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Abstract

In this paper we supply a new proof that the Browder spectrum is the
largest part of the spectrum that remains unchanged under compact pertur-
bations from the commutant.

1 Introduction

The Weyl spectrum σw(T) of an operator T is the largest part of the spectrum σ(T)
that is invariant under compact perturbations. Thus the Browder spectrum σb(T)
is not invariant under compact perturbation (reason: σw(T) ⊆ σb(T) and the in-
clusion may be proper). However, the Browder spectrum is the largest part of
σ(T) that remains unchanged under compact perturbations from the commutant
of T. This result was announced in [11], whose proof, based on ascent-descent
techniques, appeared in [7]. In the realm of pure Banach algebra techniques, the
result was considered in [3]. The main purpose of this paper is to offer a new
proof, along the lines of [3], but using single operator theory techniques instead,
thus supplying a simpler complete proof. This is done in Section 3. The neces-
sary notational preliminaries are presented in Section 2, and the paper closes in
Section 4 with a remark on the answer of a long awaited open question on the
Weyl spectrum of tensor products. We work in a Hilbert space setting, although
the results in this paper hold in a Banach space setting with essentially the same
proofs.
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2 Preliminaries

Let H be an infinite-dimensional complex Hilbert space, and B[H] the unital Ba-
nach algebra of all (bounded linear) operators on H, where I denotes the identity
in B[H]. Let B∞[H] be the ideal of all compact operators from B[H], and let

F =
{

T ∈ B[H] : I − AT and I − TA are compact for some A ∈ B[H]
}

=
{

T ∈ B[H] : R(T) is closed, dimN (T) < ∞ and dimN (T∗) < ∞
}

stand for the class of all Fredholm operators from B[H] (see e.g., [1, Remark 3.33]
and [4, Corollary XI.2.4]), where R(T) and N (T) denote range and kernel, and
T∗ ∈ B[H] the adjoint, of an arbitrary operator T ∈ B[H]. The Fredholm index
of an operator T in F is the integer ind(T) = dimN (T)− dimN (T∗). A Weyl
operator is a Fredholm operator of index zero. Set

W =
{

T ∈ F : ind(T) = 0
}

,

the class of all Weyl operators from B[H]. Consider the Calkin algebra
B[H]/B∞[H], and let π : B[H] → B[H]/B∞[H] be the natural quotient map. The
essential spectrum σe(T) of T is the spectrum of π(T) in B[H]/B∞[H]. By the
Atkinson Theorem,

σe(T) = σ(π(T)) =
{

λ ∈ C : λI − T ∈ B[H]\F
}

⊆ σ(T)

(see e.g., [9, Corollary 4.2]), where σ(T) is the spectrum of T in B[H]. Set

σ0(T) =
{

λ ∈ σ(T) : λI − T ∈ W
}

⊆ σPF(T) ⊆ σP(T),

where σP(T) is the point spectrum, and σPF(T) is the set of eigenvalues of finite
multiplicity, of T. Let σiso(T) be the set of isolated points of σ(T), and consider the
Riesz idempotent associated with λ ∈ σiso(T), Eλ = 1

2πi

∫
Γλ
(γI − T)−1dγ, where

Γλ is any positively oriented circle enclosing λ but no other point of σ(T). Let

π0(T) = σiso(T) ∩ σ0(T) =
{

λ ∈ σiso(T) : dimR(Eλ) < ∞
}

be the set of Riesz points of T (see e.g., [2, Proposition 2]), and set

π00(T) = σiso(T) ∩ σPF(T),

the set of all isolated eigenvalues of T of finite multiplicity. Clearly,
π0(T) ⊆ π00(T). The Weyl spectrum σw(T) of T is the largest part of σ(T) that re-
mains unchanged under compact perturbations, which, according to Schechter’s
Theorem, coincides with the complement of σ0(T) in σ(T) (see e.g., [9, Proposi-
tions 7.2 and 7.4]),

σw(T) =
⋂

K∈B∞[H]
σ(T + K) = σ(T)\σ0(T) =

{
λ ∈ C : λI − T ∈ B[H]\W

}
.

A Browder operator is often defined as a Fredholm operator with finite ascent and
finite descent. Equivalently, a Browder operator is a Fredholm operator such that,
if zero is in the spectrum, then it is an isolated point (see e.g., [5, Theorem 7.9.3])
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or, still equivalently, if zero is in the spectrum, then it is a Riesz point (since the
set σw(T)\σe(T) is open [4, Proposition XI.6.11]). Thus the class B of all Browder
operators from B[H] is given by

B =
{

T ∈ F : 0 ∈ ρ(T) ∪ σiso(T)
}
=

{
T ∈ F : 0 ∈ ρ(T) ∪ π0(T)

}
,

where ρ(T) = C\σ(T) is the resolvent set of T. Define the Browder spectrum of T
as the set σb(T) of all complex numbers λ for which λI − T is not Browder, which
coincides with the complement of π0(T) in σ(T) (see e.g., [9, Corollary 9.4]),

σb(T) =
{

λ ∈ C : λI − T ∈ B[H]\B
}

= σ(T)\π0(T).

Since G[H] ⊆ B ⊆ W ⊆ F , where G[H] is the group of all invertible operators
from B[H], it follows that σe(T) ⊆ σw(T) ⊆ σb(T) ⊆ σ(T).

3 Browder Spectrum

In this section we supply a new proof that the Browder spectrum of T is the
largest part of σ(T) that remains unchanged under compact perturbations from
the commutant of T (proof of Theorem 1). What makes this proof different is that
it does not rely on ascent-descent calculations, and uses single operator theory
techniques, instead of using only pure Banach algebra techniques, which makes
it simpler and more elementary. The complete proof is based on Lemmas 1 and 2.

Set A = B[H]. Let A′ be a unital closed subalgebra of the unital complex
Banach algebra A, thus a unital complex Banach algebra itself. Take an arbitrary
operator T in A′. Let B∞[H]′ = B∞[H] ∩A′ denote the collection of all compact
operators from A′, and let F ′ denote the class of all Fredholm operators in A′.
That is,

F ′ =
{

T ∈ A′ : I − AT and I − TA are in B∞[H]′ for some A ∈ A′
}

.

It is clear that F ′ ⊆ F ∩A′, and the inclusion is proper in general. However, by

the Atkinson Theorem, if F ′ = F ∩A′, then σ′
e(T) = σe(T), where

σ′
e(T) =

{
λ ∈ σ′(T) : λI − T ∈ A′\F ′}

stands for the essential spectrum of T ∈ A′ with respect to A′, with σ′(T) denot-
ing the spectrum of T ∈ A′ with respect to the unital complex Banach algebra A′.
Let W ′ =

{
T ∈ F ′ : ind(T) = 0

}
denote the class of Weyl operators in A′, and

let
σ′

w(T) =
{

λ ∈ σ′(T) : λI − T ∈ A′ \W ′
}

stand for the Weyl spectrum of T ∈ A′ with respect to A′. If T ∈ A′, then set

σ′
0(T) = σ′(T)\σ′

w(T) =
{

λ ∈ σ′(T) : λI − T ∈ W ′
}

.

Moreover, let B ′ stand for the class of Browder operators in A′,

B ′ =
{

T ∈ F ′ : 0 ∈ ρ′(T) ∪ σ′
iso(T)

}
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where σ′
iso(T) denotes the set of all isolated points of σ′(T), and ρ′(T) = C\σ′(T)

is the resolvent set of T ∈ A′ with respect to A′. Let

σ′
b(T) =

{
λ ∈ σ′(T) : λI − T ∈ A′\B ′

}
,

be the Browder spectrum of T ∈ A′ with respect to A′.

Lemma 1. Take any T ∈ A′. If σ′(T) = σ(T), then σ′
b(T) = σb(T).

Proof. Take T in A′. Suppose σ′(T) = σ(T). If λ ∈ σ′
iso(T), then the Riesz idem-

potent associated with it, Eλ = 1
2πi

∫
Γλ
(γI − T)−1dγ, lies in A′ (reason: σ′

iso(T) =

σiso(T), and (νI − T)−1 ∈ A′ whenever (νI − T)−1 lies in B[H] since ρ′(T) =
ρ(T)). Thus, according to the expressions for π0(T), if λ ∈ σ′

iso(T) = σiso(T), then

λ ∈ σ′
0(T) ⇐⇒ dimR(Eλ) < ∞ ⇐⇒ λ ∈ σ0(T).

Hence π′
0(T) = σ′

0(T) ∩ σ′
iso(T) = σ0(T) ∩ σiso(T) = π0(T). Thus, taking the

complement of the set of Riesz points, σb(T) = σ(T)\π0(T) = σ′(T)\π′
0(T) =

σ′
b(T).

Let {T}′ be the commutant of T ∈ B[H], which is a unital closed (in fact,
weakly closed) subalgebra of the unital complex Banach algebra B[H].

Lemma 2. Take any T ∈ B[H]. If A′ = {T}′ and 0 ∈ σ′
0(T), then 0 ∈ σ′

iso(T).

Proof. Take T ∈ B[H]. Let A′ be a unital closed subalgebra of A = B[H] including
T. Suppose 0 ∈ σ′

0(T), which means that 0 ∈ σ′(T) and T ∈ W ′. Since T ∈ W ′,

there exists a compact K ∈ B∞[H]′ = B∞[H] ∩A′, actually a finite-rank operator,
such that T + K is invertible (see e.g., [4, Exercise XI.3.7]. That is,

A(T + K) = (T + K)A = I

for some A ∈ A′, and so A is itself invertible with inverse A−1 = T + K ∈ A′. If
A′ = {T}′, then AK = KA, and so A−1K = KA−1. Let A′′ be the unital closed
commutative subalgebra of A′ generated by A, A−1, and K. Since T = A−1 − K,
it follows that A′′ includes T. Let σ′

iso(T) and σ′′
iso(T) stand for the sets of isolated

points of the spectra σ′(T) and σ′′(T) of T with respect to the Banach algebras
A′ and A′′, respectively. Since A′′ ⊆ A′, it follows that ρ(T)′′ ⊆ ρ′(T), and so
σ′(T) ⊆ σ′′(T). Hence 0 ∈ σ′′(T).

Claim. 0 ∈ σ′′
iso(T).

Proof. Let Â′′ denote the collection of all algebra homomorphisms of A′′ into C.
Recall that (see e.g., [12, Theorem 0.4])

σ′′(A−1) =
{

Φ(A−1) ∈ C : Φ ∈ Â′′
}

,

which is bounded away from zero (since 0 ∈ ρ′′(A−1)), and

σ′′(K) =
{

Φ(K) ∈ C : Φ ∈ Â′′} = {0} ∪
{

Φ(K) ∈ C : Φ ∈ Â′′
F

}
,
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where Â′′
F ⊆ Â′′ is a set of nonzero homomorphisms, which is finite because K is

finite-rank (and so K has a finite spectrum). Note that 0 ∈ σ′′(T) = σ′′(A−1 − K) if
and only if 0 = Φ(A−1 − K) = Φ(A−1)− Φ(K) for some Φ ∈ A′′. If Φ ∈ A′′\A′′

F,
then Φ(K) = 0 so that Φ(A−1) = 0, which is a contradiction (because 0 6∈ σ(A−1)).
Thus Φ ∈ A′′

F, and hence Φ(A−1 − K) = Φ(A−1)− Φ(K) = 0, so that Φ(A−1) =
Φ(K), for at most a finite number of homomorphisms Φ in A′′

F. Therefore, since

{Φ(A−1) ∈ C : Φ ∈ Â′′} = σ′′(A−1) is bounded away from zero, and since

{
Φ ∈ A′′

F : Φ(A−1) = Φ(K)
}
=

{
Φ ∈ A′′

F : 0 ∈ σ′′(A−1 − K)
}

is finite, it follows that 0 is an isolated point of σ′′(A−1 − K) = σ′′(T), which
concludes the proof of the claimed result.

Since 0 ∈ σ′(T) ⊆ σ′′(T), it then follows that 0 ∈ σ′
iso(T).

Theorem 1. For every T ∈ B[H],

σb(T) =
⋂

K∈B∞[H]∩{T}′
σ(T + K).

Proof. Take any T ∈ B[H], and let A′ be a unital closed subalgebra of the unital
complex Banach algebra A = B[H]. Let σ′(T), σ′

b(T), and σ′
w(T) be the spectrum,

the Browder spectrum, and the Weyl spectrum of T with respect to A′, respec-
tively.

Claim 1. If A′ = {T}′, then σ′(T) = σ(T).

Proof. Suppose A′ = {T}′. Trivially, T ∈ A′. Let P = P(T) be the collection of
all polynomials p(T) in T with complex coefficients, which is a unital commu-
tative subalgebra of B[H]. Consider the collection T of all unital commutative
subalgebras of B[H] containing T. Note that every element of T is included in
A′, and also that T is partially ordered (in the inclusion ordering) and nonempty
(e.g., P ∈ T ). Every chain in T has an upper bound in T (the union of all sub-
algebras in a given chain of subalgebras in T is again a subalgebra in T ). Zorn’s
Lemma says that T has a maximal element, say A′′ = A′′(T) ∈ T . Thus there is a
maximal commutative subalgebra A′′ of B[H] containing T (which is unital and
closed). Hence A′′ ⊆ A′ ⊆ A. Let σ′′(T) be the spectrum of T with respect to A′′.
Since A′′ is a maximal commutative subalgebra of A, the preceding inclusions
ensure that [12, Theorem 0.4]

σ(T) ⊆ σ′(T) ⊆ σ′′(T) = σ(T).

Claim 2. If A′ = {T}′, then σb(T) = σ′
b(T).

Proof. Claim 1 and Lemma 1.

Claim 3. If A′ = {T}′, then σ′
b(T) = σ′

w(T).

Proof. λ ∈ σ′
0(T) if and only if λ ∈ σ′(T) and λI − T ∈ W ′. But λ ∈ σ′(T) if and

only if 0 ∈ σ′(λI − T) by the Spectral Mapping Theorem. Hence, λ ∈ σ′
0(T) if

and only if 0 ∈ σ′
0(λI − T). Since A′ = {T}′ = {λI − T}′ it follows by Lemma

2 that 0 ∈ σ′
0(λI − T) implies 0 ∈ σ′

iso(λI − T). However, applying the Spectral
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Mapping Theorem again, 0 ∈ σ′
iso(λI − T) if and only if λ ∈ σ′

iso(T). Therefore,
σ′

0(T) ⊆ σ′
iso(T), which means that T satisfies Browder’s theorem in A′, which in

turn is equivalent to saying that σ′
w(T) = σ′

b(T) (see e.g., [9, Proposition 9.8]).

Claim 4. σ′
w(T) =

⋂
K∈B∞[H]∩A′ σ(T + K).

Proof. This is the very definition of the Weyl spectrum of T with respect to A′.

By Claims 2, 3 and 4 we get σb(T) =
⋂

K∈B∞[H]∩{T}′σ(T + K).

4 A Final Remark

Take any operator T ∈ B[H]. The following assertions are pairwise equivalent.

σ0(T) ⊆ π00(T), σ0(T) = π0(T), σ0(T) ⊆ σiso(T), σw(T) = σb(T)

(see e.g., [9, Proposition 9.8]). An operator is said to satisfy Browder’s theorem
if any of the above assertions holds true. Consider the tensor product T ⊗ S of a
pair of arbitrary Hilbert space operators T and S. It was proved in [6] that

σw(T ⊗ S) ⊆ σw(T) · σ(S) ∪ σ(T) · σw(S).

However, since then, it remained as an open question whether the above inclu-
sion might be, in fact, an identity. In other words, it was not know if there existed
a pair of operators T and S for which the above inclusion was proper. This ques-
tion was solved quite recently, and in this final section it is shown how it was.
First note that Browder’s theorem does not necessarily transfer from T and S to
their tensor product T ⊗ S. The following theorem gives a necessary and suffi-
cient condition.

Theorem 2. If both operators T and S satisfy Browder’s theorem, then the tensor product
T ⊗ S satisfies Browder’s theorem if and only if

σw(T ⊗ S) = σw(T) · σ(S) ∪ σ(T) · σw(S).

Proof. [10, Corollary 6].

Therefore, if there exist operators T and S that satisfy Browder’s theorem, but
T ⊗ S does not satisfy Browder’s theorem, then the Weyl spectrum identity, viz.,
σw(T ⊗ S) = σw(T) · σ(S) ∪ σ(T) · σw(S), does not hold for such a pair of opera-
tors. An example of a pair of operators that satisfy Browder’s theorem but their
tensor product does not satisfy Browder’s theorem was recently supplied in [8].
Thus [8] and [10] together ensure that there exists a pair of operators T and S for
which the inclusion

σw(T ⊗ S) ⊂ σw(T) · σ(S) ∪ σ(T) · σw(S)

is proper; that is, for which the Weyl spectrum identity fails.
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