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Abstract

We define the class of easily-representable groups as the class of those finitely
presented groups Γ admitting an inverse representation (which, roughly, is a
map from some 2-complex to a certain singular 3-manifold M3(Γ) associated
to Γ, satisfying several topological properties) for which the set of double
points is closed. Our main result is that easily-representable groups are QSF

(i.e. quasi-simply filtered).

1 Introduction and definitions

In this paper we will deal only with finitely presented groups Γ. For our purpose
a very special kind of presentations will be used. To each finitely presented group
Γ = 〈S | R〉 with a finite set of generators S and a finite set of relators R, one
can associate a compact SINGULAR 3-manifold M3(Γ) by the following kind of
procedure.

Start with a smooth 3-dimensional handlebody H of genus g corresponding
to the generators s1, . . . , sg ∈ S. Then to each relator Ri ∈ R, i = 1, . . . r, we can

associate a curve on the boundary of H, S1
i ⊂ ∂H. More explicitly, we consider a

smooth generic immersion α

(1)
r⋃

i=1

S1
i

α
−→ ∂H
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for which we will take the immersed regular neighborhood

(2)
r⋃

i=1

S1
i × [−ǫ, ǫ]

α
−→ ∂H.

Then, the M3(Γ) is gotten by adding r handles of index two to H, along (2).
Without any loss of generality, after possibly enlarging g and r, one may as-
sume here, if one wishes to do so, that each individual S1

i is embedded. Any-

way M3(Γ) has singular points where it fails to be a manifold. The singular set
Sing M3(Γ) ⊂ M3(Γ) is a disjoint union of little squares S ⊂ ∂H, the connected
components of the image of the set of double points of (2) in ∂H, and we will call
these kind of singularities immortal so as to distinguish them from the mortal
singularities to appear later. In the neighborhood of each singularity x ∈ int S,
our M3(Γ) can be described as Y × R

2, where Y is the wedge of three half-lines,
or alternatively as

(3) the union of three copies of the upper half-space R
3
+

along their common boundary.

The central notion of this paper will be the (inverse) representation of Γ. Con-
trary to the standard terminology, whereby “representations” mean morphisms

Γ → · · · , our representations will be arrows of the form · · · → M̃3(Γ) = {the
universal covering space of M3(Γ)}, an object which, up to quasi-isometry, is the
same thing as Γ itself. Such representations were already defined in [6, 13], but
since we want this paper to be, as much as it is possible, independently readable,
we will review here the basics necessary.

Consider first some (non necessarily locally finite) simplicial complex of di-
mension 2 or 3 and a non-degenerate simplicial map

(4) X
F

−→ Y

where Y may be M3(Γ) or M̃3(Γ) or even a smooth manifold M3.

We will call (mortal) singularities of F, the points x ∈ X in the neighborhood
of which F fails to be immersive. Their set is denoted Sing(F) ⊂ X.

On the set X, two equivalence relations Ψ(F) ⊂ Φ(F) ⊂ X × X will be con-
sidered, namely

• Φ(F) which is the set of pairs (x1, x2) ∈ X × X with F(x1) = F(x2);

• Ψ(F) which is the “smallest” equivalence relation compatible with F, killing
all the mortal singularities, so that the induced map X/Ψ(F) −→ Y is an
immersion.

It is shown in [7] that this definition of Ψ( f ) makes sense and we will not
pursue this issue longer here. In the specific situation considered later in this
paper, things will anyway be concrete.
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Definition 1.1. A GSC (resp. QSF)-representation for Γ is a non-degenerate simplicial
map

(5) X2 f
−→ M̃3(Γ)

with the following features:

(5-1) X2 is GSC, i.e. geometrically simply connected (resp. QSF, i.e. quasi-simply
filtered), and what this means will be soon recalled.

(5-2) Ψ( f ) = Φ( f ); and in such a case one says that the representation (5) is zippable.

(5-3) f is “essentially” surjective, in the sense that one can get M̃3(Γ) from f X2 ⊂
M̃3(Γ) by adding cells (possibly infinitely many) of dimension 2 and 3.

Now the notion GSC is well-known in differential topology, where it means
the existence of a handlebody decomposition with handles of index 1 and 2 in
cancelling position; but it also makes sense in the context of cell-complexes (see
e.g. [13, 14]).

We remind now the reader the following notion, due to S. Brick and M. Mi-
halik (see [1, 15]). We are now in the simplicial category, and a locally compact
space X is called QSF (i.e. quasi-simply filtered) if for every compact k ⊂ X there
is another (abstract) simply-connected compact K, endowed with an inclusion i
from k, coming with a (continuous) simplicial map f

(6) k �

� i
//

��
;;

;;
;;

;;
;;

K

f
����

��
��

��
��

X

exhibiting the Dehn-type property: M2( f ) ∩ i(k) = ∅.

NOTATIONS. For any map X
h

−→ Y we denote M2(h) = {x ∈ X such that
#{h−1h(x)} > 1

}
while M2(h) ⊂ X × X is the set of pairs (x1, x2), with x1 6= x2,

such that h(x1) = h(x2).

We will not discuss here more on this notion for which there is a vast literature
[1, 3, 15]. It suffices to stress the following facts:

• The notion of QSF is well-defined for (finitely presented) discrete groups Γ,

in the sense that if Γ = π1M for some finite complex M such that M̃ is QSF,

then any other finite complex N with π1N = Γ has the property that Ñ is
also QSF.

• There is a trivial implication X is GSC ⇒ X is QSF.

• The first author (D.O.) in collaboration with Louis Funar have proved the
following in [3]: A group Γ is QSF IF AND ONLY IF there is a smooth compact

manifold M such that π1M = Γ and M̃ is GSC.



388 D. E. Otera – V. Poénaru

Definition 1.2. A 2-dimensional representation (5) is called easy if Im( f ) (i.e. f X2) ⊂
M̃3(Γ) and M2( f ) ⊂ X2 are closed subsets. In such a case we call the group Γ easily-
representable.

Before discussing this notion a bit further, we will state the main result of this
paper.

Theorem 1.3. If Γ admits an easy GSC (or QSF)-representation, then Γ is QSF.

Remarks:

• It suffices to prove the Theorem only for a QSF-representation.

• The technology we will use for proving our Theorem could actually be also
used for a stronger result, of which we will give here the general flavor.
Start with a simply connected, locally finite 3-complex Y3 with singularities
(i.e. non-manifold points) which are sufficiently “gentle”; without trying to

be more specific, let us say this means singularities like those which M̃3(Γ)
has (or only slightly more general). Then, what our technology can prove is
that if such an Y3 admits an easy GSC (QSF)-representation, then it is QSF.

The point is that, in the present paper, the fact that M̃3(Γ) admits a free Γ-
action plays no role. But, one of the features of this notion of representation
is that it lends itself to X admitting such an action and f being equivariant.
This plays an essential role in [12, 13].

Concerning easy-representations, here are some comments:

• Gromov-hyperbolic groups (as well as some other geometric classes of
groups) are easily-representable. This can be read between the lines in pa-
pers like [8, 9].

• Using the full Thurston geometrization, proved by G.Perelman, one should
certainly be able to show that all π1M3’s admit easy representations.

• For a finitely presented group Γ, it should be (almost)-equivalent (in the
sense of [3]), to be QSF or to be easily-representable. But this issue requires
a lengthier discussion which we will not undertake here.

• Nobody has actually ever seen a group which does not admit one. The
second author (V.P.) conjectures that: All finitely presented groups Γ admit easy
representations.

2 Proof of the “Easy” Theorem

We start with an easy QSF-representation for our group Γ and notice that, since
M2( f ) and f X2 are, by hypothesis, closed subsets, the f X2 is a locally finite sim-
plicial complex such that

(7) M̃3(Γ) = f X2 ∪ {cells of dimension 2 and 3}.
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Claim A: We can factor the map f : X2 −→ f X2 as an infinite sequence of
elementary zipping moves

(8) X2 = X0−→ X1 −→ X2 −→ · · · f X2 ⊂ M̃3(Γ)

each of which is either

(8-1) to begin with, an elementary move O(0), O(1), O(2) like in the Figures 5, 2
and 4 of [10]. These moves O(i ≤ 2) are “acyclic”, in the sense that they

are homotopy equivalences. Because M̃3(Γ) is singular, we have to add to
the O(i ≤ 2) another acyclic move occurring when the zipping hits S and
has to stop, like in (9-2) below. This movement “O(S)” changes a mortal
singularity into an immortal one. The Xi≥1’s can have such.

or (8-2) movements O(3) like in the Figure 1 below (with less details this figure
occurs also as Figures 6 and 7 in [10]). These movements are, homotopically,
additions of 2-cells.

Something very close to this CLAIM A is done in the paper [10] (and also in
[11]) by the second author (V.P.) and in the review by D. Gabai [4].

But something similar can be done in the present context, with two caveats.

Firstly, M̃3(Γ) has now singularities and that issue will be discussed below. Sec-
ondly, we are now in an infinite, non-compact context. But that should not make
any problem.

••
S(N ) S(N )

double points of fi
❘ ❘

double points of fi

• •
S′ S′′S′ S′′

level Xi
N (S) N (S)

Branch C Branch D

Branch C Branch D

level Xi+1

⇓ MOVEMENT 0(3) changing Xi to Xi+1

the two branches C and D are glued together along the line inside Xi+1

FIGURE 1. Movement O(3) where the mortal singularities S′, S′′ ∈ Sing ( fi) enter

in a frontal collision and kill each other. The letters “S”, and “N ” smeared in

their neighborhoods on the respective branches C, D, correspond to some abstract

desingularization at level Xi. As written here, the O(3) movement is, by definition,

COHERENT. If, let us say at S′′, we change S(N ) into N (S) on C and hence N (S)
into S(N ) on D, then we get the NON-COHERENT movement O(3).
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A more pedantic way of describing (8) is the following. The f defines the
equivalence relation Φ( f ) ⊂ X2 × X2 and so does every finite piece X → Xi

define a similar Φi ⊂ X2 × X2, with Φi ⊂ Φi+1. The factorization in (8) simply
means that Φ( f ) = ∪iΦi.

It should be noted that the various Xi, i ≥ 1, are not necessarily QSF (certainly

not GSC in the case of a GSC-representation), and so the Xi → M̃3(Γ), i ≥ 1, are
not representations, in the sense defined before.

So let us consider now three half spaces U1, U2, U3 of M̃3(Γ) having in com-
mon exactly an immortal singularity S = ∂U1 ∩ ∂U2 ∩ ∂U3. Any double line in
f M2( f ), starting let us say in U1 and reaching at S, either continue transversally
through S or stops short. This leads to the following two possible local models.

(9-1) There are two smooth sheets A, B ⊂ X2 homeomorphic to R
2 such that

f injects them inside U1 ∪ U2 where f A, f B, S are three planes in general
position (coordinate planes). Here the zipping proceeds through S, without
paying any attention to U3.

(9-2) The map f injects A and B into U1 ∪ U2, U1 ∪ U3 respectively, and the zip-
ping stops at S. Here S generates an immortal singularity for f X2. There
are no mortal singularities for f X2.

We will state now our second claim, the proof of which will be given later on.

Claim B: For each Xi≥0 in (8), and for each dimension n ≥ 5, we can chose a
smooth n-dimensional regular neighborhood,

(10) Θn(Xi)

satisfying the QSF property, and such that the following things happen:

(11) the sequence (8) of quotient space projections can be changed into a se-
quence of smooth embeddings

(S∞) Θn(X2) = Θn(X0) ⊂
jo

Θn(X1) ⊂
j1

Θn(X2) ⊂
j2
· · · , where

(11-1) if Xl → Xl+1 is an acyclic O(i) move, then Θn(Xl) →֒
jl

Θn(Xl+1) is a com-

pact, smooth Whitehead dilatation;

(11-2) if Xl → Xl+1 is an O(3) move, then Θn(Xl) →֒
jl

Θn(Xl+1) is the addition of

a handle of index 2;

(12) the Θn
(

M3(Γ)
)

and Θn
(

M̃3(Γ)
)

will also make sense, and Θn
(

M3(Γ)
)∼

=

Θn
(

M̃3(Γ)
)
.

Remark:

• It is a feature of our choice of (10) that we have (11) and (12). We will sum
this up by saying that (10) is canonical.
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2.1 The final argument

Since M2( f ) ⊂ X2 is a closed subset, there is a locally finite covering of X2 by

open subsets U such that each U ⊂ M̃3(Γ) can meet only finitely many elemen-
tary zipping moves from (8). It follows that we can put together the infinite se-
quence of embeddings

(
(S∞)

)
into a smooth non-compact n-manifold with non-

empty boundary ∪∞
i=0Θn(Xi). Here, for any local piece of Θn(Xi) and any i < j,

only finitely many of the intersections Θn(Xi) ∩
(
Θn(Xj+1) − Θn(Xj)

)
are non-

empty.
Since for every compact subset k ⊂

⋃∞
i=0 Θn(Xi) there is an i such that k ⊂

Θn(Xi) that is QSF, it follows that
⋃∞

i=0 Θn(Xi) is also QSF. Furthermore, because

of M2( f ) ⊂ X2 being closed, we have, inside Θn
(

M̃3(Γ)
)

, the equality of sets

(13)
∞⋃

i=0

Θn(Xi) = Θn( f X2).

Again, since f X2 ⊂ M̃3(Γ) is closed, so is Θn( f X2) ⊂ Θn
(

M̃3(Γ)
)

. All this,
together with (5-3), implies that

(13-1) Θn
(

M̃3(Γ)
)
= Θn( f X2) ∪ {handles of index 2 and 3}.

Hence Θn
(

M̃3(Γ)
)

is QSF, which, together with (12), implies that Γ is QSF.

Lemma 2.1. Let Vn be a smooth non-compact manifold with boundary ∂V 6= ∅ and let
also Nn = Vn ∪ {a λ-handle Hλ, with λ > 1}. If Vn is QSF then Nn is also QSF.

Proof. Start with a compact k ⊂ Nn and let k1 = k − Hλ ⊂ Vn. Then go to
∂Hλ = Sλ−1 × Bn ⊂ ∂Vn, the attaching zone, and apply the QSF of Vn for the
compact k2 = k1 ∪ ∂Hλ ⊂ Vn.

k2
�

�
j

//

��
>>

>>
>>

>>
>>

K2

f
����

��
��

��
��

Vn

We have that ∂Hλ ⊂ K2 − M2(j), and the compact K = K2 ∪ Hλ is simply
connected, contains k and comes with a map into N having the Dehn-property.
This ends the proof.

To complete the proof of our Theorem, it remains to show how one constructs
the Θn(. . .), with all the features above. Here we will borrow very heavily on
the very initial part of the technology from [4, 10]. But everything necessary for
our present aim is explained here, and this paper is, at this point, essentially self-
contained.

We start by considering any map

(14) Y2 f
−→ M̃3(Γ), where
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(14-1) Y2 is a locally finite simplicial complex;

(14-2) the non-immersive points, i.e. the σ ∈ Sing ( f ) ⊂ Y2, are like in the Figure
1 of [10]; they are called undrawable type singularities;

(14-3) we have to assume now that Y2 has both mortal singularities Sing ( f ) and
immortal singularities Sing (Y2), disjoined from each other. The Sing (Y2)

are like the ones from (3), and such that f
(
Sing (Y2)

)
⊂ Sing M̃3(Γ); lo-

cally f is here injective. So, for any σ ∈ Sing ( f ) + Sing (Y2), the germ of
(Y2, σ) consists of two branches, say P1 and P2, partially glued together at
the source, like in the Figure 1 of [10].

We will define now (abstract) desingularizations for our map (14). By defini-
tion, such an abstract desingularization is a map φ as follows

(15) {the set of branches P1, P2 for each σ ∈ Sing ( f ) + Sing (Y2)}
φ

−→ {S ,N}

(where {S ,N} is the alphabet with two letters S ,N ), and such that for each in-
dividual singularity σ and its P1 = P1(σ), P2 = P2(σ), we have

φ
(

P1(σ)
)
6= φ

(
P2(σ)

)
.

The branch P coming with φ = S will be called specified, the other one non-
specified.
Consider now an elementary zipping move O(i ≤ 3) or O(S), like the ones oc-
curring in (S∞)

(16) Y2 �

�

// //

f
!!C

CC
CC

CC
CC

CC
Y2

1

f1
}}||

||
||

||
||

|

M̃3(Γ).

Lemma 2.2. Any given abstract desingularization φ for (Y2, f ) propagates canoni-
cally into an abstract desingularization φ1 for (Y2

1 , f1).

Proof. The cases O(0) and O(1) can be simply treated just looking at the Figures
5 and 2 of [10]. In the cases O(2), O(3) one simply keeps by decree φ1 = φ for
the singularities not killed by the local move, and by decree too, one ignores the
killed ones. The case O(S) is obvious.

Remarks:

• In the context of (8), consider some arbitrarily given desingularization φ
at level X2 = X0, where Sing (X0) = ∅. According to Lemma 2.2, this
propagates canonically through the whole of (8) inducing at each stage
a desingularization which we continue to denote φ, for all Xi’s including

Xω
def
= f X2. At the final level Sing

(
Xω

fω
→M̃3(Γ)

)
= ∅, while Sing Xω $ Xω ∩

Sing M̃3(Γ) 6= ∅, generically speaking. At intermediary levels we find both

Sing
(
Xi → M̃3(Γ)

)
6= ∅ (mortal case) and Sing Xi 6= ∅ (immortal case).
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• When the propagation of φ from Xo to Xω is considered, the O(3)’s (and
O(2)’s) are not in the way, we can always redirect the zipping flow so that
it reaches to Sing Xω before performing O(3) (and O(2)). This is suggested
in the next drawing.

to Sing Xω
︸ ︷︷ ︸

O(3)

FIGURE 2: Redirected zipping flow.

So, without any loss of generality, the zipping strategy (8) is such that the
O(3)’s are corralled at the very end.

To any abstract desingularization φ for (Y2, f1) there is a canonically attached
geometric desingularization

(17)

Y̌2 = Y̌2(φ)

Y2

π(φ)∨
∨

with the following feature:

(17-1) any singularity σ ∈ Sing ( f ) + Sing Y2 is blown up into a circle inside that
local branch P1 or P2 (let us suppose it is in P1), which is coming with φ = S .
This is suggested in the figure below.

•

hole

P1

specified branch inside Y2

φ = S

•
φ = N

non-specified branch

inside Y2

P2

SOURCE

SOURCE

P2

P1

•

TARGET

Y̌2(φ)

σ

FIGURE 3: Geometric desingularization Y̌2(φ)
π
։ Y2. Actually, with the

notations of the next Section 2.2, we see here the local situation Ǩ2(σ)
π
։ K2(σ).
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Notice that Y̌2(φ) in (17) has a canonical smooth 3-dimensional regular neigh-

borhood which comes with an immersion into M̃3(Γ), guided by f in (14); we
will denote it by Θ3

(
Y̌2(φ)

)
.

Together with the abstract desingularization (15) comes not only the geomet-
ric desingularization (17) but also a φ-dependent 4-dimensional smooth regular
neighborhood Θ4(Y2, φ), together with a smooth embedding

(18) Θ3
(
Y̌2(φ)

)
⊂ ∂Θ4(Y2, φ).

The pairs of type
(

Θ4(Y2, φ), Θ3
(
Y̌2(φ)

))
are well defined for local pieces and

one can glue them in a natural way so as to generate the global objects. What we
will do with a bit more details below is to implement this little program of going
from local to global.

2.2 Construction of Θ4(Y2, φ)

For each σ ∈ Sing ( f ) + Sing (Y2) ⊂ Y2 we consider (like in the Figure 1 of [10])
the undrawable model

(19) K2(σ)
def
= P1(σ) ∪

1
2 L

P2(σ) ⊂ Y2.

This determines, with a Ǩ2(σ) to be defined below, related decompositions

(20) Y2 = Y2 (non-singular) ∪ ∑
σ

K2(σ) and

Y̌2(φ) = Y2 (non-singular) ∪ ∑
σ

Ǩ2(σ).

To Y2 (non-singular), which is DEFINED by the formula (20), (and that we will
denote by Y2

NS), corresponds a smooth 3-manifold

(21) Θ3
(
Y2

NS

)
⊂ Θ3

(
Y̌2(φ)

)
,

while to K2(σ) corresponds, to begin with, a Ǩ2(σ) ⊂ Y̌2(φ), like in the upper
right corner of Figure 3, and a Θ3

(
Ǩ2(σ)

)
⊂ Θ3

(
Y̌2(φ)

)
which is a copy of S1 ×

D2. [For typographic simplicity’s sake we have omitted to add a “φ” to Ǩ2(σ)
too.]
There are really two cases for Ǩ2(σ), only one of which (the I below) is displayed
in Figure 3, namely
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(22) CASE I: φ(P1) = S , φ(P2) = N and

CASE II: φ(P1) = N , φ(P2) = S

∂P1

∂P2

δ
(
∂K2(σ)

)

∂P2

∂P1
δ
(
∂K2(σ)

)

CASE I CASE II

FIGURE 4. We see here the Θ3
(
Ǩ2(σ)

)
in the two cases from (22). Inside ∂Θ3

(
Ǩ2(σ)

)

lives ∂K2(σ) = ∂P1 ∨ ∂P2 ⊂ δ
(
∂K2(σ)

)
⊂ ∂Θ3

(
Ǩ2(σ)

)
, where δ

(
∂K2(σ)

)
is the 2-

dimensional regular neighborhood of ∂K2(σ) ⊂ ∂Θ3
(
Ǩ2(σ)

)
.

To the second formula in (20) corresponds also a reconstruction formula for
Θ3

(
Y̌2(φ)

)
, namely

(23) Θ3
(
Y̌2(φ)

)
= Θ3

(
Y2

NS

)
∪ ∑

σ

Θ3
(
Ǩ2(σ)

)
.

Here, with a δ
(
∂K2(σ)

)
⊃ ∂P1 ∨ ∂P2 = ∂K2(σ) like in Figure 4, we have embed-

dings

(23-1) ∂Θ3
(
Y2

NS

)
⊃ δ

(
∂K2(σ)

)
⊂ ∂Θ3

(
Ǩ2(σ)

)

along which the pieces in (23) are to be glued.
For each σ we consider now a copy of B4

(24) Θ4
(
K2(σ), φ

)
⊃ ∂Θ4 ⊃

i
Θ3

(
Ǩ2(σ)

)
,

with the embedding i like in the Figure 3 (think of it as representing Θ3 ⊂ R
3 ∪

{∞} = ∂Θ4).
We finally define

(25) Θ4(Y2, φ) = Θ3
(
Y2

NS

)
× [0, 1] ∪ ∑

σ

Θ4
(
Ǩ2(σ), φ

)
,
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where, for each σ, one should glue

δ
(
∂K2(σ)

)
× [0, 1] ⊂ ∂

(
Θ3

(
Y2

NS

)
× [0, 1]

)

coming from the left-hand side of (23-1) with the

δ
(
∂K2(σ)

)
× [0, 1] ⊂ ∂Θ4

(
K2(σ), φ

)

defined by the right-hand side of (23-1), where δ(∂K2) = δ(∂K2)×{0}, and which
is outgoing with respect to Θ3

(
Ǩ2(σ)

)
⊂ ∂Θ4.

In the context of (16) and of Lemma 2.2, we consider now Θ4(Y2, φ) and
Θ4

(
Y2

1 , φ (induced)
)
.

Lemma 2.3.

1. In the cases O(0), O(1), O(2), O(S) we have a canonical embedding

(26) Θ4(Y2, φ) ⊂ Θ4(Y2
1 , φ)

which is just a compact smooth Whitehead dilatation.

2. In the COHERENT O(3) case we have again an embedding (26), this time it is the
addition of a handle on index 2.

3. There is NO embedding in the NON-COHERENT O(3) case (see the schematic
Figure 5).

D
D

C C

C

•

COHERENT CASE NON-COHERENT CASE

FIGURE 5. In the non-coherent case we see the well known intersection R
2 ⋔ R

2 ⊂ R
4,

standard obstruction in 4-dimensional topology.

Lemma 2.4. Let p ≥ 1 and consider

(27) Θn=p+4(Y2, φ) = Θ4(Y2, φ)× Bp.

1. Up to diffeomorphism, (27) is no longer φ-dependent, and we will just denote it by
Θn(Y2).

2. With this Θn all the features in the CLAIM B are satisfied.
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Proof. In the context of the Figure 4, we have two distinct embeddings

(28) δ
(
∂K2(σ)

)
× [0, 1]

iI
>

iI I

> ∂Θ4
(
K2(σ), φ

)
.

Here the source is
(
S1 × S1 − intD2

)
× [0, 1] and the target is S3. When we

move to Θn≥5, then the corresponding embeddings

(29) δ
(
∂K2(σ)

)
× [0, 1]× Bp ⊂ ∂Θn

(
K2(σ)

)

are now smoothly isotopic.

We consider now singular 3-manifolds V3, of which M3(Γ) and M̃3(Γ) are
examples, with immortal singularities S. The singular local model is gotten from
the Figure 1 of [10] by changing each P1, P2 into a thin Pi × [−ǫ, ǫ]. These two
flat rectangular boxes are then appropriately glued together, so as to change the
σ (again in the Figure 1 of [10]) into a small square S.

Claim C: Our claim is that all the little theory above, which has started at (14),
extends to V3’s (no f are needed now). This is quite well explained in [4].

With arbitrary abstract desingularizations φ for M3(Γ) and Φ for M̃3(Γ) one

can define now Θn
(

M3(Γ), φ
)
, Θn

(
M̃3(Γ), Φ

)
and then the canonical, desingulari-

zation-independent (p ≥ 1)

(30) Θn=p+4
(

M3(Γ)
)
= Θ4

(
M3(Γ), φ

)
× Bp

Θn=p+4
(

M̃3(Γ)
)
= Θ4

(
M̃3(Γ), Φ

)
× Bp.

These verify the functorial property (12).

Final comment. So, as explained in [4], there are really two theories, one for

2-dimensional objects like Y2 = X2 f
→ M̃3(Γ) and another one of 3-dimensional

objects like V3 = M̃3(Γ).
In the present paper the only necessary bridge between the two is (13-1). In

real life one has to go much deeper into the connection between Θn(Y2) and
Θn(V3).
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[8] V. POÉNARU Almost convex groups, Lipschitz combing, and π∞
1 for universal

covering spaces of 3-manifolds, Jour. Diff. Geometry, 35 (1992), 103–130.
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