On the Commutant of Multiplication Operators with Analytic Rational Symbol

B. Khani Robati M. Haji Shaabani

Abstract

Let \mathcal{B} be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let φ be an analytic multiplier of \mathcal{B} we denote by M_{φ} and $\{M_{\varphi}\}'$ respectively, the operator of multiplication by φ and the commutant of M_{φ} . In this article under certain conditions on φ and G we characterize the commutant of M_{φ} . In particular, when φ is a rational function with poles off \overline{G} , under certain conditions on φ we show that $\{M_{\varphi}\}' = \{M_z\}'$. We extend some results obtained in [4] and [6] about the commutant of the operator M_{φ} .

1 Introduction

Let *G* be a bounded domain in the complex plane. Let \mathcal{B} be a Banach space consisting of functions analytic on *G* such that $1 \in \mathcal{B}, z\mathcal{B} \subset \mathcal{B}$ and for every $\lambda \in G$ the linear functional e_{λ} of evaluation at λ is bounded on \mathcal{B} . Also assume that $\operatorname{ran}(M_z - \lambda) = \ker(e_{\lambda})$ for every $\lambda \in G$ and if $f \in \mathcal{B}$ and $|f(\lambda)| > c > 0$ for every $\lambda \in G$, then $\frac{1}{f}$ is a multiplier of \mathcal{B} .

In what follows *G* denotes a bounded domain in the complex plane, and by a Banach space of analytic functions \mathcal{B} on *G*, we mean, one satisfying the above conditions.

Some examples of such spaces are as follows:

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 165–172

Received by the editors February 2011.

Communicated by F. Brakcx.

²⁰⁰⁰ Mathematics Subject Classification : Primary 47B35; Secondary 47B3.

Key words and phrases : commutant, multiplication operators, Banach space of analytic functions, rational function, only a simple zero.

1) The algebra A(G) which is the algebra of all continuous functions on the closure of *G* that are analytic on *G*.

2) The Bergman space of analytic functions defined on *G*, $L_a^P(G)$ for $1 \le p \le \infty$.

3) The spaces D_{α} of all functions $f(z) = \sum \hat{f}(n)z^n$, holomorphic in the complex unit disc D, for which $||f||^2 = \sum (n+1)^{\alpha} |\hat{f}(n)|^2 < \infty$ for every $\alpha \ge 1$ or $\alpha \le 0$.

4) The analytic Lipschitz spaces $Lip(\alpha, \overline{G})$ for $0 < \alpha < 1$, i.e., the space of all analytic functions defined on *G* that satisfy a Lipschitz condition of order α .

5) The subspace $lip(\alpha, \overline{G})$ of $Lip(\alpha, \overline{G})$, consisting of functions f in $Lip(\alpha, \overline{G})$ for which

$$lim_{z \to w} \frac{\mid f(z) - f(w) \mid}{\mid z - w \mid^{\alpha}} = 0.$$

6) The classical Hardy spaces H^p for $1 \le p \le \infty$.

Let *E* be a subset of \mathbb{C} . We say that *f* is in *H*(*E*) if there is an open set *U* that contains *E* such that *f* is analytic in *U*. We denote by *B*(*a*;*r*) the set $\{z \in \mathbb{C} : |z - a| < r\}$.

A complex valued function φ defined on G is called a multiplier of \mathcal{B} if $\varphi \mathcal{B} \subset \mathcal{B}$ and the collection of all these multipliers is denoted by $\mathcal{M}(\mathcal{B})$. As it is shown in [11] each multiplier φ is bounded on G. Given a multiplier φ , we call M_{φ} , defined by $M_{\varphi}(f) = \varphi f$ for every function $f \in \mathcal{B}$, the operator of multiplication by φ . The continuity of M_{φ} follows from the Closed Graph Theorem. We denote $\{M_{\varphi}\}'$ to be the set of all bounded linear operators X on \mathcal{B} such that $M_{\varphi}X = XM_{\varphi}$, i.e., the commutant of M_{φ} . It is easy to see that $\{M_z\}' = \{M_{\varphi} : \varphi \in \mathcal{M}(\mathcal{B})\}$. Two good sources on this topics are [10] and [11].

Let φ be an analytic function in a neighborhood of \overline{G} and $\lambda \in \overline{G}$. If φ has a zero of order one at λ and $\varphi(z) \neq 0$ for all $z \neq \lambda$ in \overline{G} , we say that φ has only a simple zero in \overline{G} . Also for $\lambda \in G$ if $\varphi \in A(G)$ has a zero of order one at λ and $\varphi(z) \neq 0$ for all $z \neq \lambda$ in \overline{G} , then we say that φ has only a simple zero in \overline{G} .

Recall that a bounded linear operator T on a Banach space is called Fredholm, if it is invertible modulo of the compact operators. It is known that T is Fredholm if its range is closed and both kerT and ker T^* are finite dimensional. If T is a Fredholm operator, we define the index of T as

ind
$$(T) = \dim \ker T - \dim \ker T^*$$
.

The commutant of multiplication operators on spaces of analytic functions on *D*, were investigated by many authors for certain multiplication operators. See for example, [1-8, 10-15]. only a few works has been done in studying commutants of multiplications operators on the spaces of analytic functions on bounded domains different from the unit disc. See for examples [4], [6], and [8].

The aim of this article is to investigate the commutant of the operator M_{φ} for certain function $\varphi \in \mathcal{M}(\mathcal{B})$. In particular, when φ is a polynomial or a rational function with poles off \overline{G} , under certain conditions on the its coefficients, we show that $\{M_{\varphi}\}' = \{M_z\}'$. In [4] Ž. Čučković and Dashan Fan have shown that if $G = \{z \in \mathbb{C} : r < |z| < 1\}, \mathcal{B} = L^2_a(G)$ and $p(z) = z + a_2 z^2 + \cdots + a_n z^n$, where

 $a_i \ge 0$ and p(z) - p(1) has *n* distinct zeros, then $\{M_p\}' = \{M_{\Psi} : \Psi \in \mathcal{M}(\mathcal{B})\}$. As a result, Theorem 2.4 and Corollary 2.6 extend the result obtained in [4] to Banach spaces of analytic functions on various domains *G* and certain polynomial or rational symbols. Also we extend the results obtained in [6]. Moreover in the both papers the authors used the condition that the zeros of the function *p* outside \overline{G} are distinct which we omit this condition.

2 The main results

We begin this section with a theorem about the commutant of the multiplication operator M_{φ} . In fact we show that if for some $\lambda \in G$ the operator $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator such that its index equal to -1, then $\{M_{\varphi}\}' = \{M_z\}'$.

Theorem 2.1 Let \mathcal{B} be a Banach space of analytic functions on G, and let $\varphi \in \mathcal{M}(\mathcal{B})$. If there is a $\lambda \in G$ such that $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator with $\operatorname{ind}(M_{\varphi-\varphi(\lambda)}) = -1$, then $\{M_{\varphi}\}' = \{M_z\}'$.

Proof. Let $T \in \{M_{\varphi}\}'$. It is easy to see that $T^*(e_{\lambda})$ and e_{λ} are in ker $(M_{\varphi-\varphi(\lambda)})^*$. Since $M_{\varphi-\varphi(\lambda)}$ is one to one and by assumption $\operatorname{ind}(M_{\varphi-\varphi(\lambda)}) = -1$, we conclude that dim ker $(M_{\varphi-\varphi(\lambda)})^* = 1$. Therefore $T^*(e_{\lambda}) = \psi(\lambda)e_{\lambda}$ for some constant $\psi(\lambda)$. Hence, we have

$$T(f)(\lambda) = \langle T(f), e_{\lambda} \rangle = \langle f, T^*(e_{\lambda}) \rangle = \psi(\lambda) \langle f, e_{\lambda} \rangle = \psi(\lambda)f(\lambda),$$

for each $f \in \mathcal{B}$. In particular $\psi(\lambda) = T(1)(\lambda)$. Since $M_{\varphi-\varphi(\lambda)}$ is Fredholm, there is a positive number ϵ such that if U is a bounded linear operator on \mathcal{B} and $||U|| < \epsilon$, then $M_{\varphi-\varphi(\lambda)} + U$ is Fredholm and $\operatorname{ind}(M_{\varphi-\varphi(\lambda)}) = \operatorname{ind}(M_{\varphi-\varphi(\lambda)} + U)$. Now by continuity of $\varphi - \varphi(\lambda)$ at λ , there is a positive number δ such that for each $t \in G$ with $|t - \lambda| < \delta$, we have $|\varphi(t) - \varphi(\lambda)| < \epsilon$. So the operator $M_{\varphi-\varphi(t)}$ is Fredholm and $\operatorname{ind}(M_{\varphi-\varphi(t)}) = -1$. Hence T(f)(t) = T(1)(t)f(t) for each $f \in \mathcal{B}$ and for every $t \in B(\lambda; \delta) \cap G$. Set $\psi = T(1)$. Since two analytic functions T(f)and ψf are equal on $B(\lambda; \delta) \cap G$ and G is connected, we have $T(f) = \psi f$ for all $f \in \mathcal{B}$, which proves the theorem.

Theorem 2.2 Let \mathcal{B} be a Banach space of analytic functions on G, let $\varphi \in \mathcal{M}(\mathcal{B}) \cap A(G)$, and let $\lambda \in G$. If $\varphi(z) - \varphi(\lambda)$ has only a simple zero in \overline{G} , then $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator with $\operatorname{ind}(M_{\varphi-\varphi(\lambda)}) = -1$, so by Theorem 2.1, $\{M_{\varphi}\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}.$

Proof. First we show that $ran(M_{\varphi} - \varphi(\lambda)) = kere_{\lambda}$. It is easy to see that $ran(M_{\varphi} - \varphi(\lambda)) \subset kere_{\lambda}$.

To show the converse, since $\operatorname{ran}(M_z - \lambda) = \ker e_\lambda$, we have $(\varphi - \varphi(\lambda))(z) = (z - \lambda)h(z)$ for some $h \in \mathcal{B}$. Because $\varphi \in A(G)$, h has a continuous extension on \overline{G} which we denote it again with h. By assumption $h(z) \neq 0$ for every $z \in \overline{G}$. Therefore $\frac{1}{h}$ is in $\mathcal{M}(\mathcal{B})$ and we have $z - \lambda = \frac{\varphi(z) - \varphi(\lambda)}{h(z)}$. Now if $f \in \ker e_\lambda$, then

 $f = (z - \lambda)g$ for some function $g \in \mathcal{B}$. Hence

$$f = \frac{\varphi - \varphi(\lambda)}{h}g = (\varphi - \varphi(\lambda))\frac{g}{h}.$$

Since $g \in \mathcal{B}$ and $\frac{1}{h} \in \mathcal{M}(\mathcal{B})$, we have $\frac{g}{h} \in \mathcal{B}$ and ker $e_{\lambda} \subset \operatorname{ran}(M_{\varphi} - \varphi(\lambda))$.

From ran $(M_{\varphi} - \varphi(\lambda)) = \ker e_{\lambda}$, we conclude that ran $(M_{\varphi} - \varphi(\lambda))$ is closed and dim $\ker(M_{\varphi-\varphi(\lambda)})^* = 1$. On the other hand $M_{\varphi-\varphi(\lambda)}$ is one to one, therefore dim $\ker(M_{\varphi-\varphi(\lambda)}) = 0$. Hence $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator and its index equal to -1.

From now on we assume that r(z) = p(z)/q(z) is a rational function such that p(z) and q(z) are polynomials without common factors. Also the poles of r(z) which are exactly the zeros of q(z) are off \overline{G} .

Proposition 2.3 Let \mathcal{B} be a Banach space of analytic functions on G, where G is the interior of \overline{G} , and let r(z) = p(z)/q(z) be a rational function with poles off \overline{G} . If there are α and β in G such that $p(z) - p(\alpha)$ has only a simple zero in \overline{G} , $r(\beta) \neq 0$, and $|r(\beta)q(z) - p(\alpha)| < |p(z) - p(\alpha)|$ for each $z \in \partial G$, then $\{M_r\}' = \{M_z\}'$.

Proof. By assumptions, we have

$$r(z) - r(\beta) = \frac{p(z)q(\beta) - q(z)p(\beta)}{q(z)q(\beta)} = \frac{q(\beta)(p(z) - p(\alpha) - r(\beta)q(z) + p(\alpha))}{q(z)q(\beta)}.$$

Thus, $r(z) - r(\beta) = 0$ if and only if $(p(z) - p(\alpha) - r(\beta)q(z) + p(\alpha) = 0$. Using general form of Rouche's Theorem we conclude that $r(z) - r(\beta)$ has only a simple zero at β . So by Theorem 2.2, the proof is complete.

Remark. The above proposition holds if there are α and β in G such that $q(z) - q(\alpha)$ has only a simple zero in \overline{G} and $r(\beta) \neq 0$, moreover, $|p(z) - r(\beta)q(\alpha)| < |r(\beta)(q(z) - q(\alpha))|$ for each $z \in \partial G$.

In Theorem 2.2, λ is in *G* and $\varphi \in \mathcal{M}(\mathcal{B}) \cap A(G)$. The same proof does not work for $\lambda \in \overline{G}$. In the next theorem we obtain a similar result, whenever $\lambda \in \overline{G}$ and $\varphi \in H(\overline{G}) \cap \mathcal{M}(\mathcal{B})$.

Theorem 2.4 Let $\varphi \in H(\overline{G}) \cap \mathcal{M}(\mathcal{B})$, let $\lambda \in \overline{G}$ and let $\varphi(z) - \varphi(\lambda)$ has only a simple zero in \overline{G} . Then $\{M_{\varphi}\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

Proof. Let Ω be an open set that contains \overline{G} such that $\varphi \in H(\Omega)$ and let g to be defined in $\Omega \times \Omega$ by

$$g(z,w) = \begin{cases} \frac{\varphi(z) - \varphi(w)}{z - w} & z \neq w, \\ \varphi'(z) & z = w. \end{cases}$$

It is obvious that *g* is continuous in $\Omega \times \Omega$ and so *g* is uniformly continuous in $\overline{G} \times \overline{G}$. Since by assumption $g(z, \lambda) \neq 0$ for each $z \in \overline{G}$ and $g(z, \lambda)$ is continuous as a function of *z* in \overline{G} , there is some $\varepsilon > 0$ such that $|g(z, \lambda)| > \varepsilon$ for each $z \in \overline{G}$. Now by uniform continuity of *g* in $\overline{G} \times \overline{G}$ there is an open set $U \subset G$ such that for each $w \in U$ and for all $z \in \overline{G}$, we have $|g(z,w)| > \frac{\varepsilon}{2}$. Therefore $\varphi(z) - \varphi(w)$ has only a simple zero in \overline{G} for each $w \in U$. Now by Theorem 2.2, we have $\{M_{\varphi}\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}.$

Corollary 2.5 Let \mathcal{B} be a Banach space of analytic functions on G. Suppose that $\varphi \in H(\overline{G})$ and for some λ in \overline{G} the function $\underline{\varphi}(z) - \underline{\varphi}(\lambda)$ has only a simple zero in \overline{G} . If $\psi \in H(\overline{G})$ is a univalent map from \overline{G} onto \overline{G} , and $\varphi \circ \psi \in \mathcal{M}(\mathcal{B})$, then $\{M_{\varphi \circ \psi}\}' = \{M_z\}'$.

In the next corollary we extend the result obtained in Theorem 4 in [4] to Banach spaces of analytic functions, to more general domains, Also we show that it is not necessary that all of the *n* zeros of p(z) - p(1) are distinct.

Corollary 2.6 Let \mathcal{B} be a Banach space of analytic functions on G, let $G \subset D$ be such that $1 \in \overline{G}$ and let $p(z) = z + a_2 z^2 + \cdots + a_n z^n$, where $a_i \ge 0$ for $i = 2, \cdots, n$. Then $\{M_p\}' = \{M_z\}'$.

Proof. It is easy to see that p(1) > |p(z)| for all $z \in \overline{G} - \{1\}$, since $p'(1) \neq 0$ the function p(z) - p(1) has only a simple zero in \overline{G} , and by Theorem 2.4 the proof is complete.

Let r(z) = p(z)/q(z) be a rational function with poles off \overline{G} , if $n = \max\{\deg(p), \deg(q)\} = 1$, then r is univalent and it is well known that $\{M_r\}' = \{M_z\}'$. Therefore in the reminder of this section we assume that $n = \max\{\deg(p), \deg(q)\} \ge 2$. Let $\lambda \in \overline{G}$. If $r(z) - r(\lambda)$ has n - 1 zeros outside of \overline{G} , then $\{M_r\}' = \{M_z\}'$. In particular if p(z) has only a simple zero at a point $\lambda \in \overline{G}$, then r(z) has only a simple zero at a point $\lambda \in \overline{G}$, then r(z) has only a

From now on, we assume that $G \subset D$.

Corollary 2.7 Let \mathcal{B} be a Banach space of analytic functions on G. Suppose that $n \ge 2$ is an integer, $a \ne 0$ is a complex number with |a| > 1 and $p(z) = z^n + az$. If $r(z) = \frac{p(z)}{q(z)}$ is a rational function with poles off \overline{G} and $0 \in \overline{G}$, then $\{M_r\}' = \{M_z\}'$.

Proof. Let $\lambda = 0$ it is easy to see that $r(z) - r(\lambda) = r(z)$ has n - 1 distinct zeros outside of \overline{D} . Hence by Theorem 2.4, we have $\{M_r\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}.$

In the next theorem we extend some results obtained in [6], in fact we omit the condition that the zeros of the polynomials outside \overline{G} must be distinct.

Theorem 2.8 Let \mathcal{B} be a Banach space of analytic functions on G and let $p = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ be a polynomial of degree $n \ge 2$ such that $a_1 \ne 0$. If each of the following conditions holds, then $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

(a) For some real constant θ_0 , we have $\operatorname{Arg} a_i = \theta_0$ for $a_i \neq 0$ with $i \geq 1$ and $1 \in \partial G$.

(b) For each $a_i \neq 0$ with $i \geq 1$, $\operatorname{Arg} a_i = \theta_0$ for *i* odd and $\operatorname{Arg} a_i = \theta_0 + \pi$ or $\operatorname{Arg} a_i = \theta_0 - \pi$ for *i* even, and $-1 \in \overline{G}$.

(c) There is a $z_0 \in \partial D \cap \partial G$ such that all nonzero terms $a_i z_0^i$ for $i \ge 1$ are positive or all are negative.

Proof. By assumption $|p(1) - a_0| = |a_1| + |a_2| + \dots + |a_n|$. Therefore p(z) - p(1) = 0 implies that

$$|a_1z + a_2z^2 + \dots + a_nz^n| = |a_1| + |a_2| + \dots + |a_n|.$$

For $z \in D$, we have

$$|a_1z + a_2z^2 + \dots + a_nz^n| < |a_1| + |a_2| + \dots + |a_n|,$$

so p(z) - p(1) has no zero in *D*. On the other hand if $w \in \partial D$ is a zero of p(z) - p(1), then

$$|a_1| + |a_2| + \dots + |a_n| = |a_1w| + |a_2w^2| + \dots + |a_nw^n|$$

= |a_1w + a_2w^2 + \dots + a_nw^n|.

Hence $\operatorname{Arg}(a_1w + a_2w^2 + \cdots + a_nw^n) = \operatorname{Arg}(a_1w)$. Since $p(w) - a_0 = p(1) - a_0 = e^{i\theta_0}(|a_1| + |a_2| + \cdots + |a_n|)$, we have $\operatorname{Arg}(a_1w + a_2w^2 + \cdots + a_nw^n) = \operatorname{Arg}(a_1w) = \theta_0$, which implies that w = 1. It is easy to see that $p'(1) \neq 0$, so the polynomial p(z) - p(1) has only a simple zero at 1, and by Theorem 2.4, (a) holds.

Using similar argument as used in the proof of part (a) we conclude (b) and (c).

Proposition 2.9 Let \mathcal{B} be a Banach space of analytic functions on D, let p be a polynomial of degree $n \ge 2$ and let $r(z) = \frac{p(z)}{q(z)}$ be a rational function. If there is $z_0 \in \partial D$ such that $|r(z_0)| > |r(z)|$ for all $z \in \overline{D} - \{z_0\}$, then $\{M_r\}' = \{M_z\}'$.

Proof. By assumptions $|r(z_0)| > |r(z)|$ for all $z \in \overline{D} - \{z_0\}$, which implies that $r(z) - r(z_0)$ has no zero in $\overline{D} - \{z_0\}$ and $r'(z_0) \neq 0$. So we conclude that $r(z) - r(z_0)$ has only a simple zero in \overline{D} , and by Theorem 2.4, the proof is complete.

Remark. Proposition 2.9 holds if there is $z_0 \in \partial D$ such that $|r(z_0)| \le |r(z)|$ for all $z \in \overline{D} - \{z_0\}$ and $r'(z_0) \ne 0$.

Corollary 2.10 Suppose that \mathcal{B} is a Banach space of analytic functions on G. Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ be a polynomial of degree $n \ge 2$ with nonnegative real coefficients and let $1 \in \partial G$. If there is a positive integer $m \le n$ such that a_m and a_{m-1} are not equal to zero, then $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

Proof. It is easy to see that |p(1)| > |p(z)| for all $z \in \overline{D} - \{1\}$. In fact, if $z = e^{i\theta}$ for some θ , $-\pi < \theta \le \pi$ and |p(z)| = |p(1)|, we have $|a_m e^{im\theta} + a_{m-1}e^{i(m-1)\theta}| = a_m + a_{m-1}$. Thus, $m\theta = (m-1)\theta + 2k\pi$ for some integer k. Hence z = 1, and so by Proposition 2.9, the proof is complete.

Lemma 2.11 Let functions f(z) and g(z) be analytic in the open unit disk D and continuous on ∂D . Suppose that there is a point $e^{i\theta_0} \in \partial D$ such that |f(z)| > |g(z)| for all $z \in \partial D - \{e^{i\theta_0}\}$ and $f(e^{i\theta_0}) = -g(e^{i\theta_0}) \neq 0$. Let also

the functions f(z) and g(z) have the derivatives at the point $z_0 = e^{i\theta_0}$ and the following inequality holds

$$\frac{e^{i\theta_0}(f'(e^{i\theta_0}) + g'(e^{i\theta_0}))}{f(e^{i\theta_0})} < 0.$$

Then N_{f+g} and N_f , the numbers of zeros of the functions f + g and f according to multiplicity in D are equal.

Proof. Set $F(z) = f(e^{i\theta_0}z)$ and $G(z) = g(e^{i\theta_0}z)$. Then $F(1) = -G(1) \neq 0$, for all $z \in \partial D - \{1\}$ we have |F(z)| > |G(z)| and $\frac{F'(1)+G'(1)}{F(1)} < 0$. Now by Corollary 2 in [9], the lemma follows.

Proposition 2.12 Let \mathcal{B} be a Banach space of analytic functions on D, let f and g belong to $H(\overline{D})$ and let f, g and $e^{i\theta_0}$ satisfy in the conditions of Lemma 2.11. If N_f , the number of zeros of f according to multiplicity in D is equal to zero, then $\{M_{f+g}\}' = \{M_z\}'$.

Proof. By Lemma 2.11, we have $N_{f+g} = 0$. Hence by assumption f + g has only a simple zero at $e^{i\theta_0}$, and by Theorem 2.4, the proof is complete.

In the next example we present some applications of the above theorems.

Example 2.13

a) If q(z) is a polynomial which has no zero in \overline{D} , then there is a point $\lambda = e^{i\theta_0}$ such that $|q(\lambda)| \leq |q(z)|$ for all $z \in \overline{D}$. Now let $a = |a|e^{i\theta_0}$ be a nonzero constant, $p(z) = z^n + az^{n-1}$, and $\lambda \in \overline{G}$. It is not hard to see that $|p(z)| < |p(\lambda)|$ for every $z \in \overline{D} - \{\lambda\}$. Hence by the proof of Proposition 2.9, $r(z) - r(z_0)$ has only a simple zero in \overline{D} , and therefore in \overline{G} . Now by Theorem 2.4, we have $\{M_r\}' = \{M_z\}'$, where $r(z) = \frac{p(z)}{q(z)}$. For example $r(z) = \frac{z^7 + iz^6}{(z-2i)^4(z-5i)^2}$ when $G = \{z \in \mathbb{C} : \mathbb{c} < |z| < 1\}$ for some nonnegative constant $0 \leq c < 1$, or G = D is such a rational function.

b) Let $r(z) = \frac{z^2 + z + 4}{z^3 + 2z^2 + 6z + 4}$ be a rational function, if in the remark after Proposition 2.3 we set $\alpha = \beta = 0$, then r(z) - r(0) has only a simple zero in \overline{D} , so $\{M_r\}' = \{M_z\}'$.

c) Let *G* be an open set such that $i \in \partial G$ (recall that after Proposition 2.5, we assume that $G \subset D$). Let $p(z) = z^8 - z^6 + 2iz^3 - 4$ and let q(z) be a polynomial with zeros off \overline{G} without common factor with p(z). If in Proposition 2.12 we set $f(z) = 2iz^3 - 4$, $g(z) = z^8 - z^6$ and $\theta_0 = \frac{\pi}{2}$ we have

$$\frac{e^{i\theta_0}(f'(e^{i\theta_0}) + g'(e^{i\theta_0}))}{f(e^{i\theta_0})} = \frac{-17}{2}.$$

Moreover $|g(z)| \le 2 \le |f(z)|$. In the other hand $|g(z)| = |z^2 - 1| = 2$ if and only if z = i or z = -i. But |f(-i)| = 6, so we have |f(z)| > |g(z)| for all $z \in \partial D - \{e^{i\theta_0}\}$ and $f(e^{i\theta_0}) = -g(e^{i\theta_0}) \ne 0$. Therefore p has only a simple zero at i on \overline{D} . Now if $r(z) = \frac{p(z)}{q(z)}$, then r(z) has only a simple zero at i in \overline{G} , and we have $\{M_r\}' = \{M_z\}'$.

References

- [1] I. N. Baker, J. A. Deddens and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J. 41(1974), 739-745.
- [2] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239(1978), 1-31.
- [3] Ž. Čučkovic, Commutants of Toeplitz operators on the Bergman space, Pacific J. Math. 162(1994), 277-285.
- [4] Ž. Čučkovic and Dashan Fan, Commutant of Toeplitz operators on ball and annulus, Glasgow Math. J. 37(1995) 303-309.
- [5] J. A. Deddens and T. K. Wong, The commutant of analytic toeplitz operators, Trans. Amer. Math. Soc. 184(1973), 261-273.
- [6] B. Khani, On the commutant of multiplication operators with analytic polynomial symbols, Bull. Korean Math. soc. 44 (2007)No. 4 pp.683-689.
- [7] B. Khani Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, Proc. Amer. Math. Soc. 129(2001), 2379-2383.
- [8] _____, On the commutant of multiplication operators with analytic symbols, Rocky Mountain J. Math. 33(2003), 1049-1056.
- [9] V. Klimenok, On the modification of Rouche's Theorem for the Queueing theory problems, Queueing Systems 38(2001), 431-434.
- [10] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616.
- [11] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788.
- [12] J. E. Thomson, The commutant of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54(1976), 165-169.
- [13] _____, the commutants of a class of analytic Toeplitz operators, Amer. J. Math. 99(1977), 522-529.
- [14] K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. 62(2000), 553-568.
- [15] _____, Irreducible multiplication operators on spaces of analytic functions, J. Operator Theory 51(2004), 377-385.

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, IRAN. E-mail: bkhani@shirazu.ac.ir, shaabani@shirazu.ac.ir