weakly isotone increasing and there exists an x0 ∈ X
such that {x0} ≺1 Sx0. If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

(2.3)

holds, then S and T have a common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common
fixed point of S and T . Indeed, let, e.g., z be a fixed point of S . Assume that
δ(z, T z) > 0. If we use the inequality (2.1) for x = y = z, we have, taking into
account properties of functions F ∈ F and ψ ∈ Ψ,

F(δ(T z, z)) ≤ F(δ(T z,Sz))

≤ F(M(z, z)) − ψ(F(max{d(z, z), δ(z, T z), δ(z,Sz)}))

≤ F(δ(T z, z))− ψ(F(δ(T z, z)) < F(δ(T z, z)),

which is a contradiction. Thus δ(z, T z) = 0 and so z is a common fixed point of
S and T .

Starting with the given x0, define a sequence {xn} as follows:

x2n+1 ∈ Sx2n, x2n+2 ∈ T x2n+1 for n ∈ {0, 1, . . . }. (2.4)

If xn0 ∈ Sxn0 or xn0 ∈ T xn0 for some n0, then the proof is finished. So assume
xn 6= xn+1 for all n.

Since {x0} �1 Sx0, x1 ∈ Sx0 can be chosen so that x0 � x1. Since S and T are
weakly isotone increasing, it is Sx0 �1 T x1; in particular, x2 ∈ T x1 can be chosen
so that x1 � x2. Now, T x1 �1 Sx2 (since x2 ∈ T x1); in particular, x3 ∈ Sx2 can
be chosen so that x2 � x3. Continuing this process, we conclude that {xn} can be
an increasing sequence in X :

x1 � x2 � · · · � xn � xn+1 � · · · .
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Now we claim that
F(d(xn+1, xn)) < F(d(xn , xn−1)). (2.5)

Setting x = x2n+1 and y = x2n in (2.2), we have

M(x2n+1, x2n) = max

{

d(x2n+1, x2n), D(T x2n+1, x2n+1), D(Sx2n, x2n),

D(x2n+1, Sx2n) + D(Tx2n+1, x2n)

2

}

= max

{

d(x2n+1, x2n), d(x2n+2, x2n+1),
d(x2n+2, x2n)

2

}

.

Since
d(xn ,xn+2)

2 ≤ max{d(xn, xn+1), d(xn+1, xn+2)}, it follows that

M(x2n+1, x2n) ≤ max{d(x2n+1, x2n), d(x2n+2, x2n+1)}.

Therefore, from (2.1)

F(d(x2n+2, x2n+1)) ≤ F(δ(T x2n+1,Sx2n)) (2.6)

≤ F(M(x2n+1, x2n))

− ψ(F(max{d(x2n+1, x2n), δ(x2n+1, T x2n+1), δ(x2n,Sx2n+1))}))

= F(max{d(x2n+1, x2n), d(x2n+2, x2n+1)})

− ψ(F(max{d(x2n+1, x2n), d(x2n+2, x2n+1)})).

Suppose that d(x2n, x2n+1) ≤ d(x2n+1, x2n+2), for some positive integer n. Then
from (2.6), we have

F(d(x2n+2, x2n+1)) ≤ F(d(xn+1, xn+2))− ψ(F(d(xn+1, xn+2)))

< F(d(x2n+1, x2n+2)),

that is, F(d(xn+1, xn+2)) ≤ 0, which implies that d(x2n+1, x2n+2) = 0, and x2n+1 =
x2n+2, contradicting our assumption that xn 6= xn+1, for each n. Therefore,

F(d(x2n+2, x2n+1)) < F(d(x2n+1, x2n)). (2.7)

Analogously, we have

F(d(x2n+1, x2n)) < F(d(x2n , x2n−1)). (2.8)

Thus from (2.7) and (2.8), we get that (2.5) holds for all n ∈ N. Monotonicity of F
implies that also {d(xn+1, xn)} is a decreasing sequence of positive real numbers,
hence limn→∞ d(xn+1, xn) = r ≥ 0. Suppose that r > 0. It follows from (2.6) that

F(d(x2n+2, x2n+1)) ≤ F(d(x2n+1, x2n))− ψ(F(d(x2n+1, x2n))).

Passing to the limit when n → ∞ we get that

F(r) ≤ F(r)− ψ(F(r)),
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which is possible only if r = 0, because of the assumed properties of functions
F ∈ F and ψ ∈ Ψ. Hence, we have proved that

lim
n→∞

d(xn+1, xn) = 0. (2.9)

Next, we claim that {xn} is a Cauchy sequence. We proceed by negation and
suppose that it is not. That is, there exists ε > 0 such that d(xn, xm) ≥ ε for
infinitely many values of m and n with m < n. This assures that there exist two
sequences {m(k)}, {n(k)} of natural numbers, with m(k) < n(k), such that for
each k ∈ N,

d(x2m(k), x2n(k)+1) > ε. (2.10)

It is not restrictive to suppose that n(k) is the least positive integer exceeding m(k)
and satisfying (2.10). We have

ε < d(x2m(k), x2n(k)+1)

≤ d(x2m(k), x2n(k)−1) + d(x2n(k)−1, x2n(k)) + d(x2n(k), x2n(k)+1)

≤ ε + d(x2n(k)−1, x2n(k)) + d(x2n(k), x2n(k)+1)

and passing to the limit as k → ∞, we have d(x2m(k), x2n(k)+1) → ε. We note that

d(x2m(k), x2n(k)+1)− d(x2m(k), x2m(k)+1)− d(x2n(k)+2, x2n(k)+1)

≤ d(x2m(k)+1, x2n(k)+2)

≤ d(x2m(k), x2n(k)+1) + d(x2m(k), x2m(k)+1) + d(x2n(k)+2, x2n(k)+1),

and thus d(x2m(k)+1, x2n(k)+2) → ε as k → ∞. We have that

M(x2n(k)+1, x2m(k)))

= max{d(x2n(k)+1, x2m(k)), d(x2n(k)+1, x2n(k)+2), d(x2m(k) , x2m(k)+1),
1
2 [d(x2n(k)+1, x2m(k)+1) + d(x2m(k), x2n(k)+2)]}

≤ max{d(x2n(k)+1, x2m(k)), d(x2n(k)+1, x2n(k)+2), d(x2m(k) , x2m(k)+1),
1
2 [d(x2n(k)+1, x2m(k)) + d(x2m(k), x2m(k)+1) + d(x2n(k)+1, x2n(k)+2)]}

and so passing to the limit as k → ∞ we have limk→∞ M(x2n(k)+1, x2m(k)) ≤ ε.
Therefore we have

F(d(x2m(k)+1 , x2n(k)+2))

≤ F(δ(Sx2m(k) , T x2n(k)+1))

≤ F(M(x2n(k)+1, x2m(k)))− ψ(F(max{d(x2n(k)+1, x2m(k)),

δ(x2n(k)+1, Tx2n(k)+1), δ(x2m(k), Sx2m(k))}))

≤ F(M(x2n(k)+1, x2m(k)))− ψ(F(max{d(x2n(k)+1, x2m(k)),

d(x2n(k)+1, x2n(k)+2), d(x2m(k) , x2m(k)+1)}))

and passing to the limit as k → ∞ in the above equation, F being continuous and
ψ right-continuous, we get

F(ε) ≤ F(ε) − ψ(F(ε)) < F(ε),
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a contradiction. Therefore {xn} is a Cauchy sequence in (X , d) which is complete.
Then, there exists z ∈ X such that

lim
n→∞

xn = z.

Now suppose that δ(z,Sz) > 0. From (2.3), we have x2n � z for all n ∈ N.
Hence, we can apply the considered contractive condition. Then, setting x =
x2n+1 and y = z in (2.1), we obtain

F(δ(x2n+2,Sz)) ≤ F(δ(T x2n+1,Sz))

≤ F(M(x2n+1, z))− ψ(F(max{d(x2n+1, z), δ(x2n+1, T x2n+1), δ(z,Sz)})

≤ F(M(x2n+1, z))− ψ(F(max{d(x2n+1, z), d(x2n+1, x2n+2), δ(z,Sz)})

where

M(x2n+1, z) = max{d(x2n+1, z), D(x2n+1, T x2n+1), D(z,Sz),
1
2 [D(x2n+1,Sz) + D(z, T x2n+1)]}

= max{d(x2n+1, z), d(x2n+1, x2n+2), D(z,Sz),
1
2 [d(x2n+1,Sz) + d(z, x2n+2)]}.

Passing to the limit as n → ∞ in the above inequality and using the continuity of
F and right-continuity of ψ, we have

F(δ(z,Sz)) ≤ F(D(z,Sz)) − ψ(F(δ(z,Sz)))

≤ F(δ(z,Sz)) − ψ(F(δ(z,Sz)))

< F(δ(z,Sz)),

a contradiction. Therefore δ(z,Sz) = 0 and thus z ∈ Sz. Hence, z is a fixed point
of S . Analogously, starting from x = z and y = x2n+1, one can prove that z ∈ T z.
It follows that z ∈ Sz ∩ T z, that is, T and S have a common fixed point.

In Theorem 2.2, if T ,S are single valued mappings and condition (2.3) is re-
placed by requiring that one of T and S is continuous, then we have the following
result.

Theorem 2.3. Let (X , d,�) be an ordered complete metric space. Let T ,S : X −→ X
be mappings such that

F(d(T x,Sy)) ≤ F(M(x, y)) − ψ(F(max{d(x, y), d(x, T x), d(y,Sy)}))

for all comparable x, y ∈ X , where F ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), d(x, T x), d(y,Sy),
d(x,Sy) + d(y, T x)

2

}

.

Also suppose that S and T are weakly isotone increasing. If one of S and T is continuous,
then S and T have a common fixed point.
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Proof. Consider T as a multivalued mapping for which T x is a singleton set for
every x ∈ X . Then we consider the same sequence {xn} as in the proof of Theo-
rem 2.2. Following the line of its proof, we have that {xn} is a Cauchy sequence
and

lim
n→∞

xn = z.

Then, if T is continuous, we have

z = lim
n→∞

xn+1 = lim
n→∞

T xn = T z

and this proves that z is a fixed point of T and so z is a fixed point of S . Similarly,
if S is continuous, we have the result. Thus it is immediate to conclude that T
and S have a common fixed point.

Putting S = T in Theorem 2.2 we obtain the following

Corollary 2.4. Let (X , d,�) be an ordered complete metric space. Let T : X −→ B(X )
be a multivalued mapping such that

F(δ(T x, T y)) ≤ F(M(x, y)) − ψ(F(max{d(x, y), δ(x, T x), δ(y, T y)})) (2.11)

for all comparable x, y ∈ X , where F ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), D(x, T x), D(y, T y),
D(x, T y) + D(y, T x)

2

}

.

Also suppose that T x �1 T (T x) for all x ∈ X and there is x0 ∈ X such that {x0} ≺1

T x0. If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

holds, then T has a fixed point.

If T is a single-valued mapping in Corollary 2.4, then we have the following

Corollary 2.5. Let (X , d,�) be an ordered complete metric space. Let T : X −→ X be
a mapping such that

F(d(T x, T y)) ≤ F(M(x, y)) − ψ(F(max{d(x, y), d(x, T x), d(y, T y)}))

for all comparable x, y ∈ X , where F ∈ F , ψ ∈ Ψ and

M(x, y) = max

{

d(x, y), d(x, T x), d(y, T y),
d(x, T y) + d(y, T x)

2

}

.

Also suppose that T x � T (T x) for all x ∈ X . If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

holds, then T has a fixed point.
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Remark 2.6. In [25, Corollary 2.5], it was proved that if

every pair of elements has a lower bound and an upper bound, (2.12)

then for every x ∈ X ,

lim
n→∞

T n(x) = y,

where y is the fixed point of T such that

y = lim
n→∞

T n(x0)

and hence T has a unique fixed point. If condition (2.12) fails, it is possible to
find examples of mappings T with more than one fixed point. There exist some
examples to illustrate this fact in [24].

We illustrate the results of this section by an example showing also that the
use of order can be crucial.

Example 2.7. Let X = {A, B, C}, where A = (0, 0), B = (1, 1), C = (2, 0) ∈
R

2. Metric d is defined as d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|} so that
d(A, B) = 1, d(A, C) = 2 and d(B, C) = 1. Order � is introduced by (x1, y1) �
(x2, y2) iff x1 ≤ x2 and y1 ≤ y2, so that A � B and A � C, while B and C are
incomparable.

Consider the mapping T : X → B(X ) given by

T =

(

A B C
{A} {A} {A, B}

)

,

and functions F ∈ F , ψ ∈ Ψ given by F(t) = 1
2 t, ψ(t) = 1

3 t. To prove that
condition (2.11) of Corollary 2.4 holds, it is enough to check that it is satisfied for
x = A, y = B and for x = A, y = C (in the case when x = y, (2.11) is trivially
satisfied).

If x = A, y = B, then T x = T y = {A} and δ(T x, T y) = 0, so (2.11) holds. If
x = A, y = C, then

δ(T x, T y) = δ({A}, {A, B}) = d(A, B) = 1,

and

M(x, y) = max{d(A, C), D(A, {A}), D(C, {A, B}),
1
2(D(A, {A, B}) + D(C, {A}))}

= max{2, 0, 1, 1
2(0 + 2)} = 2,

m(x, y) = max{d(x, y), δ(x, T x), δ(y, T y)} = max{2, 0, 2} = 2.

Hence, F(δ(T x, T y)) = 1
2 <

2
3 = F(M(x, y)) − ψ(F(m(x, y))). All other condi-

tions of Corollary 2.4 are fulfilled and T has a fixed point A.
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Note that for (incomparable) points x = B, y = C condition (2.11) is not
satisfied, and so the respective result in metric space without order cannot be
applied to reach the conclusion. Indeed, in this case, T x = {A}, T y = {A, B},

δ(T x, T y) = d(A, B) = 1,

M(x, y) = max{1, 1, 1, 1
2(0 + 2)} = 1,

m(x, y) = max{1, 1, 2} = 2

and F(δ(T x, T y)) = 1
2 >

1
6 = F(M(x, y)) − ψ(F(m(x, y)).

3 Common fixed point results under almost contractive condi-

tions

In this section, we prove common fixed point theorems for a pair of weakly iso-
tone increasing multivalued mappings satisfying a variant of so-called almost
contractive condition.

Theorem 3.1. Let (X , d,�) be an ordered complete metric space. Assume that there is
a continuous function ϕ : [0,+∞) → [0,+∞) with ϕ(t) < t for each t > 0, ϕ(0) = 0
and that T ,S : X −→ B(X ) are multivalued mappings such that

δ(T x,Sy) ≤ M(x, y) (3.1)

+ L min{ϕ(D(x, T x)), ϕ(D(y,Sy)), ϕ(D(x,Sy)), ϕ(D(y, T x))},

for all comparable x, y ∈ X , where L ≥ 0, and

M(x, y) = max

{

ϕ(d(x, y)), ϕ(D(x, T x)), ϕ(D(y,Sy)), (3.2)

ϕ

(

D(x,Sy) + D(y, T x)

2

)}

.

Also suppose that S and T are weakly isotone increasing and there exists an x0 ∈ X
such that {x0} ≺1 Sx0. If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

(3.3)

holds, then S and T have a common fixed point.

Proof. First of all we show that, if S or T has a fixed point, then it is a common
fixed point of S and T . Indeed, let z be a fixed point of S and assume δ(z, T z) >
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0. If we use the inequality (3.1) for x = y = z, and properties of ϕ, we have

δ(T z,Sz)

≤ max

{

ϕ(d(z, z)), ϕ(D(z, T z)), ϕ(D(z,Sz)),

ϕ

(

D(z,Sz) + D(z, T z)

2

)}

+ L min{ϕ(D(z, T z)), ϕ(D(z,Sz)), ϕ(D(z,Sz)), ϕ(D(z, T z))}

= max

{

ϕ(D(z, T z)), ϕ

(

1

2
D(z, T z)

)}

< D(z, T z),

which is a contradiction. Thus δ(z, T z) = 0 and so z is a common fixed point of
S and T .

Starting with the given x0, define a sequence {xn} as follows:

x2n+1 ∈ Sx2n, x2n+2 ∈ T x2n+1 for n ≥ 0. (3.4)

Note x1 ∈ Sx0 such that x0 � x1 and since S and T are weakly isotone increasing,
Sx0 �1 T y for all y ∈ Sx0. Hence, we have Sx0 �1 T x1. In particular Sx0 �1 x2,
and so x1 � x2. Continuing this process we construct a monotone increasing
sequence {xn} in X such that

x0 � x1 � x2 � · · · � xn � xn+1 � · · · . (3.5)

If there exists a positive integer N such that xN = xN+1, then xN is a common
fixed point of T and S . Hence we shall assume that xn 6= xn+1, for all n ≥ 0.

Now we claim that for all n ∈ N, we have

d(xn+1, xn+2) < d(xn, xn+1). (3.6)

From (3.5) we have that xn ≺ xn+1 for all n ∈ N. Then from (3.1) with x = xn,
y = xn+1 and n = 2k − 1, k ∈ N, we get

d(xn+1, xn+2) (3.7)

≤ δ(T xn,Sxn+1)

≤ M(xn, xn+1) + L min{ϕ(D(xn, T xn)),

ϕ(D(xn+1,Sxn+1)), ϕ(D(xn,Sxn+1)), ϕ(D(xn+1, T xn))}

≤ M(xn, xn+1) + L min{ϕ(d(xn, xn+1)), ϕ(d(xn+1, xn+2)),

ϕ(d(xn, xn+2)), ϕ(d(xn+1, xn+1))}.
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By (3.2), we have

M(xn, xn+1)

= max {ϕ(d(xn, xn+1)), ϕ(D(xn , T xn)), ϕ(D(xn+1,Sxn+1)),

ϕ

(

D(xn,Sxn+1) + D(xn+1, T xn)

2

)}

= max {ϕ(d(xn, xn+1)), ϕ(d(xn , xn+1)), ϕ(d(xn+1, xn+2)),

ϕ

(

d(xn, xn+2) + d(xn+1, xn+1)

2

)}

= max

{

ϕ(d(xn, xn+1)), ϕ(d(xn+1, xn+2)), ϕ

(

1

2
d(xn, xn+2)

)}

.

• If M(xn, xn+1) = ϕ(d(xn+1, xn+2)), by (3.7) and using the fact that ϕ(t) < t for
all t > 0, we have

d(xn+1, xn+2) ≤ ϕ(d(xn+1, xn+2)) < d(xn+1, xn+2),

a contradiction.
• If M(xn, xn+1) = ϕ

(

1
2d(xn, xn+2)

)

, we get

d(xn+1, xn+2) ≤ ϕ

(

1

2
d(xn, xn+2)

)

<
1

2
d(xn, xn+2).

On the other hand, by the triangular inequality, we have

1

2
d(xn, xn+2) ≤

1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2).

Thus, we have

d(xn+1, xn+2) <
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2),

which implies that
d(xn+1, xn+2) < d(xn, xn+1).

• If M(xn, xn+1) = ϕ(d(xn, xn+1)), we get

d(xn+1, xn+2) ≤ ϕ(d(xn, xn+1)) < d(xn, xn+1).

Then, in all cases, we have d(xn+1, xn+2) < d(xn, xn+1) for all n = 2k − 1, k ∈ N.
Similarly, we can prove that d(xn, xn+1) < d(xn−1, xn) for all n = 2k, k ∈ N.
Therefore, we conclude that (3.6) holds.

Now, from (3.6) it follows that the sequence {d(xn, xn+1)} is monotone de-
creasing. Therefore, there is some λ ≥ 0 such that

lim
n→∞

d(xn, xn+1) = λ. (3.8)

We are able to prove that λ = 0. In fact, by the triangular inequality, we get

1

2
d(xn, xn+2) ≤

1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2).
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By (3.6), we have
1

2
d(xn, xn+2) ≤ d(xn, xn+1). (3.9)

From (3.9), taking the upper limit as n → ∞, we get

lim sup
n→∞

1

2
d(x2n, x2n+2) ≤ lim

n→∞
d(x2n, x2n+1).

If we set

lim sup
n→∞

1

2
d(x2n, x2n+2) = b, (3.10)

then clearly 0 ≤ b ≤ λ. As ϕ is continuous and taking the upper limit on both
sides of (3.7), we get

lim sup
n→+∞

d(x2n+1, x2n+2) ≤ max

{

ϕ(lim sup
n→+∞

d(x2n+1, x2n+2)),

ϕ(lim sup
n→+∞

(d(x2n+1, x2n)), ϕ

(

1

2
(lim sup

n→+∞

d(x2n, x2n+2))

)}

.

Hence by (3.8) and (3.10), we deduce

λ ≤ max{ϕ(λ), ϕ(b)}.

If we suppose that λ > 0, then we have

λ ≤ max{ϕ(λ), ϕ(b)} < max{λ, b} = λ,

a contradiction. Thus λ = 0 and consequently

lim
n→∞

d(xn, xn+1) = 0. (3.11)

Now we prove that {xn} is a Cauchy sequence. To this end, it is sufficient
to verify that {x2n} is a Cauchy sequence. Suppose, on the contrary, that it is
not. Then, there exists an ε > 0 such that for each even integer 2k there are even
integers 2n(k), 2m(k) with 2m(k) > 2n(k) > 2k such that

rk = d(x2n(k), x2m(k)) ≥ ε for k ∈ {1, 2, . . . }. (3.12)

For every even integer 2k, let 2m(k) be the smallest number exceeding 2n(k) sat-
isfying condition (3.12) for which

d(x2n(k), x2m(k)−2) < ε. (3.13)

From (3.12), (3.13) and the triangular inequality, we have

ε ≤ rk ≤ d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k))

≤ ε + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k)).

Hence by (3.11), it follows that

lim
k→∞

rk = ε. (3.14)
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Now, from the triangular inequality, we have

|d(x2n(k), x2m(k)−1)− d(x2n(k), x2m(k))| ≤ d(x2m(k)−1, x2m(k)).

Letting k → ∞ and using (3.11) and (3.14), we get

lim
k→∞

d(x2n(k), x2m(k)−1) = ε. (3.15)

On the other hand, we have

d(x2n(k), x2m(k)) (3.16)

≤ d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k))

≤ d(x2n(k), x2n(k)+1) + δ(Sx2n(k), T x2m(k)−1)

≤ d(x2n(k), x2n(k)+1) + M(x2m(k)−1, x2n(k))

+ L min{ϕ(d(x2m(k)−1, T x2m(k)−1)), ϕ(D(x2n(k) ,Sx2n(k))),

ϕ(D(x2m(k)−1,Sx2n(k))), ϕ(D(x2n(k) , T x2m(k)−1))}

= d(x2n(k), x2n(k)+1) + M(x2m(k)−1, x2n(k))

+ L min{ϕ(d(x2m(k)−1, x2m(k))), ϕ(d(x2n(k) , x2n(k)+1)),

ϕ(d(x2m(k)−1, x2n(k)+1)), ϕ(d(x2n(k) , x2m(k)))},

where

M(x2m(k)−1, x2n(k)) = max

{

ϕ(d(x2m(k)−1, x2n(k))),

ϕ(d(x2m(k)−1, x2m(k))), ϕ(d(x2n(k) , x2n(k)+1)),

ϕ

(

d(x2n(k), x2m(k)) + d(x2m(k)−1, x2n(k)+1)

2

)

}

.

From

d(x2m(k)−1, x2n(k)+1) ≤ d(x2m(k)−1, x2m(k)) + d(x2m(k), x2n(k))

+ d(x2n(k), x2n(k)+1),

taking the upper limit as k → ∞, using (3.11) and (3.14), we get

lim sup
k→∞

d(x2m(k)−1, x2n(k)+1) ≤ ε.

On the other hand, we have

ε ≤ d(x2m(k), x2n(k))

≤ d(x2m(k), x2m(k)−1) + d(x2m(k)−1, x2n(k)+1) + d(x2n(k)+1, x2n(k))

and taking the lower limit as k → ∞, we get

ε ≤ lim inf
k→∞

d(x2m(k) , x2n(k)) ≤ lim inf
k→∞

d(x2m(k)−1, x2n(k)+1).
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It follows that
ε ≤ lim inf

k→∞

d(x2m(k)−1, x2n(k)+1),

and so
lim
k→∞

d(x2m(k)−1, x2n(k)+1) = ε. (3.17)

Now, using (3.11), (3.14), (3.15), (3.17) and the continuity of ϕ, we get

lim
k→∞

M(x2m(k)−1, x2n(k)) = max{ϕ(ε), 0, 0, ϕ(ε)} = ϕ(ε). (3.18)

Letting k → ∞ in (3.16), we obtain

ε ≤ ϕ(ε) < ε,

a contradiction. Thus, assumption (3.12) is wrong. Hence {xn} is a Cauchy se-
quence. From the completeness of X , there exists a z ∈ X such that

lim
n→∞

xn = z.

As the limit point z is independent of the choice of xn, we also get

lim
n→∞

D(Sx2n, z) = lim
n→∞

D(T x2n+1, z) = 0.

Now we show that z is a common fixed point of S and T .
By the assumption (3.3), xn � z, for all n. Then by the property of sequence

{xn}, for x = x2n+1 and y = z, we have

δ(T x2n+1,Sz) (3.19)

≤ max

{

ϕ(d(x2n+1, z)), ϕ(D(x2n+1, T x2n+1)), ϕ(D(z,Sz)),

ϕ

(

D(z, T x2n+1) + D(x2n+1,Sz)

2

)}

+ L min{ϕ(D(x2n+1,

T x2n+1)), ϕ(D(z,Sz)), ϕ(D(x2n+1 ,Sz)), ϕ(D(z, T x2n+1))}.

Letting n → ∞ and using properties of ϕ, we have

δ(z,Sz) ≤ max{ϕ(D(z,Sz)), ϕ(D(z,Sz)/2)} < D(z,Sz),

which is a contradiction, unless δ(z,Sz) = 0 and so z ∈ Sz. Analogously, starting
from x = z and y = x2n, one can prove that z ∈ T z. It follows that z ∈ Sz ∩ T z,
that is, T and S have a common fixed point.

Remark 3.2. (i) The condition

δ(T x,Sy) ≤ ϕ (M1(x, y)) (3.20)

+ L min{ϕ(D(x, T x)), ϕ(D(y,Sy)), ϕ(D(x,Sy)), ϕ(D(y, T x))},

where

M1(x, y) = max

{

d(x, y), D(x, T x), D(y,Sy),
D(y, T x) + D(x,Sy)

2

}

,

implies condition (3.1).
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(ii) Condition (3.20) is equivalent to condition (3.1) if we suppose that ϕ is a
non-decreasing function.

(iii) From Theorem 3.1 we can derive a corollary involving condition (3.20);

(iv) Under the hypothesis that ϕ is a non-decreasing function, we can state many
others corollaries using the equivalences established by Jachymski in [17]
for single valued mappings.

Example 3.3. Let X = [0,+∞) be equipped with the standard metric d and order �
given by

x � y ⇐⇒ x ≥ y.

Consider the following mappings T ,S : X → B(X ):

T x =

[

1

4
x,

1

3
x

]

, Sx =

[

1

5
x,

3

10
x

]

, x ∈ [0,+∞).

Check first that T and S are weakly isotone increasing. Suppose that y ∈ Sx = [ 1
5 x, 3

10 x]

and z ∈ Sx = [ 1
5 x, 3

10 x]. Then u ∈ T y implies that u ≤ 1
3 ·

3
10 x = 1

10 x <
1
5 x ≤ z and

so z � u. This means that for any x ∈ X we have Sx �1 T y for all y ∈ Sx. Similarly,
one can prove that for each x ∈ X we have T x �1 Sy for all y ∈ T x.

Let ϕ(t) = 1
2 t for t ∈ [0,+∞) and L = 1. Now we check that condition (3.1) holds

for all x, y ∈ X . Consider the following two possibilities.

1. x � y, i.e., x ≥ y. Denote y = xz, 0 ≤ z ≤ 1. Then

δ(T x,Sy) = δ([ 1
4 x, 1

3 x], [ 1
5y, 3

10y]) = 1
3 x − 1

5 y = x(1
3 −

1
5z)

≤
1

3
x,

M(x, y) =
1

2
max{x − y, 2

3 x, 7
10 y, 1

2 [(x − 3
10y) + |y − 1

3 x|]}

=
1

2
x max{1 − z, 2

3 , 7
10 z, 1

2 [(1 −
3

10 z) + |z − 1
3 |]}

≥
1

2
x ·

2

3
=

1

3
x,

m(x, y) = min{ϕ(D(x, T x)), ϕ(D(y, T y)), ϕ(D(x,Sy)), ϕ(D(y,Sx))}

=
1

2
x min{2

3 , 7
10 z, 1 − 3

10 z, |z − 1
3 |} ≥ 0.

Hence, we obtain that

δ(T x,Sy) ≤ M(x, y) + Lm(x, y) (3.21)

is satisfied.
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2. x ≻ y, i.e., x < y and x = yz for some z ∈ (0, 1). Then

δ(T x,Sy) = yδ([ 1
4 z, 1

3 z], [ 1
5 , 3

10 ]) = y ×











3
10 −

1
4z, 0 < z <

4
5

1
10 , 4

5 ≤ z <
9
10

1
3z − 1

5 , 9
10 ≤ z < 1,

≤
3

10
y,

M(x, y) =
1

2
y max{1 − z, 2

3 z, 7
10 , 1

2 [ψ(z) + (1 − 1
3z)]},

≥
1

2
y ·

7

10
=

7

20
y >

3

10
y

m(x, y) =
2

3
y min{2

3 z, 7
10 , ψ(z), 1 − 1

3z} ≥ 0.

Again we obtain that condition (3.21) is satisfied.
Thus, all the conditions of Theorem 3.1 are fulfilled, and T and S have a fixed point

(z = 0).

Similar corollaries can be obtained as in the previous section. Putting S = T
in Theorem 3.1, we obtain immediately the following result.

Corollary 3.4. Let (X , d,�) be an ordered complete metric space. Assume that there is
a continuous function ϕ : [0,+∞) → [0,+∞) with ϕ(t) < t for each t > 0, ϕ(0) = 0
and that T : X −→ B(X ) is a multivalued mapping such that

δ(T x, T y) ≤ M(x, y)

+ L min{ϕ(D(x, T x)), ϕ(D(y, T y)), ϕ(D(x, T y)), ϕ(D(y, T x))},

for all comparable x, y ∈ X , where L ≥ 0, and

M(x, y) = max

{

ϕ(d(x, y)), ϕ(D(x, T x)), ϕ(D(y, T y)),

ϕ

(

D(x, T y) + D(y, T x)

2

)}

.

Also suppose that T x �1 T (T x) for all x ∈ X and that there is x0 ∈ X such that
{x0} ≺1 T x0. If the condition

{

if {xn} ⊂ X is a non-decreasing sequence with xn → z in X ,
then xn � z for all n

holds, then T has a fixed point.

To conclude this section, we provide a sufficient condition to ensure the unique-
ness of the fixed point in the above Theorem 3.1.

First, we recall the usual definition of the diameter of a set A in a metric space
(X , d):

diam (A) := sup{d(x, y) : x, y ∈ A} i.e. δ(A, A) = diamA,

for any subset A of X . Then, we get the following theorem.



594 H.K. Nashine – Z. Kadelburg

Theorem 3.5. Adding to the hypotheses of Theorem 3.1 the following condition:

lim
n→∞

diam ((T ◦ S)n(X )) = 0,

where ◦ denotes the composition of mappings, we obtain the uniqueness of the common
fixed point of S and T .

Proof. Let z and z′ be two common fixed points of S and T , that is,

z ∈ T z ∩ Sz and z′ ∈ T z′ ∩ Sz′.

It is immediate to show that for all n ∈ N, we have:

(T ◦ S)nx = x, for all x ∈ {z, z′}.

Then

d(z, z′) = δ((T ◦ S)nz, (T ◦ S)nz′) ≤ diam((T ◦ S)n(X )) → 0 as n → ∞.

Hence z = z′ and the proof is completed.
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