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Abstract

Let K be an algebraically closed field of characteristic 0, complete with re-
spect to an ultrametric absolute value. We show that if the Wronskian of two
entire functions in K is a polynomial, then both functions are polynomials.
As a consequence, if a meromorphic function f on all K is transcendental and
has finitely many multiple poles, then f ′ takes all values in K infinitely many
times. We then study applications to a meromorphic function f such that
f ′ + b f 2 has finitely many zeros, a problem linked to the Hayman conjecture
on a p-adic field.

1 Introduction and Main Results

Notation and Definitions. Let K be an algebraically closed field of characteristic
0, complete with respect to an ultrametric absolute value | . |. Given α ∈ K and
R ∈ R

∗
+, we denote by d(α, R) the disk {x ∈ K | |x − α| ≤ R} and by d(α, R−) the

disk {x ∈ K | |x − α| < R}, by A(K) the K-algebra of analytic functions in K (i.e.
the set of power series with an infinite radius of convergence), by M(K) the field
of meromorphic functions in K and by K(x) the field of rational functions. Given
f , g ∈ A(K), we denote by W( f , g) the Wronskian f ′g − f g′.

We know that any non-constant entire function f ∈ A(K) takes all values in
K. More precisely, a function f ∈ A(K) other than a polynomial takes all values
in K infinitely many times (see [5], [8], [9]). Next, a non-constant meromorphic
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function f ∈ M(K) takes every value in K, except at most one value. And more
precisely, a meromorphic function f ∈ M(K) \ K(x) takes every value in K in-
finitely many times except at most one value (see [5], [9]).

Many previous studies were made on Picard’s exceptional values for complex
and p-adic functions and their derivatives (see [1], [3], [6], [7], [8]). Here we mean
to examine precisely whether the derivative of a transcendental meromorphic
function in K having finitely many multiple poles, may admit a value that is taken
finitely many times and then we will look for applications to Hayman’s problem
when m = 2.

From Theorem 4 [6], we can state the following Theorem A:

Theorem A: Let h, l ∈ A(K) satisfy W(h, l) = c ∈ K, with h non-affine. Then c = 0

and
h

l
is a constant.

Now we can improve Theorem A:

Theorem 1: Let f , g ∈ A(K) be such that W( f , g) is a non-identically zero polyno-
mial. Then both f , g are polynomials.

Remark: Theorem 1 does not hold in characteristic p 6= 0. Indeed, suppose the
characteristic of K is p 6= 0. Let ψ ∈ A(K). Let f = x(ψ)p and let g = (x + 1)ψ−p.
Since p 6= 0, we have f ′ = (ψ)p, g′ = ψ−p hence W( f , g) = 1 and this is true for
any function ψ ∈ A(K).

Theorem 2: Let f ∈ M(K) \ K(x) have finitely many multiple poles. Then f ′ takes
every value b ∈ K infinitely many times.

We can easily show Corollary 2.1 from Theorem 2, though it is possible to get
it through an expansion in simple elements.

Corollary 2.1: Let f ∈ M(K) \ K(x). Then f ′ belongs to M(K) \ K(x).

Open question: Do exists transcendental meromorphic functions f such that
f ′ has finitely many zeros? By Theorem 2, such functions should have infinitely
many multiple poles.

Now, we can look for some applications to Hayman’s problem in a p-adic
field. Let f ∈ M(K). Recall that in [9], [10] it was shown that if m is an integer
≥ 5 or m = 1, then f ′ + f m has infinitely many zeros that are not zeros of f . If
m = 3 or m = 4, for many functions f ∈ M(K), f ′ + f m has infinitely many
zeros that are not zeros of f (see [2], [10]) but there remain some cases where it
is impossible to conclude, except when the field has residue characteristic equal
to zero (see [10]). When m = 2, few results are known. Recall also that as far
as complex meromorphic functions f are concerned, f ′ + f m has infinitely many
zeros that are not zeros of f for every m ≥ 3, but obvious counter-examples show
this is wrong for m = 1 (with f (x) = ex) and for m = 2 (with f (x) = tan(−x)).
Here we will particularly examine functions f ′ + b f 2, with b ∈ K∗.
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Theorem 3: Let b ∈ K∗ and let f ∈ M(K) have finitely many zeros and finitely many

residues at its simple poles equal to
1

b
and be such that f ′ + b f 2 has finitely many zeros.

Then f belongs to K(x).

Remark: If f (x) =
1

x
, the function f ′ + b f 2 has no zero whenever b 6= 1.

Theorem 4: Let f ∈ M(K) \ K(x) have finitely many multiple zeros and let b ∈ K.

Then
f ′

f 2
+ b has infinitely many zeros. Moreover, if b 6= 0, every zero α of

f ′

f 2
+ b that

is not a zero of f ′ + b f 2 is a simple pole of f such that the residue of f at α is equal to
1

b
.

Corollary 4.1 : Let b ∈ K∗ and let f ∈ M(K) \ K(x) have finitely many multiple
zeros and finitely many simple poles. Then f ′ + b f 2 has infinitely many zeros that are
not zeros of f .

Remark: In Archimedean analysis, the typical example of a meromorphic func-
tion f such that f ′ + f 2 has no zero is tan(−x) and its residue is 1 at each pole
of f . Here we find the same implication but we can’t find an example satisfying
such properties.

2 The Proofs

Notation: Given f ∈ A(K) and r > 0, we denote by | f |(r) the norm of uniform
convergence on the disk d(0, r). This norm is known to be multiplicative (see [4],
[5]).

Lemma 1 is well known (see Theorem 13.5 [4]) :

Lemma 1: Let f ∈ M(K). Then | f (k−1)|(r) ≤
| f |(r)

rk−1
∀r > 0, ∀k ∈ N

∗.

Proof of Theorem 1: First, by Theorem A, we check that the claim is satisfied
when W( f , g) is a polynomial of degree 0. Now, suppose the claim holds when
W( f , g) is a polynomial of certain degree d. We will show it for d + 1. Let f , g ∈
A(K) be such that W( f , g) is a non-identically zero polynomial P of degree d + 1.

By hypothesis, we have f ′g − f g′ = P, hence f ′′g − f g′′ = P′. We can extract

g′ and get g′ =
f ′g−P

f . Now, consider the function Q = f ′′g′ − f ′g′′ and replace g′

by what we just found: we can get Q = f ′(
f ′′g− f g′′

f )−
P f ′′

f .

Now, we can replace f ′′g − f g′′ by P′ and obtain Q =
f ′P′−P f ′′

f . Thus, in

that expression of Q, we can write |Q|(R) ≤ | f |(R)|P|(R)
R2| f |(R)

, hence |Q|(R) ≤ |P|(R)
R2

∀R > 0. But by definition, Q belongs to A(K) and further, deg(Q) ≤ deg(P)− 2.
Consequently, Q is a polynomial of degree at most d − 2.

Now, suppose Q is not identically zero. Since Q = W( f ′, g′) and since
deg(Q) < d, by induction f ′ and g′ are polynomials and so are f and g. Finally,
suppose Q = 0. Then P′ f ′ − P f ′′ = 0 and therefore f ′ and P are two solutions of
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the differential equation of order 1 for meromorphic functions in K : (E) y′ = ψy

with ψ = P′

P , whereas y belongs to A(K). The space of solutions of (E) is known
to be of dimension 0 or 1 (see for instance Lemma 60.1 in [4]). Consequently, there
exists λ ∈ K such that f ′ = λP, hence f is a polynomial. The same holds for g.

Proof of Theorem 2: Suppose f ′ has finitely many zeros. By classical results (see

[4], [5]) we can write f in the form
h

l
with h, l ∈ A(K), having no common zero.

Consequently, each zero of W(h, l) is a zero of f ′ except if it is a multiple zero of
l. But since l only has finitely many multiple zeros, it appears that W(h, l) has
finitely many zeros and therefore is a polynomial. Consequently, by Theorem 1,
both h and l are polynomials, a contradiction because f does not belong to K(x).

Now, consider f ′ − b with b ∈ K. It is the derivative of f − bx whose poles are
exactly those of f , taking multiplicity into account. Consequently, f ′ − b also has
infinitely many zeros.

Notation: Given f ∈ M(K), we will denote by resa( f ) the residue of f at a.

Lemma 2: Let f =
h

l
∈ M(K) with h, l ∈ A(K) having no common zero, let b ∈ K∗

and let a ∈ K be a zero of h′l − hl′ + bh2 that is not a zero of f ′ + b f 2. Then a is a simple

pole of f and resa( f ) =
1

b
.

Proof: Clearly, if l(a) 6= 0, a is a zero of f ′ + b f 2. Hence, a zero a of h′l − hl′ + bh2

that is not a zero of f ′ + b f 2 is a pole of f . Now, when l(a) = 0, we have h(a) 6= 0

hence l′(a) = bh(a) 6= 0 and therefore a is a simple pole of f such that
h(a)

l′(a)
=

1

b
.

But since a is a simple pole of f , we have resa( f ) =
h(a)

l′(a)
which ends the proof.

Proof of Theorem 3: Let f =
P

l
with P a polynomial, l ∈ A(K) having no com-

mon zero with P. Then f ′ + b f 2 =
P′l − l′P + bP2

l2
. By hypothesis, this func-

tion has finitely many zeros. Moreover, if a is a zero of P′l − l′P + bP2 but
is not a zero of f ′ + b f 2 then, by Lemma 2, a is a simple pole of f such that

resa( f ) =
1

b
. Consequently, P′l − l′P + bP2 has finitely many zeros and so we

may write
P′l − l′P + bP2

l2
=

Q

l2
with Q ∈ K[x], hence P′l − l′P = −bP2 + Q. But

then, by Theorem 1, l is a polynomial, which ends the proof.
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Proof of Theorem 4: Let g =
f ′

f 2
+ b. Suppose b = 0. Since all zeros of f are simple

zeros except maybe finitely many, g has finitely many poles of order ≥ 3, hence a
primitive G of g has finitely many multiple poles. Consequently, by Theorem 2,
g has infinitely many zeros.

Now, suppose b 6= 0. Let α be a zero of g and let f =
h

l
with h, l ∈ A(K) hav-

ing no common zero. Then
f ′

f 2
+ b =

h′l − hl′ + bh2

h2
. Since α is a zero of

f ′

f 2
+ b, it

is not a zero of h and hence it is a zero of h′l − hl′ + bh2. Then by Lemma 2, if it is

not a zero of f ′ + b f 2, it is a simple pole of f such that resα( f ) =
1

b
, which ends

the proof of Theorem 4.

Acknowledgement: The authors are very grateful to Jean-Paul Bezivin for an
important improvement concerning Theorem 1.

References

[1] W. Bergweiler and X. C. Pang On the derivative of meromorphic functions with
multiple zeros, J. Math. Anal. Appl. 278 , pp. 285-292 (2003).

[2] K. Boussaf and J. Ojeda Value distribution of p-adic meromorphic functions, Bul-
letin of the Belgian Mathematical Society - Simon Stevin, Vol 18, n.4, p. 667-678
(2011).

[3] K. Boussaf Picard values of p-adic meromorphic function, p-adic Numbers, Ul-
trametric Analysis and Applications. Vol. 2, N. 4, pp. 285-292 (2010).

[4] A. Escassut Analytic Elements in p-adic Analysis. World Scientific Publishing
Co. Pte. Ltd. (Singapore, 1995).

[5] A. Escassut p-adic Value Distribution. Some Topics on Value Distribution
and Differentiability in Complex and P-adic Analysis, pp. 42-138. Mathematics
Monograph, Series 11. Science Press (Beijing, 2008).

[6] A. Escassut and J. Ojeda Exceptional values of p-adic analytic functions and
derivatives. Complex Variables and Elliptic Equations. Vol 56, N. 1-4, pp. 263-
269 (2011).

[7] W. Hayman Picard values of meromorphic functions and their derivatives, An-
nals of Mathematics. Vol. 70, N. 1, pp. 9-42 (1959).

[8] P. C. Hu and C. C. Yang Meromorphic Functions over non-Archimedean Fields.
Kluwer Academic Publishers (2000).

[9] J. Ojeda Distribution de valeurs des fonctions méromorphes ultramétrique, ap-
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