Zeros of the derivative of a p-adic meromorphic function and applications *

Kamal Boussaf Alain Escassut Jacqueline Ojeda

Abstract

Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value. We show that if the Wronskian of two entire functions in K is a polynomial, then both functions are polynomials. As a consequence, if a meromorphic function f on all K is transcendental and has finitely many multiple poles, then f^{\prime} takes all values in K infinitely many times. We then study applications to a meromorphic function f such that $f^{\prime}+b f^{2}$ has finitely many zeros, a problem linked to the Hayman conjecture on a p -adic field.

1 Introduction and Main Results

Notation and Definitions. Let K be an algebraically closed field of characteristic 0 , complete with respect to an ultrametric absolute value $|$.$| . Given \alpha \in K$ and $R \in \mathbb{R}_{+}^{*}$, we denote by $d(\alpha, R)$ the disk $\left\{x \in K||x-\alpha| \leq R\}\right.$ and by $d\left(\alpha, R^{-}\right)$the disk $\{x \in K||x-\alpha|<R\}$, by $\mathcal{A}(K)$ the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence), by $\mathcal{M}(K)$ the field of meromorphic functions in K and by $K(x)$ the field of rational functions. Given $f, g \in \mathcal{A}(K)$, we denote by $W(f, g)$ the Wronskian $f^{\prime} g-f g^{\prime}$.

We know that any non-constant entire function $f \in \mathcal{A}(K)$ takes all values in K. More precisely, a function $f \in \mathcal{A}(K)$ other than a polynomial takes all values in K infinitely many times (see [5], [8], [9]). Next, a non-constant meromorphic

[^0]function $f \in \mathcal{M}(K)$ takes every value in K, except at most one value. And more precisely, a meromorphic function $f \in \mathcal{M}(K) \backslash K(x)$ takes every value in K infinitely many times except at most one value (see [5], [9]).

Many previous studies were made on Picard's exceptional values for complex and p-adic functions and their derivatives (see [1], [3], [6], [7], [8]). Here we mean to examine precisely whether the derivative of a transcendental meromorphic function in K having finitely many multiple poles, may admit a value that is taken finitely many times and then we will look for applications to Hayman's problem when $m=2$.

From Theorem 4 [6], we can state the following Theorem A:
Theorem A: Let $h, l \in \mathcal{A}(K)$ satisfy $W(h, l)=c \in K$, with h non-affine. Then $c=0$ and $\frac{h}{l}$ is a constant.

Now we can improve Theorem A:
Theorem 1: Let $f, g \in \mathcal{A}(K)$ be such that $W(f, g)$ is a non-identically zero polynomial. Then both f, g are polynomials.

Remark: Theorem 1 does not hold in characteristic $p \neq 0$. Indeed, suppose the characteristic of K is $p \neq 0$. Let $\psi \in \mathcal{A}(K)$. Let $f=x(\psi)^{p}$ and let $g=(x+1) \psi^{-p}$. Since $p \neq 0$, we have $f^{\prime}=(\psi)^{p}, g^{\prime}=\psi^{-p}$ hence $W(f, g)=1$ and this is true for any function $\psi \in \mathcal{A}(K)$.

Theorem 2: Let $f \in \mathcal{M}(K) \backslash K(x)$ have finitely many multiple poles. Then f^{\prime} takes every value $b \in K$ infinitely many times.

We can easily show Corollary 2.1 from Theorem 2, though it is possible to get it through an expansion in simple elements.

Corollary 2.1: Let $f \in \mathcal{M}(K) \backslash K(x)$. Then f^{\prime} belongs to $\mathcal{M}(K) \backslash K(x)$.
Open question: Do exists transcendental meromorphic functions f such that f^{\prime} has finitely many zeros? By Theorem 2 , such functions should have infinitely many multiple poles.

Now, we can look for some applications to Hayman's problem in a p-adic field. Let $f \in \mathcal{M}(K)$. Recall that in [9], [10] it was shown that if m is an integer ≥ 5 or $m=1$, then $f^{\prime}+f^{m}$ has infinitely many zeros that are not zeros of f. If $m=3$ or $m=4$, for many functions $f \in \mathcal{M}(K), f^{\prime}+f^{m}$ has infinitely many zeros that are not zeros of f (see [2], [10]) but there remain some cases where it is impossible to conclude, except when the field has residue characteristic equal to zero (see [10]). When $m=2$, few results are known. Recall also that as far as complex meromorphic functions f are concerned, $f^{\prime}+f^{m}$ has infinitely many zeros that are not zeros of f for every $m \geq 3$, but obvious counter-examples show this is wrong for $m=1$ (with $f(x)=e^{x}$) and for $m=2$ (with $f(x)=\tan (-x)$). Here we will particularly examine functions $f^{\prime}+b f^{2}$, with $b \in K^{*}$.

Theorem 3: Let $b \in K^{*}$ and let $f \in \mathcal{M}(K)$ have finitely many zeros and finitely many residues at its simple poles equal to $\frac{1}{b}$ and be such that $f^{\prime}+b f^{2}$ has finitely many zeros. Then f belongs to $K(x)$.

Remark: If $f(x)=\frac{1}{x}$, the function $f^{\prime}+b f^{2}$ has no zero whenever $b \neq 1$.
Theorem 4: Let $f \in \mathcal{M}(K) \backslash K(x)$ have finitely many multiple zeros and let $b \in K$. Then $\frac{f^{\prime}}{f^{2}}+b$ has infinitely many zeros. Moreover, if $b \neq 0$, every zero a of $\frac{f^{\prime}}{f^{2}}+b$ that is not a zero of $f^{\prime}+b f^{2}$ is a simple pole of f such that the residue of f at α is equal to $\frac{1}{b}$.
Corollary 4.1 : Let $b \in K^{*}$ and let $f \in \mathcal{M}(K) \backslash K(x)$ have finitely many multiple zeros and finitely many simple poles. Then $f^{\prime}+b f^{2}$ has infinitely many zeros that are not zeros of f.

Remark: In Archimedean analysis, the typical example of a meromorphic function f such that $f^{\prime}+f^{2}$ has no zero is $\tan (-x)$ and its residue is 1 at each pole of f. Here we find the same implication but we can't find an example satisfying such properties.

2 The Proofs

Notation: Given $f \in \mathcal{A}(K)$ and $r>0$, we denote by $|f|(r)$ the norm of uniform convergence on the disk $d(0, r)$. This norm is known to be multiplicative (see [4], [5]).

Lemma 1 is well known (see Theorem 13.5 [4]) :
Lemma 1: Let $f \in \mathcal{M}(K)$. Then $\left|f^{(k-1)}\right|(r) \leq \frac{|f|(r)}{r^{k-1}} \forall r>0, \forall k \in \mathbb{N}^{*}$.
Proof of Theorem 1: First, by Theorem A, we check that the claim is satisfied when $W(f, g)$ is a polynomial of degree 0 . Now, suppose the claim holds when $W(f, g)$ is a polynomial of certain degree d. We will show it for $d+1$. Let $f, g \in$ $\mathcal{A}(K)$ be such that $W(f, g)$ is a non-identically zero polynomial P of degree $d+1$.

By hypothesis, we have $f^{\prime} g-f g^{\prime}=P$, hence $f^{\prime \prime} g-f g^{\prime \prime}=P^{\prime}$. We can extract g^{\prime} and get $g^{\prime}=\frac{f^{\prime} g-P}{f}$. Now, consider the function $Q=f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}$ and replace g^{\prime} by what we just found: we can get $Q=f^{\prime}\left(\frac{f^{\prime \prime} g-f g^{\prime \prime}}{f}\right)-\frac{P f^{\prime \prime}}{f}$.

Now, we can replace $f^{\prime \prime} g-f g^{\prime \prime}$ by P^{\prime} and obtain $Q=\frac{f^{\prime} P^{\prime}-P f^{\prime \prime}}{f}$. Thus, in that expression of Q, we can write $|Q|(R) \leq \frac{|f|(R)|P|(R)}{R^{2}|f|(R)}$, hence $|Q|(R) \leq \frac{|P|(R)}{R^{2}}$ $\forall R>0$. But by definition, Q belongs to $\mathcal{A}(K)$ and further, $\operatorname{deg}(Q) \leq \operatorname{deg}(P)-2$. Consequently, Q is a polynomial of degree at most $d-2$.

Now, suppose Q is not identically zero. Since $Q=W\left(f^{\prime}, g^{\prime}\right)$ and since $\operatorname{deg}(Q)<d$, by induction f^{\prime} and g^{\prime} are polynomials and so are f and g. Finally, suppose $Q=0$. Then $P^{\prime} f^{\prime}-P f^{\prime \prime}=0$ and therefore f^{\prime} and P are two solutions of
the differential equation of order 1 for meromorphic functions in $K:(\mathcal{E}) y^{\prime}=\psi y$ with $\psi=\frac{P^{\prime}}{P}$, whereas y belongs to $\mathcal{A}(K)$. The space of solutions of (\mathcal{E}) is known to be of dimension 0 or 1 (see for instance Lemma 60.1 in [4]). Consequently, there exists $\lambda \in K$ such that $f^{\prime}=\lambda P$, hence f is a polynomial. The same holds for g.

Proof of Theorem 2: Suppose f^{\prime} has finitely many zeros. By classical results (see [4], [5]) we can write f in the form $\frac{h}{l}$ with $h, l \in \mathcal{A}(K)$, having no common zero. Consequently, each zero of $W(h, l)$ is a zero of f^{\prime} except if it is a multiple zero of l. But since l only has finitely many multiple zeros, it appears that $W(h, l)$ has finitely many zeros and therefore is a polynomial. Consequently, by Theorem 1, both h and l are polynomials, a contradiction because f does not belong to $K(x)$.

Now, consider $f^{\prime}-b$ with $b \in K$. It is the derivative of $f-b x$ whose poles are exactly those of f, taking multiplicity into account. Consequently, $f^{\prime}-b$ also has infinitely many zeros.

Notation: Given $f \in \mathcal{M}(K)$, we will denote by $\operatorname{res}_{a}(f)$ the residue of f at a.
Lemma 2: Let $f=\frac{h}{l} \in \mathcal{M}(K)$ with $h, l \in \mathcal{A}(K)$ having no common zero, let $b \in K^{*}$ and let $a \in K$ be a zero of $h^{\prime} l-h l^{\prime}+b h^{2}$ that is not a zero of $f^{\prime}+b f^{2}$. Then a is a simple pole of f and $\operatorname{res}_{a}(f)=\frac{1}{b}$.
Proof: Clearly, if $l(a) \neq 0, a$ is a zero of $f^{\prime}+b f^{2}$. Hence, a zero a of $h^{\prime} l-h l^{\prime}+b h^{2}$ that is not a zero of $f^{\prime}+b f^{2}$ is a pole of f. Now, when $l(a)=0$, we have $h(a) \neq 0$ hence $l^{\prime}(a)=b h(a) \neq 0$ and therefore a is a simple pole of f such that $\frac{h(a)}{l^{\prime}(a)}=\frac{1}{b}$. But since a is a simple pole of f, we have $\operatorname{res}_{a}(f)=\frac{h(a)}{l^{\prime}(a)}$ which ends the proof.

Proof of Theorem 3: Let $f=\frac{P}{l}$ with P a polynomial, $l \in \mathcal{A}(K)$ having no common zero with P. Then $f^{\prime}+b f^{2}=\frac{P^{\prime} l-l^{\prime} P+b P^{2}}{l^{2}}$. By hypothesis, this function has finitely many zeros. Moreover, if a is a zero of $P^{\prime} l-l^{\prime} P+b P^{2}$ but is not a zero of $f^{\prime}+b f^{2}$ then, by Lemma $2, a$ is a simple pole of f such that $\operatorname{res}_{a}(f)=\frac{1}{b}$. Consequently, $P^{\prime} l-l^{\prime} P+b P^{2}$ has finitely many zeros and so we may write $\frac{P^{\prime} l-l^{\prime} P+b P^{2}}{l^{2}}=\frac{Q}{l^{2}}$ with $Q \in K[x]$, hence $P^{\prime} l-l^{\prime} P=-b P^{2}+Q$. But then, by Theorem $1, l$ is a polynomial, which ends the proof.

Proof of Theorem 4: Let $g=\frac{f^{\prime}}{f^{2}}+b$. Suppose $b=0$. Since all zeros of f are simple zeros except maybe finitely many, g has finitely many poles of order ≥ 3, hence a primitive G of g has finitely many multiple poles. Consequently, by Theorem 2, g has infinitely many zeros.

Now, suppose $b \neq 0$. Let α be a zero of g and let $f=\frac{h}{l}$ with $h, l \in \mathcal{A}(K)$ having no common zero. Then $\frac{f^{\prime}}{f^{2}}+b=\frac{h^{\prime} l-h l^{\prime}+b h^{2}}{h^{2}}$. Since α is a zero of $\frac{f^{\prime}}{f^{2}}+b$, it is not a zero of h and hence it is a zero of $h^{\prime} l-h l^{\prime}+b h^{2}$. Then by Lemma 2, if it is not a zero of $f^{\prime}+b f^{2}$, it is a simple pole of f such that $\operatorname{res}_{\alpha}(f)=\frac{1}{b}$, which ends the proof of Theorem 4.

Acknowledgement: The authors are very grateful to Jean-Paul Bezivin for an important improvement concerning Theorem 1.

References

[1] W. Bergweiler and X. C. Pang On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 , pp. 285-292 (2003).
[2] K. Boussaf and J. Ojeda Value distribution of p-adic meromorphic functions, Bulletin of the Belgian Mathematical Society - Simon Stevin, Vol 18, n.4, p. 667-678 (2011).
[3] K. Boussaf Picard values of p-adic meromorphic function, p-adic Numbers, Ultrametric Analysis and Applications. Vol. 2, N. 4, pp. 285-292 (2010).
[4] A. Escassut Analytic Elements in p-adic Analysis. World Scientific Publishing Co. Pte. Ltd. (Singapore, 1995).
[5] A. Escassut p-adic Value Distribution. Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, pp. 42-138. Mathematics Monograph, Series 11. Science Press (Beijing, 2008).
[6] A. Escassut and J. Ojeda Exceptional values of p-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. 1-4, pp. 263269 (2011).
[7] W. Hayman Picard values of meromorphic functions and their derivatives, Annals of Mathematics. Vol. 70, N. 1, pp. 9-42 (1959).
[8] P. C. Hu and C. C. Yang Meromorphic Functions over non-Archimedean Fields. Kluwer Academic Publishers (2000).
[9] J. Ojeda Distribution de valeurs des fonctions méromorphes ultramétrique, applications de la Théorie de Nevanlinna. Thèse (N. d'ordre D.U. 1865). Université Blaise Pascal, Clermont-Ferrand, France (2008).
[10] J. Ojeda Hayman's Conjecture over a p-adic field. Taiwanese Journal of Mathematics. Vol. 12, N. 9, pp. 2295-2313 (2008).

Laboratoire de Mathématiques, CNRS UMR 6620
Université Blaise Pascal
24 Avenue des Landais BP 80026
63171 Aubière Cedex, France
email: Kamal.Boussaf,Alain.Escassut@math.univ-bpclermont.fr
Departamento de Matemática
Facultad de Ciencias Físicas y Matemáticas
Universidad de Concepción
Concepción, Chile
email: jacqojeda@udec.cl

[^0]: *Partially supported by CONICYT $N^{\circ} 79090014$ (Inserción de Capital Humano a la Academia)
 Received by the editors August 2011.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 12J25; 46 S10.
 Key words and phrases : zeros of p-adic meromorphic functions, derivative, Wronskian.

