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Abstract

m-infrabarrelledness, in the context of locally convex algebras, is con-
sidered to prove results previously obtained for barrelled algebras. Thus,
any unital commutative m-infrabarrelled advertibly complete and pseudo-
complete locally m-convex algebra with bounded elements has the Q-pro-
perty; hence, it is functionally continuous (: all characters are continuous). In
the framework of commutative GB∗-algebras with jointly continuous mul-
tiplication and bounded elements, the notions m-infrabarrelled algebra and
C∗-algebra coincide. In unital uniform locally m-convex algebras, m-infrabar-
relledness is equivalent to the Banach algebra structure, modulo pseudo-
completeness. Moreover, m-infrabarrelledness for locally A-convex algebras
(in particular, A-normed ones) is also examined.

1 Introduction

Infrabarrelledness has been introduced in the framework of locally convex spaces
(see e.g. [12, p. 217, Definition 2]). A. Mallios considered m-infrabarrelledness
in the setting of topological algebras ([16, pp. 306–307]). We first examine this
notion in locally A-convex algebras. A barrelled locally A-convex algebra is ac-
tually a locally m-convex algebra ([6, p. 74]). We obtain that m-infrabarrelledness
is sufficient modulo additional conditions (Proposition 3.1). Relative results can
be found in [24, Proposition 2, Proposition 3]. Besides, it has been shown that
any unital commutative Fréchet m-convex algebra every element of which is
bounded is necessarily a Q-algebra ([17, p. 59, Theorem 13.6]). From Corollary 3
in [27, p. 296], it appears in particular, that any unital commutative barrelled,
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complete m-convex algebra every element of which is bounded is necessarily a
Q-algebra. The latter result enlightens the first. So, one wonders which con-
ditions are really behind the fact. Actually, advertible completeness, pseudo-
completeness and m-infrabarrelledness are sufficient to get the Q-property (Propo-
sition 4.1). In the class of GB∗-algebras, m-infrabarrelledness appears also to be
strong enough. Indeed, we obtain, under an additional property, an analogue of
an Allan’s result (Proposition 5.1). Similarly for uniform locally m-convex alge-
bras (Proposition 5.6).

A notion of “m-infrabarrelledness” has been introduced by A. K. Chilana and
S. Sharma [5]. This is different from that given by Mallios [16, p. 307, Definition
9.4]. The latter being more general (see at the end of Preliminaries).

2 Preliminaries

A topological algebra is an algebra E over K (R or C) endowed with a topo-
logical vector space topology τ for which multiplication is separately continu-
ous. Let (E, τ) be a locally convex algebra with separately continuous multiplica-
tion, whose topology τ is given by a family (pλ)λ∈Λ of seminorms; we also write
(E, (pλ)λ). The algebra (E, τ) is said to be locally A-convex (see [8, p. 18, Defini-
tion 2.5]; see also [6], [7]) if, for every x and every λ, there is M(x, λ) > 0 such
that

max [pλ(xy), pλ(yx)] ≤ M(x, λ)pλ(y); ∀y ∈ E.

In the case of a single space norm, (E, ‖.‖), it is called an A-normed algebra.
If M(x, λ) = M(x) depends only on x, we say that (E, τ) is a locally uniformly
A-convex algebra ([7, p. 477, Definition 3.1]). If

pλ(xy) ≤ pλ(x)pλ(y); ∀x, y ∈ E, and ∀λ ∈ Λ,

then (E, τ) is named a locally m-convex algebra ([17], see also [16]). Recall that a
locally convex algebra has a continuous multiplication if, for every λ, there is a

λ
′
such that

pλ(xy) ≤ p
λ
′ (x)p

λ
′ (y); ∀x, y ∈ E.

A unital topological algebra is said to be a Q-algebra (or it has the Q-property) if
the group G(E) of its invertible elements is open. The spectrum of an element x,
denoted by Spx, is the set {z ∈ C : x − ze /∈ G(E)}. The spectral radius ρ(x) of x
is ρ(x) = sup{|z| : z ∈ Spx}.

An element x of a topological algebra E is said to be bounded (i-bounded in
the sense of S. Warner ([26]; see also [1, p. 400, (2.1) Definition]) if there is α > 0
such that {(αx)n : n = 1, 2, ...} is bounded (the term regular is also used). Let
(E, τ) be a locally convex space. The bounded structure (bornology) of (E, τ) is
the collection, denoted by B, of all subsets B of E which are bounded in the sense
of Kolmogorov-von Neumann, that is B is absorbed by every neighborhood of
zero. If τ‖.‖ is the topology induced by a norm ‖.‖, we write B‖.‖. We say that

a locally convex space (E, τ) is Mackey complete (M-complete) if its bounded
structure B admits a fundamental system B of Banach discs (“completant” discs)
that is, for every B in B, the vector space generated by B is a Banach space when
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endowed with the gauge ‖.‖B of B. A locally convex algebra is said to be pseudo-
complete if every closed bounded and idempotent (alias multiplicative) disc is
completant (see [1, p. 400, (2.2) Notation and p. 401, (2.5) Definition]). For the
bornological notions, see [11]. An m-barrel is an idempotent barrel. An abso-
lutely convex subset of (E, τ) is said to be bornivorous (resp. m-bornivorous) if
it absorbs every bounded (resp. m-bounded) subset of (E, τ). A locally convex
algebra (E, τ) is said to be m-barrelled if every m-barrel is a neighborhood of zero
(this class of locally convex algebras was introduced in [15]). Further, a locally
convex algebra is m-infrabarrelled in the sense of A. K. Chilana and S. Sharma if
any bornivorous m-barrel is a neighborhood of zero [5]. In this paper, we use the
following definition, due to A. Mallios, where it is only required that an m-barrel
to be m-bornivorous. See [16, p. 307, Definition 9.4].

Definition 2.1. [Mallios]. A locally convex algebra (E, τ) is said to be m-infrabar-
relled if every m-bornivorous m-barrel in E is a neighborhood of zero.

In the sequel, we will need the following simple observation.

Remark 2.2. A normed algebra is m-infrabarrelled. Indeed its unit ball is an idem-
potent bounded set. So, actually, any other subset which absorbs it, is automati-
cally a neighborhood of zero.

3 A-convex algebras

Any locally m-convex algebra is A-convex (see [6, p. 74, Example (2.4)]) while a
locally A-convex algebra being moreover barrelled is actually a locally m-convex
algebra [ibid. p. 74]. In fact, m-barrelledness is sufficient. On the other hand,
pseudo-completeness is the least completion requirement when dealing with
spectral theory. With the latter condition barrelledness can be weakened to
m-infrabarrelledness, modulo the sequential continuity of multiplication. For
convenience, we recall some facts from [18], [19] and [20], needed in the sequel.
If (E, (pλ)λ) is a unital locally-A-convex algebra, then it can be endowed with a
stronger m-convex topology M(τ), where τ is the topology of E. This is deter-
mined by the family (qλ)λ of seminorms given by

qλ(x) = sup{pλ(xu) : pλ(u) ≤ 1}.

If (E, (pλ)λ) is not unital, consider its topological unitization (E1, τ1) and then
take the restriction of M(τ1) to E.

If (E, (pλ)λ∈Λ) is locally uniformly A-convex, then there is also an algebra
norm ‖·‖0 on E, that yields a topology stronger than M(τ), given by

‖x‖0 = sup{qλ(x) : λ ∈ Λ} (3.1)

(viz. pλ(x) ≤ ‖x‖0 , ∀λ, and ∀x ∈ E; see [7, p. 477, (**) and Lemma 3.2]).
Notice that here, the existence of a unit is necessary (see Remark 3.4 below).

Proposition 3.1. If (E, (pλ)λ∈Λ) is an m-infrabarrelled pseudo-complete locally
A-convex algebra with continuous multiplication, then it is a locally m-convex algebra.



476 M. Haralampidou – M. Oudadess

Proof. We already have τ ⊂ M(τ). For the inverse inclusion, a zero neighborhood
basis for M(τ) consists of sets of the form V =

⋂
1≤i≤n{x ∈ E : qλi

(x) ≤ ǫi}, with
ǫi ≤ 1. Thus V is an m-barrel for τ. It is also m-bornivorous. Indeed, let B be an
idempotent bounded disc. It is contained in the closure B which is idempotent,
since multiplication is continuous. By pseudo-completeness, B is completant. So
it is absorbed by the barrel V. Then, by hypothesis, V is a neighborhood of zero
for τ. Whence M(τ) ⊂ τ.

Pseudo-completeness does not imply the (sequential) continuity of multiplica-
tion; take e.g., the algebra (C[0, 1], ‖.‖1) (here, ‖.‖1 stands for the norm of L1[0, 1]).
But if (E, τ) is Mackey-complete, then multiplication is automatically sequen-
tially continuous [21, p. 398, Proposition 2.2]. Actually, we do not need any
additional condition on multiplication.

Proposition 3.2. If (E, (pλ)λ∈Λ) is an m-infrabarrelled Mackey-complete locally
A-convex algebra, then it is a locally m-convex algebra.

Proof. We argue as in the proof of the previous proposition. By Mackey-comple-
teness, B is contained in a completant bounded disc B1. Now, again by Mackey-
completeness, B1 is absorbed by any barrel, and so by V.

In the uniformly A-convex case, the conclusions are stronger.

Proposition 3.3. Let (E, (pλ)λ∈Λ) be a unital locally uniformly A-convex algebra. Then
the following hold.

(i) If (E, (pλ)λ∈Λ) is pseudo-complete, then it is m-infrabarrelled with continuous
multiplication if and only if it is a Banach algebra.

(ii) If (E, (pλ)λ∈Λ) is Mackey-complete, then it is m-infrabarrelled if and only if it is
a Banach algebra.

Proof. (i) It is known that (E, (pλ)λ∈Λ) and (E, ‖·‖0) (see (3.1)) have the same m-
bounded subsets (see [24, p. 398, the comments before Proposition 2.1]). So the
unit ball of ‖·‖0 is an m-bornivorous m-barrel in (E, (pλ)λ∈Λ).

(ii) In that case, (E, (pλ)λ∈Λ) and (E, ‖·‖0) have the same bounded sets [23].
One then argues as in (i).

Remark 3.4. The existence of a unit is essential in Proposition 3.3. Let X be a non
compact, locally compact and metrizable space such that X = ∪Kn where (Kn)n is
an exhaustive sequence of compact subsets of X. Take the complex algebra K(X)
of continuous functions with compact support and En = K(X, Kn) the subalgebra
of functions with support in Kn. It is known that K(X) is algebraically the induc-
tive limit of the En’s (see for instance, [16, p. 128, (4.6); see also p. 127, 4.(1)]). Take
the strict inductive limit topology τ of the Banach algebras (En, ‖·‖n), where ‖·‖n
is the supremum norm on En. Then (E, τ) is a locally m-convex algebra which
is also locally uniformly A-convex. Moreover, it is complete and barrelled, but
neither unital or a normed algebra.

It is known that a barrelled A-normed algebra is a normed one. In fact
m-barrelledness is sufficient. But not every normed algebra is m-barrelled: Take
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a complex non barrelled normed space E and endow it with the null multipli-
cation (i.e., xy = 0, for every x, y); then every barrel is in fact an m-barrel. The
unitization E1 of E is also non m-barrelled. To have more examples, consider the
topological product algebra of E1 or E with any Banach algebra, commutative or
not, unital or not. However, a normed algebra is always m-infrabarrelled (see
Remark 2.2). Actually, we have the following characterization of Banach algebras
among pseudo-complete A-normed ones.

Proposition 3.5. Let (E, ‖·‖) be a pseudo-complete A-normed algebra. The following
assertions are equivalent.

(1) (E, ‖·‖) is a Banach algebra.
(2) (E, ‖·‖) is m-infrabarrelled.

Proof. (1) ⇒ (2) : See Remark 2.2.
(2) ⇒ (1) : It is known that (E, ‖·‖) and (E, ‖·‖0) have the same m-bounded

subsets [24] (see also (3.1)). But the unit ball B0, with respect to ‖·‖0, is a ‖·‖ − m-
barrel. It is also m-bornivorous. So, by m-infrabarrelledness, it is a neighborhood
of zero. Hence ‖·‖ and ‖·‖0 are equivalent. Now pseudo-completeness of the
normed algebra (E, ‖·‖0) implies that it is Banach.

Though it is contained in the previous proposition, the following characteri-
zation of Banach algebras is worthwhile to be stated.

Proposition 3.6. An A-normed algebra is a Banach algebra if and only if it is pseudo-
complete and m-infrabarrelled.

Remark 3.7. It is known that (C[0, 1], ‖·‖1) is not barrelled. By the previous
proposition, it is not m-infrabarrelled, as well. Actually, one can consider the

algebras (E, τp) = (C[0, 1], ‖·‖p), p ∈ N
∗ with ‖ f‖p = (

∫ 1
0 | f (t)| dt)

1
p . They are

pseudo-complete A-normed algebras. None of them is m-infrabarrelled. Relative
to this, we observe that they have the same m-bounded subsets, which are exactly
the bounded subsets for the uniform norm ‖·‖

∞
. But for p 6= q, one has Bp 6= Bq.

Example 3.8. Let Cb (R) be the algebra of complex continuous bounded functions
on the real field R with the usual pointwise operations. Denote by C+

0 (R) the set
of all strictly positive real-valued continuous functions on R vanishing at infinity
(as elements of Cb (R)). Consider the family {pϕ : ϕ ∈ C+

0 (R)} of seminorms
given by

pϕ( f ) = sup {| f (x)ϕ(x)| : x ∈ R}; f ∈ Cb (R) ,

that determine a locally convex topology, say β. The space (Cb (R) , β) is actually,
a complete locally convex algebra. It is not a locally m-convex algebra ([8, p. 20,
Examples 3]), nor a Q-algebra. Otherwise, it should be strongly sequential hence
sequential, which is not the case (see [13, p. 417, Example 7]). But, it is a lo-
cally uniformly A-convex algebra with continuous multiplication. One has Bβ =
Bτ‖.‖∞

. But β ⊂ M(β) ⊂ τ‖.‖
∞

(for the symbol M(β), see the comments at the be-

ginning of Section 3). Hence Bβ = BM(β) = Bτ‖.‖∞

. Now, Bqλ
= {x : qλ(x) ≤ 1} is

an m-bornivorous m-barrel. But it is not a β-neighborhood of zero. So, ( Cb(R), β)
is not m-infrabarrelled.
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Example 3.9. Let (E, ‖·‖) be an infinite-dimensional commutative semisimple

self-adjoint Banach algebra and σ = σ(E, E
′
) its weak topology. Then (E, σ) is

a locally convex algebra. It is Mackey-complete, since Bτ‖.‖
= B. It is not a

locally m-convex algebra. Otherwise, by [26, p. 314, Theorem 1], it would be a
topological algebra and by [ibid. p. 315, Theorem 2], finite-dimensional, that is a
contradiction. Now, one has ‖x‖ = sup{|〈x, x′〉| : x′ ∈ B′}, where B′ is the closed
unit ball of the topological dual E′. So B = {x : ‖x‖ ≤ 1} is an m-σ-barrel. It is
also m-bornivorous. But, it is not a σ-neighborhood of zero. Therefore (E, σ) is
not m-infrabarrelled.

Remark 3.10. Let (E, (pλ)λ) be a locally A-convex algebra and the associated
A-normed algebras Eλ = E/Nλ . Sufficient conditions have been given on the
factors Eλ to make (E, (pλ)λ) a locally m-convex algebra (see [24] for details).
This has to do with Γ-completeness [16, p. 280, Definition 6.1] i.e., Eλ is a normed
algebra for every λ. Also P-completeness [8, p. 19] is another notion i.e, Eλ is a
Banach algebra for every λ. In view of Proposition 3.1, we are led to the following
characterization of complete m-convex algebras among locally A-convex ones.

Proposition 3.11. Let (E, (pλ)λ) be a locally A-convex algebra. Then it is a complete lo-
cally m-convex algebra if and only if each factor Eλ is pseudo-complete and
m-infrabarrelled.

Remark 3.12. None of the mentioned sufficient conditions of the previous propo-
sition is necessary; while m-infrabarrelledness is.

Remark 3.13. Proposition 3.11 is applied to the very classical spaces K(R), D(R)
and S(R) of distribution theory. One has just to observe that every element is
bounded (cf. [3] or [9], for a detailed presentation of these spaces).

4 The Q-property

It is known that a commutative Fréchet locally m-convex algebra every element
of which is bounded (viz. the local spectrum is bounded) is a Q-algebra (see
[17, p. 59, Theorem 13.6]). The same conclusion has been obtained assuming the
boundedness of every element, completeness and barrelledness (see [27, p. 296,
Corollary 3]). Completeness implies M-completeness (hence pseudo-complete-
ness) and advertible completeness. In the unital case, the conditions mentioned
above are weakened, as the next proposition shows.

Proposition 4.1. Let (E, τ) be a unital commutative advertibly complete and pseudo-
complete locally m-convex algebra every element of which is bounded. If (E, τ) is
m-infrabarrelled, then it is a Q-algebra.

Proof. It is known [16, p. 74, Corollary 7.4 ] that the spectral radius is given by

ρ(x) = sup{| f (x)| : f ∈ M(E)}

where M(E) is the set of continuous characters (the Gel’fand spectrum) of (E, τ).
Hence ρ is lower semi-continuous and therefore the ball Bρ = {x : ρ(x) ≤ 1}
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is closed. Thus it is an m-barrel. It is also m-bornivorous. Indeed, let B be an
idempotent bounded disc. It is contained in the closure B which, by the continuity
of multiplication, is idempotent. By pseudo-completeness, B is completant. So
(EB, ‖.‖B) is a Banach space. Now, the restriction of ρ to (EB, ‖.‖B) remains lower
semi-continuous. It is then continuous, hence bounded. Then, by hypothesis,
Bρ is a neighborhood of zero for τ and hence E is a Q-algebra (see [16, p. 103,
Proposition 6.3]).

A Q′-algebra is a topological algebra in which every maximal regular left or
right ideal is closed (see [10, p. 148, Definition 1.1]). Thus, a topological algebra, as
in the previous result, being also m-infrabarrelled is a Q′-algebra (see [17, p. 80, Lemma
E.4]).

Remark 4.2. Since a Q-algebra is functionally continuous, the previous proposi-
tion shows that algebras known as non barrelled are in fact, not m-infrabarrelled.
This is the case for the algebra C ([0, Ω[) exhibited in [17, p. 16, Example 3.7]; see
also Example 4.6 below.

Remark 4.3. A unital commutative and complete locally m-convex algebra every
element of which is bounded is not necessarily m-infrabarrelled. It should be a
Q-algebra. Indeed, Bρ = {x : ρ(x) ≤ 1} is an m-barrel. It is also bornivorous (see
[23]), hence m-bornivorous. So it must be a neighborhood of zero.

Remark 4.4. A normed algebra is m-infrabarrelled (see Remark 2.2). But this is
not the case for a metrizable locally m-convex algebra. Let Cc(R+) be the complex
algebra of continuous functions on R+ which are constant from a positive real
number on. Endow it with the topology τ of uniform convergence on compacta.
It becomes a commutative non complete metrizable locally m-convex algebra.
It is advertibly complete. Since

‖ f‖
∞
= sup{| f |K : K a compact subset of R+},

where | f |K = sup{| f (x)| : x ∈ K}, the subset

B1 = { f : | f |K ≤ 1, ∀K} = { f : ‖ f‖
∞
≤ 1}

is an m-barrel. Moreover, it is the greatest closed bounded idempotent disc.
Hence it is m-bornivorous. But it is not a neighborhood of zero, otherwise the
topology τ should be equivalent to τ‖.‖

∞
. Observe also that Bτ 6= Bτ‖.‖

∞
oth-

erwise, the identity map Id : (E, τ) −→ (E, τ‖.‖
∞
) should be bounded, hence

continuous, since (E, τ) is bornological (metrizable). However, for the bounded
structures one has Brτ = Bτ‖.‖

∞
where Brτ designates the collection of all regu-

lar bounded subsets for τ. So (E, τ) is pseudo-complete. But it is not a Q-algebra.
Thus m-infrabarrelledness appears to be a necessary condition in Proposition 4.1.
This example shows also that a bornological algebra (as a space) is not necessarily
m-infrabarrelled.

Example 4.5. m-barrelledness is necessary in Proposition 4.1 even if the regular-
ity of elements is strengthened to that of all bounded sets, as well as pseudo-
completeness to completeness. Let C[0, 1] be the algebra of complex continu-
ous functions on the interval [0, 1]. Endowed with the topology τ of uniform
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convergence on denumerable compact subsets of [0, 1], it is a complete locally
m-convex algebra. For the bounded structures, one has Bτ = Bτ‖.‖∞

. It is not m-

infrabarrelled, since B∞ = { f : ‖ f‖
∞
≤ 1} is a bornivorous (hence m-bornivorous)

m-barrel which is not a neighborhood of zero for τ.

Example 4.6. Let Ω be the first non countable ordinal and endow the set [0, Ω[
with the order topology. Consider C ([0, Ω[) the complex algebra of continu-
ous functions, on [0, Ω[, endowed with the topology of uniform convergence on
compacta. It is a commutative complete locally m-convex algebra. It is not a
Q-algebra, so it is not m-infrabarrelled.

5 GB∗-algebras

m-infrabarrelledness appears to be a strong notion in GB∗-algebras and uniform
ones. Indeed, one obtains an improvement of an Allan’s result. In [2], G.R. Allan
introduces GB∗-algebras and shows that a (unital) barrelled GB∗-algebra every
element of which is bounded, is actually a C∗-algebra [ibid. p. 95, (2.8) Corollary].
An analogous result has been shown in the context of uniform locally m-convex
algebras ([22, p. 110, Proposition 5.4]). Here, there are similar results where bar-
relledness is weakened to m-barrelledness. Recall that if (E, τ) is a unital locally
convex algebra, one denotes by B the collection of all subsets B of E which are
closed bounded and idempotent discs containing the unit element e. If (E, τ) has
a continuous involution, then we put B∗ = {B ∈ B : B∗ = B}. In the latter case,
we say that (E, τ) is a GB∗-algebra ([2, p. 94, (2.5) Definition]) if it is pseudo-
complete and (i) (E, τ) is symmetric i.e., e + x∗x has a bounded inverse, for every
x in E, (ii) B∗ has a greatest element. Recall also that a locally m-convex algebra is
said to be uniform if there is a family (pλ)λ∈Λ of seminorms defining its topology

such that pλ(x
2) = [pλ(x)]

2, for every λ and every x.

Proposition 5.1. Let (E, τ) be a commutative GB∗-algebra with jointly continuous mul-
tiplication every element of which is bounded. Then E is m-infrabarrelled if and only if it
is a C∗-algebra.

Proof. Let B0 be the greatest element of B∗ and denote by ‖.‖0 its gauge on the
algebra EB0

generated by B0. Then (EB0
, ‖.‖0) is a C∗-algebra [2, p. 94, (2.6)

Theorem]. By hypothesis, we actually have E = EB0
. Observe that one already

has τ ⊂ τ‖.‖0
. Now, take any bounded idempotent subset B of (E, τ). Without

any loss of generality, we consider that it contains the unit of E. The subset
B ∪ B∗ is bounded and self-adjoint. Due to commutativity, its idempotent hull
is B ∪ B∗ ∪ BB∗ which is equal to BB∗, since B and B∗ both contain the unit. Now
the closure of the absolutely convex hull of BB∗ is also bounded and idempotent.
Hence it is contained in B0, which is then m-bornivorous. So it is a neighborhood
of zero, since (E, τ) is supposed to be m-infrabarrelled. Whence τ‖.‖0

⊂ τ.

The following particular case is worthwhile to be mentioned. We recall that a
locally C∗-algebra is an involutive complete locally (m-)convex algebra (E, (pλ)λ∈Λ),
such that each pλ, λ ∈ Λ is a C∗-seminorm (viz. pλ(x

∗x) = pλ(x)
2 for every

x ∈ E, and all λ ∈ Λ (see [14, p. 198, Definition 2.2]).
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Proposition 5.2. Any commutative locally C∗-algebra (E, (pλ)λ∈Λ) every element of
which is bounded is m-infrabarrelled if and only if it is a C∗-algebra.

Proof. Obviously, B1 = {x : pλ(x) ≤ 1; ∀λ} is an m-barrel. It is also the greatest
closed bounded and idempotent disc. So it is m-bornivorous. It is then a neigh-
borhood of zero, by hypothesis.

Remark 5.3. In the unital case, an immediate proof of Proposition 5.2 follows
from Proposition 4.1 and [9, p. 111, Corollary 8.2].

Remark 5.4. The algebra C[0, 1] of complex continuous functions on the inter-
val [0, 1], endowed with the topology τ of uniform convergence on denumerable
compact subsets of [0, 1] (see Example 4.5) is a locally C∗-algebra every element
of which is bounded. It is not a Q-algebra, hence neither a C∗-algebra nor an
m-infrabarrelled one. Thus m-infrabarrelledness is necessary in the previous pro-
position.

By Proposition 5.2 and [9, p. 111, Corollary 8.2] we get the next.

Corollary 5.5. Let E be a commutative locally C∗-algebra, every element of which is
bounded. The following are equivalent.

(1) E is m-infrabarrelled.
(2) E is a Q-algebra.
(3) E is a C∗-algebra.

Arguing in an analogous way, one obtains the following result. Here, we re-
mind that any uniform locally m-convex algebra is commutative and semisimple
(see [16, p. 275, Lemma 5.1]).

Proposition 5.6. Let (E, τ) be a unital pseudo-complete uniform locally m-convex alge-
bra. Then it is m-infrabarrelled if and only if it is a Banach algebra.

According to [4, p. 499, Theorem 2], any complete uniform locally m-convex
algebra, which is a Q-algebra is a uniform Banach algebra. The converse is also
true. Thus, in connection with Proposition 5.6, we get an analogue of Corollary
5.5, in case the C∗-property is replaced by the “uniform” property. Namely, we
have the next.

Corollary 5.7. Let E be a unital complete uniform locally m-convex algebra. The follow-
ing are equivalent.

(1) E is m-infrabarrelled.
(2) E is a Q-algebra.
(3) E is a Banach algebra.

Remark 5.8. Again the algebra C[0, 1] in Remark 5.4 shows the necessity of
m-infrabarrelledness in the previous proposition.

Acknowledgements.- The authors are grateful to the referee for his careful
reading of the paper and valuable remarks.
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localement uniformément A-convexes, C. R. Acad. Sci. Paris, Sér. I Math.
296(1983), no. 20, 851-853.
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