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Abstract

Let F be a family of holomorphic functions defined in D ⊂ C, and let

k, m, n, p be four positive integers with
k+p+1

m + p+1
n < 1. Let ψ( 6≡ 0, ∞)

be a meromorphic function in D and which has zeros only of multiplicities
at most p. Suppose that, for every function f ∈ F , (i) f has zeros only of
multiplicities at least m; (ii) all zeros of f (k) −ψ(z) have multiplicities at least
n; (iii) all poles of ψ have multiplicities at most k, and (iv) ψ(z) and f (z) have
no common zeros, then F is normal in D.

1 Introduction

In this paper, we shall use the standard notations of value distribution theory,
which can be found in ([6],[13],[17], etc.). We denote by S(r, f ) any function sat-
isfying S(r, f ) = o{T(r, f )} as r → ∞, possibly outside a set with finite linear
measure.

Let D be a domain in C, and F be a family of meromorphic functions defined
on D. F is said to be normal on D, in the sense of Montel, if for any sequence
fn ∈ F there exists a subsequence fnj

, such that fnj
converges spherically locally

uniformly on D, to a meromorphic function or ∞ (see [6],[13],[17]).
One of the most celebrated results in the theory of normal families is the fol-

lowing Gu’s normality criterion (see [5], the holomorphic case is due to Miranda
[9]), which is a conjecture of Hayman [7].
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Theorem A. Let F be a family of meromorphic functions in a domain D, and let k be a

positive integer. If for every function f ∈ F , f 6= 0, f (k) 6= 1, then F is normal on D.

This result has undergone various extensions(see [1], [2], [10], [11], [14], [15],

etc.). Yang and Zhang proved that the conditions f 6= 0 and f (k) 6= 1 are all can be
weakened in the holomorphic case. In fact, they proved the following result(see
[17]).

Theorem B. Let F be a family of holomorphic functions defined in D, and let k, m, n be
three positive integers. If for every function f ∈ F , f has zeros only of multiplicities at

least m, f (k) − 1 has zeros only of multiplicities at least n and k+1
m + 1

n < 1, then F is
normal in D.

A natural problem arises: what can we say if we replace the constant 1 by a
holomorphic function ψ( 6≡ 0) in Theorem B? In this paper, we prove the follow-
ing result.

Theorem 1. Let F be a family of holomorphic functions defined in D ⊂ C, and let

k, m, n, p be four positive integers with
k+p+1

m +
p+1

n < 1. Let ψ( 6≡ 0) be a holomorphic
function in D and which has zeros only of multiplicities at most p. Suppose that, for
every function f ∈ F ,
(i) f has zeros only of multiplicities at least m in D;

(ii) f (k) − ψ(z) has zeros only of multiplicities at least n in D; and
(iii) ψ(z) and f (z) have no common zeros in D,
then F is normal in D.

In fact, we prove the following more general result.

Theorem 2. Let F be a family of holomorphic functions defined in D ⊂ C, and k, m, n, p

be four positive integers with
k+p+1

m + p+1
n < 1. Let ψ( 6≡ 0), a0, a1, ..., ak−1 be holomor-

phic functions in D, where ψ(z) has zeros only of multiplicities at most p. Suppose that,
for every function f ∈ F ,
(i) f has zeros only of multiplicities at least m in D;

(ii) f (k)(z) + ak−1(z) f (k−1)(z) + ...+ a1(z) f ′(z) + a0(z) f (z) − ψ(z) has zeros only of
multiplicities at least n in D; and
(iii) ψ(z) and f (z) have no common zeros in D,
then F is normal in D.

Furthermore, it is natural to ask: whether or not the above result holds if we
extend ψ(z) to the meromorphic case? We first prove the following result.

Theorem 3. Let F be a family of holomorphic functions defined in D ⊂ C, let ψ( 6=
0, 6≡ ∞) be a meromorphic function in D, and let k, m, n be three positive integers with
k+1

m + 1
n < 1. If, for every function f ∈ F ,

(i) f has zeros only of multiplicities at least m in D;

(ii) all zeros of f (k) − ψ(z) have multiplicities at least n in D; and
(iii) all poles of ψ have multiplicities at most k in D,
then F is normal in D.
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Since normality is a local property, combining Theorem 1 and Theorem 3, we
obtain the following theorem.

Theorem 4. Let F be a family of holomorphic functions defined in D ⊂ C, and let

k, m, n, p be four positive integers with
k+p+1

m + p+1
n < 1. Let ψ( 6≡ 0, ∞) be a meromor-

phic function in D and which has zeros only of multiplicities at most p. Suppose that, for
every function f ∈ F ,
(i) f has zeros only of multiplicities at least m in D;

(ii) all zeros of f (k) − ψ(z) have multiplicities at least n in D;
(iii) all poles of ψ have multiplicities at most k in D; and
(iv) ψ(z) and f (z) have no common zeros in D,
then F is normal in D.

2 Some lemmas

The well-known Zalcman’s lemma is a very important tool in the study of nor-
mal families. It has also undergone various extensions and improvements. The
following is one-to-date local version, which is due to Pang and Zalcman( see
[12]).

Lemma 1. Let k be a positive integer and let F be a family of holomorphic function in a
domain D, such that each function f ∈ F has zeros only of multiplicities at least k, and

suppose that there exists A ≥ 1 such that | f (k)(z)| ≤ A whenever f (z) = 0, f ∈ F . If
F is not normal at z0 ∈ D, then for each α, 0 ≤ α ≤ k, there exist a sequence of points
zn ∈ D, zn → z0, a sequence of positive numbers ρn → 0, and a sequence of functions
fn ∈ F such that

gn(ξ) =
fn(zn+ρnξ)

ρα
n

→ g(ξ)

locally uniformly with respect to the spherical metric, where g(ξ) is a nonconstant holo-
morphic function on C, all of whose zeros have multiplicity at least k, such that g#(ξ) ≤
g#(0) = kA + 1. Moreover, g(ξ) has order at most 1.

Here, as usual, g#(ξ) = |g′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative.

Lemma 2. Let F be a family of holomorphic functions defined in D ⊂ C, and k, m, n, p
be four positive integers. Let b(z)( 6= 0), a0, a1, ..., ak−1 be holomorphic functions in
D. Suppose that, for every function f ∈ F , f has zeros only of multiplicities at least

m, f (k)(z) + ak−1(z) f (k−1)(z) + ... + a1(z) f ′(z) + a0(z) f (z) − b(z) has zeros only of

multiplicities at least n and k+1
m + 1

n < 1, then F is normal in D.

Proof. Without loss of generality, we may assume D = ∆ = {z : |z| < 1}. Sup-
pose that F is not normal at z0 ∈ D. By Lemma 1, there exist a sequence of points
zn → z0, a sequence of positive numbers ρn → 0, and a sequence of functions
fn ∈ F such that

gn(ξ) =
fn(zn+ρnξ)

ρk
n

→ g(ξ)
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locally uniformly with respect to the spherical metric, where g(ξ) is a nonconstant
holomorphic function on C, all of whose zeros have multiplicity at least m. we
have

g
(k)
n (ξ) +

k−1

∑
i=0

ρk−i
n ai(zn + ρnξ)g

(i)
n (ξ) − b(zn + ρnξ)

= f
(k)
n (zn + ρnξ) +

k−1

∑
i=0

ai(zn + ρnξ) f
(i)
n (zn + ρnξ)− b(zn + ρnξ)

Noting that ai(zn + ρnξ)g
(i)
n (ξ) is locally bounded on C since ai(zn + ρnξ)g

(i)
n (ξ) →

ai(z0)g
(i)(ξ), on every compact subset of C, we have

g
(k)
n (ξ) +

k−1

∑
i=0

ρk−i
n ai(zn + ρnξ)g

(i)
n (ξ)− b(zn + ρnξ) → g(k)(ξ)− b(z0) (2.1)

Since f
(k)
n (zn + ρnξ) + ak−1(zn + ρnξ) f

(k−1)
n (zn + ρnξ) + ... + a1(zn + ρnξ) f ′n(zn +

ρnξ) + a0(zn + ρnξ) fn(zn + ρnξ) − b(zn + ρnξ) has zeros only of multiplicities at

least n, from (2.1), Hurwitz’s theorem yields that g(k)(ξ) − b(z0) has zeros only
of multiplicities at least n, by Milloux’s inequality and Nevanlinna’s first funda-
mental theorem, we have

T(r, g) ≤ N(r, g) + N(r,
1

g
) + N(r,

1

g(k) − b(z0)
)− N(r,

1

g(k+1)
) + S(r, g)

≤ (k + 1)N(r,
1

g
) + N(r,

1

g(k) − b(z0)
) + S(r, g)

≤
k + 1

m
N(r,

1

g
) +

1

n
N(r,

1

g(k) − b(z0)
) + S(r, g)

≤
k + 1

m
T(r, g) +

1

n
(T(r, g) + kN(r, g)) + S(r, g)

≤ (
k + 1

m
+

1

n
)T(r, g) + S(r, g)

In above, we have used the fact that g(ξ) is entire function in both the second and
last inequalities. This is contradicts the fact that g(ξ) is a nonconstant holomor-

phic function on C and k+1
m + 1

n < 1. Lemma 2 is proved.

Lemma 3. Let F = { fn} be a family of holomorphic functions defined in D ⊂ C,

and let k, m, n be three positive integers with k+1
m + 1

n < 1. Let ϕn(z) be a sequence of
holomorphic functions on D such that ϕn → ϕ locally uniformly on D, where ϕ(z)( 6= 0)

is a holomorphic function on D. If all zeros of fn have multiplicities at least m, f
(k)
n (z)−

ϕn(z) has zeros only of multiplicities at least n, then F is normal in D.

Proof. We omit the proof since it can be carried out in the line of prove of Lemma 2.



Normal families of holomorphic functions and multiple values 539

3 Proof of Theorem 2

Proof. Since normality is a local property, without loss of generality, we may as-
sume D = ∆ = {z : |z| < 1}, and ψ(z) = zl ϕ(z)(z ∈ ∆), where l is a non-negative
integer with l ≤ p, ϕ(0) = 1, ϕ(z) 6= 0 on ∆′ = {z : 0 < |z| < 1}.If l = 0, then by
lemma 2 we know that Theorem 2 is valid. If l is a positive integer with l ≤ p,
also by lemma 2, we only need to prove that F is normal at z = 0. Consider the

family G = {g(z) = f (z)
ψ(z)

: f ∈ F , z ∈ ∆}. Since ψ(z) and f (z) have no common

zeros for each f ∈ F , we get g(0) = ∞ for each g ∈ G. we first prove that G is
normal in ∆. Suppose, on the contrary, that G is not normal at z0 ∈ ∆. By lemma
1, there exist a sequence of functions gn ∈ G, a sequence of complex numbers
zn → z0 and a sequence of positive numbers ρn → 0, such that

Gn(ξ) =
gn(zn+ρnξ)

ρk
n

= fn(zn+ρnξ)

ρk
nψ(zn+ρnξ)

→ G(ξ)

converges spherically uniformly on compact subsets of C, where G(ξ) is a non-
constant meromorphic function on C, and all of whose zeros have multiplicity at
least m. We distinguish two cases:
Case1. zn/ρn → ∞. Since Gn(−zn/ρn) = gn(0)/ρk

n, then the pole of Gn corre-
sponding to that of gn at 0 drifts off to infinity , G(ξ) has no poles.
By a simple calculation, for 0 ≤ i ≤ k, we have

g
(i)
n (z) =

f
(i)
n (z)

ψ(z)
−

i

∑
j=1

(

i
j

)

g
(i−j)
n (z)

ψ(j)(z)

ψ(z)
=

f
(i)
n (z)

ψ(z)
−

i

∑
j=1

[

(

i
j

)

g
(i−j)
n (z)

j

∑
t=0

Ajt
1

zj−t

ϕ(t)(z)

ϕ(z)
] (3.1)

where Ajt = l(l − 1)...(l − j + t + 1)

(

j
t

)

if l ≥ j, Ajt = 0 if l < j, for t =

0, 1, ..., j − 1 and Ajj = 1. Thus, from (3.1) we have

ρk−i
n G

(i)
n (ξ) = g

(i)
n (zn + ρnξ)

=
f
(i)
n (zn + ρnξ)

ψ(zn + ρnξ)
−

i

∑
j=1

[

(

i
j

)

g
(i−j)
n (zn + ρnξ)

j

∑
t=0

Ajt
1

(zn + ρnξ)j−t

ϕ(t)(zn + ρnξ)

ϕ(zn + ρnξ)
]

=
f
(i)
n (zn + ρnξ)

ψ(zn + ρnξ)
−

i

∑
j=1

[

(

i
j

)

g
(i−j)
n (zn + ρnξ)

ρ
j
n

j

∑
t=0

Ajt
1

(zn/ρn + ξ)j−t

ρ
j
n ϕ(t)(zn + ρnξ)

ϕ(zn + ρnξ)
]

On the other hand, we have

lim
n→∞

1

(zn/ρn + ξ)
= 0
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and

lim
n→∞

ρ
j
n ϕ(t)(zn + ρnξ)

ϕ(zn + ρnξ)
= 0

for t ≥ 1. Noting that g
(i−j)
n (zn + ρnξ)/ρ

j
n is locally bounded on C since

gn(zn + ρnξ)/ρk
n → G(ξ). Therefore, on every compact subset of C, we have

f
(k)
n (zn + ρnξ)

ψ(zn + ρnξ)
→ G(k)(ξ)

and

f
(i)
n (zn + ρnξ)

ψ(zn + ρnξ)
→ 0,

for i = 0, 1, ..., k − 1, and thus

f
(k)
n (zn + ρnξ) + ∑

k−1
i=0 ai(zn + ρnξ) f

(i)
n (zn + ρnξ)− ψ(zn + ρnξ)

ψ(zn + ρnξ)
→ G(k)(ξ)− 1,

since a0, a1, ..., ak−1 are analytic in D.

Noting that f
(k)
n (zn + ρnξ)+∑

k−1
i=0 ai(zn + ρnξ) f

(i)
n (zn + ρnξ)−ψ(zn + ρnξ) has

zeros only of multiplicity at least n, and ψ(zn + ρnξ) has zeros only at ξ = − zn
ρn

→

∞. Therefore, we have G(k)(ξ) − 1 has zeros only of multiplicity at least n. Next
we can arrive at a contradiction by the same argument as in the latter part of

proof of Lemma 2 since k+1
m + 1

n <
k+p+1

m + p+1
n < 1.

Case2. zn/ρn → α, a finite complex number. Then

gn(ρnξ)

ρk
n

=
gn(zn + ρn(ξ − zn/ρn))

ρk
n

= Gn(ξ − zn/ρn) → G(ξ − α) = G̃(ξ)

spherically uniformly on compact subsets of C. Clearly, G̃(ξ) has zeros only of
multiplicity at least m, and G̃(ξ) has a pole only at ξ = 0. We claim that G̃(ξ)

has a pole only at ξ = 0 of multiplicity l. Since
gn(ρnξ)

ρk
n

=
fn(ρnξ)

ψ(ρnξ)ρk
n
=

fn(ρnξ)

ξ l ϕ(ρnξ)ρk+l
n

,

fn(ξ) and ψ(ξ) don’t have common zeros and ρn → 0, thus there exist r > 0(< 1)

such that fn(ρnξ) don’t have zeros in ∆r when n is large enough. Thus
ρk

n
gn(ρnξ)

is

holomorphic in ∆r and ξ = 0 is the only zero of
ρk

n
gn(ρnξ)

of multiplicity l. On the

other hand, since G̃(ξ) has a pole only at ξ = 0, we have 1
G̃(ξ)

has a zero only at

ξ = 0. Therefore, there exist ε0 > 0 such that | 1
G̃(ξ)

| > ε0 when |ξ| = r′, where

0 < r′ < r, and |
ρk

n
gn(ρnξ)

− 1
G̃(ξ)

| < ε0 when n is large enough. By Rouche’s theorem

we obtain 1
G̃(ξ)

has a zero only at ξ = 0 of multiplicity l. Thus we have proved
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the claim.
Set

Hn(ξ) =
fn(ρnξ)

ρk+l
n

(3.2)

Then

Hn(ξ) =
ψ(ρnξ)

ρl
n

fn(ρnξ)

ρk
nψ(ρnξ)

=
ψ(ρnξ)

ρl
n

gn(ρnξ)

ρk
n

.

Noting that
ψ(ρnξ)

ρl
n

→ ξl , thus Hn(ξ) → ξl G̃(ξ) = H(ξ) uniformly on compact

subsets of C. Since G̃(ξ) has a pole only at ξ = 0 of multiplicity l, we have
H(0) 6= 0 and H(0) 6= ∞, so H(ξ) is holomorphic in C and which has zeros only
of multiplicity at least m. From(3.2), we get

H
(i)
n (ξ) =

f
(i)
n (ρnξ)

ρk+l−i
n

→ H(i)(ξ),

spherically uniformly on compact subsets of C. As the above, on every compact
subsets of C, we have

f
(k)
n (ρnξ) + ∑

k−1
i=0 ai(ρnξ) f

(i)
n (ρnξ)− ψ(ρnξ)

ρl
n

→ H(k)(ξ)− ξl (3.3)

locally uniformly on C. By the assumption of Theorem 2 and (3.3), Hurwitz’s

theorem implies that all zeros of H(k)(ξ)− ξl have multiplicity at least n.

If H(ξ) is a transcendental function, then T(r, H(k)− ξl) = T(r, H(k))+S(r, H).
By Nevanlinna’s first fundamental theorem, we have

m(r,
1

H
) + m(r,

1

H(k) − ξl
)

= m(r,
1

H
+

1

H(k) − ξl
) + S(r, H)

≤ m(r,
1

H(k+l+1)
) + S(r, H)

≤ T(r, H(k+l+1))− N(r,
1

H(k+l+1)
) + S(r, H)

≤ T(r, H(k)) + (l + 1)N(r, H(k))− N(r,
1

H(k+l+1)
) + S(r, H)



542 L. Zhao – X. Wu

both sides add N(r, 1
H ) + N(r, 1

H(k)−ξ l ), we have

T(r, H) ≤ (l + 1)N(r, H(k)) + N(r,
1

H
) + N(r,

1

H(k) − ξl
)

−N(r,
1

H(k+l+1)
) + S(r, H)

≤ (k + l + 1)N(r,
1

H
) + (l + 1)N(r,

1

H(k) − ξl
) + S(r, H)

≤
k + l + 1

m
N(r,

1

H
) +

l + 1

n
N(r,

1

H(k) − ξl
) + S(r, H)

≤
k + l + 1

m
N(r,

1

H
) +

l + 1

n
(T(r, H) + kN(r, H)) + S(r, H)

≤ (
k + l + 1

m
+

l + 1

n
)T(r, H) + S(r, H)

In above, we have used the fact that H(ξ) is a entire function in both the second

and last inequalities. This is a contradiction since
k+p+1

m +
p+1

n < 1 and l ≤ p.

If H(ξ) is a constant, then we have H(k)(ξ)− ξl = −ξl . This is a contradiction

since H(k)(ξ)− ξl has zeros only of multiplicity at least n.
Therefore, H(ξ) is a nonconstant polynomial. Set

H(ξ) = a(ξ − α1)
n1(ξ − α2)

n2 ...(ξ − αt)
nt (3.4)

H(k)(ξ)− ξl = b(ξ − β1)
m1(ξ − β2)

m2 ...(ξ − βs)
ms (3.5)

where a, b are two nonzero constants, and ni ≥ m, mj ≥ n are both positive
integers for i = 1, 2, ..., t, j = 1, 2, ..., s. Set N = deg H, then

N = n1 + n2 + ... + nt, (3.6)

and

deg(H(k)(ξ)− ξl) = N − k,

m1 + m2 + ... + ms = N − k. (3.7)

If αi = β j, then H(β j) = 0, since H(ξ) has zeros only of multiplicity at least m,

we have H(k)(β j) = 0. Thus, from (3.5) we have β j = 0, without loss of generality,
we may assume j = 1. On the other hand, from (3.5) we have

H(k+l)(ξ)− l! = ξm1−l p(ξ) (3.8)

where p(ξ) is a nonconstant polynomial and p(0) 6= 0. This is a contradiction.
Therefore, αi 6= β j for i = 1, 2, ..., t, j = 1, 2, ..., s and that they are all zeros of

H(k+l+1) of multiplicity ni − (k+ l + 1), mj − (l + 1) for i = 1, 2, ..., t, j = 1, 2, ..., s.
Since

deg(H(k+l+1)(ξ)) = deg H(ξ)− (k + l + 1) = N − (k + l + 1)
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So

N − (k + l + 1)t + N − k − (l + 1)s ≤ N − (k + l + 1) (3.9)

From (3.9), we have

N ≤ (k + l + 1)t + (l + 1)(s − 1) (3.10)

Noting that ni ≥ m, from (3.6) we have t ≤ N
m . Noting that mi ≥ n, from (3.7) we

have s ≤ N−k
n . Therefore, we have

(1 −
k + l + 1

m
−

l + 1

n
)N ≤ −

l + 1

n
k

This is a contradiction. Thus, we have proved that G is normal in ∆.

It remains to show that F is normal at z = 0. Since G is normal on ∆, then the
family G is equicontinuous on ∆ with respect to the spherical distance. Noting
that g(0) = ∞ for each g ∈ G, so there exist δ > 0 such that |g(z)| ≥ 1 for
all g ∈ G and each z ∈ ∆δ. On the other hand, since F is normal in ∆′

δ, then F

1= {1/ f : f ∈ F} is normal in ∆′
δ, but it is not normal in ∆δ. Therefore, there exist

a sequence {1/ fn} ⊂ F 1 which converges locally uniformly on ∆′
δ, but it is not

on ∆δ. Since f (z) 6= 0 for every f ∈ F , then F 1 is a holomorphic function family.
The maximum modulus principle implies that 1/ fn → ∞ on ∆′

δ, and hence so
does {gn} ⊂ G, where gn = fn/ψ. But |gn(z)| ≥ 1 for z ∈ ∆δ, a contradiction.
This finally completes the proof of Theorem 2.

4 Proof of Theorem 3

Proof. Without loss of generality, we may assume D = ∆ = {z : |z| < 1}, and

ψ(z) =
ϕ(z)

zl (z ∈ ∆), where l is a non-negative integer with l ≤ k, ϕ(0) =

1, ϕ(z) 6= 0, ∞ on ∆′ = {z : 0 < |z| < 1}. If l = 0, then by Theorem 1 we know
that Theorem 3 is valid. If l is a positive integer with l ≤ k, also by Theorem 1, it
is enough to show that F is normal at z = 0.

Suppose, on the contrary, that F is not normal at z = 0. By lemma 1(with
α = k − l), there exist a sequence of functions fn ∈ F , a sequence of complex
numbers zn → 0 and a sequence of positive numbers ρn → 0, such that

Fn(ξ) =
fn(zn + ρnξ)

ρk−l
n

→ F(ξ) (4.1)

converges spherically uniformly on compact subsets of C, where F(ξ) is a non-
constant holomorphic function on C, and all of whose zeros have multiplicity at
least m. Now we distinguish two cases:
Case1. zn/ρn → ∞.
Set

gn(ξ) = zl−k
n fn(zn(1 + ξ))
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Clearly, all zeros of gn have multiplicity at least m. Since

g
(k)
n (ξ) −

ϕ(zn(1 + ξ))

(1 + ξ)l
= zl

n[ f
(k)
n (zn(1 + ξ))−

ϕ(zn(1 + ξ))

(zn(1 + ξ))l
]

= zl
n[ f

(k)
n (zn(1 + ξ))− ψ(zn(1 + ξ))]

by the assumption of Theorem 3 and Hurwits’s theorem, we know that all zeros of

g
(k)
n (ξ)− ϕ(zn(1+ξ))

(1+ξ)l have multiplicity at least n in ∆. On the other hand,
ϕ(zn(1+ξ))

(1+ξ)l

is holomorphic in ∆ for each n, and

ϕ(zn(1 + ξ))

(1 + ξ)l
→

1

(1 + ξ)l
( 6= 0)

for ξ ∈ ∆. Then, by Lemma 3, {gn} is normal in ∆.
So we can find a subsequence {gnj

} ⊂ {gn} and a function g such that

gnj
(ξ) = zl−k

nj
fnj

(znj
(1 + ξ)) → g(ξ) (4.2)

converges spherically locally on ∆.
If g(0) 6= ∞, from (4.1) and (4.2), and noting zn/ρn → ∞, we have

F(k−l)(ξ) = lim
j→∞

f
(k−l)
nj

(znj
+ ρnj

ξ) = lim
j→∞

f
(k−l)
nj

(znj
+ znj

(
ρnj

znj

ξ)

= lim
j→∞

g
(k−l)
nj

(
ρnj

znj

ξ) = g(k−l)(0) (4.3)

It follows from (4.3) that F(k−l)(ξ) must be a finite constant, and then F(ξ) is a
polynomial with degree at most k − l. But this is impossible since all zeros of
F(ξ) have multiplicity at least m.

If g(0) = ∞, then

gnj
(

ρnj

znj

ξ) = zl−k
nj

fnj
(znj

+ ρnj
ξ) → g(0) = ∞

and therefore

F(ξ) = lim
j→∞

fnj
(znj

+ ρnj
ξ)

ρk−l
nj

= lim
j→∞

(
znj

ρnj

)k−lzl−k
nj

fnj
(znj

+ ρnj
ξ) = ∞

which is impossible since F is a nonconstant holomorphic function.
Case2. zn/ρn → α, a finite complex number. Then

F
(k)
n (ξ)−

ρl
n ϕ(zn + ρnξ)

(zn + ρnξ)l
→ F(k)(ξ)−

1

(α + ξ)l

on C − {−α}. Noting that

F
(k)
n (ξ) −

ρl
nϕ(zn + ρnξ)

(zn + ρnξ)l
= ρl

n( f
(k)
n (zn + ρnξ)− ψ(zn + ρnξ))
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and all zeros of f
(k)
n (zn + ρnξ) − ψ(zn + ρnξ) have multiplicity at least n, Hur-

witz’s theorem implies that all zeros of F(k)(ξ) − 1
(α+ξ)l have multiplicity at least

n.
By Nevanlinna’s first and second fundamental theorems (for small functions),

we obtain

T(r, F(k)) ≤ N(r, F(k)) + N(r,
1

F(k)
) + N(r,

1

F(k) − 1/(α + ξ)l
) + S(r, F(k))

≤
1

m − k
N(r,

1

F(k)
) +

1

n
N(r,

1

F(k) − 1/(α + ξ)l
) + S(r, F(k))

≤
k + 1

m
N(r,

1

F(k)
) +

1

n
N(r,

1

F(k) − 1/(α + ξ)l
) + S(r, F(k))

≤ (
k + 1

m
+

1

n
)T(r, F(k)) + S(r, F(k))

In above, we have used the fact that k+1
m − 1

m−k = [m−(k+1)]k
m(m−k)

and noting that k+1
m +

1
n < 1, hence k+1

m >
1

m−k . From the last inequalities and noting that k+1
m + 1

n < 1,
we know that F(ξ) is not transcendental. So F(ξ) is a nonconstant polynomial.
Set

F(ξ) = a(ξ − α1)
n1(ξ − α2)

n2 ...(ξ − αt)
nt (4.4)

F(k)(ξ) −
1

(α + ξ)l
=

b(ξ − β1)
m1(ξ − β2)

m2 ...(ξ − βs)ms

(α + ξ)l
(4.5)

where a, b are two nonzero constants, and ni ≥ m, mj ≥ n are both positive
integers for i = 1, 2, ..., t, j = 1, 2, ..., s. Set N = deg F, then

N = n1 + n2 + ... + nt, (4.6)

and
m1 + m2 + ... + ms = N + l − k. (4.7)

If αi = β j, then F(β j) = 0, since F(ξ) has zeros only of multiplicity at least

m, we have F(k)(β j) = 0. Thus, from(4.5) we have 1/(α + β j)
l = 0, which is

impossible. Therefore, αi 6= β j for i = 1, 2, ..., t, j = 1, 2, ..., s.
From (4.5), we have

(α + ξ)l F(k)(ξ) − 1 = b(ξ − β1)
m1(ξ − β2)

m2 ...(ξ − βs)
ms

Hence

l(α + ξ)l−1F(k)(ξ) + (α + ξ)l F(k+1)(ξ) = (ξ − β1)
m1−1...(ξ − βs)

ms−1g(ξ) (4.8)

where g(ξ) is a polynomial of deg g = s − 1.
Since −α, αi are both the zeros of left side of (4.8) of multiplicity l − 1, ni −

(k + 1) for i = 1, 2, ..., s. From (4.8), we have −α, αi are both the zeros of g(ξ) of
multiplicity l − 1, ni − (k + 1) for i = 1, 2, ..., s. Thus

l − 1 + N − (k + 1)t ≤ s − 1
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So

N ≤ (k + 1)t + s − l ≤
k + 1

m
N +

N + l − k

n
− l (4.9)

From(4.9), we have

(1 −
k + 1

m
−

1

n
)N ≤ −(

k − l

n
+ l)

This is a contradiction. Thus, we have proved that F is normal in ∆. Theorem 3
is proved.
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