On the Commutant of Multiplication Operators with Analytic Rational Symbol

B. Khani Robati

M. Haji Shaabani

Abstract

Let \mathcal{B} be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let φ be an analytic multiplier of \mathcal{B} we denote by M_{φ} and $\left\{M_{\varphi}\right\}^{\prime}$ respectively, the operator of multiplication by φ and the commutant of M_{φ}. In this article under certain conditions on φ and G we characterize the commutant of M_{φ}. In particular, when φ is a rational function with poles off \bar{G}, under certain conditions on φ we show that $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$. We extend some results obtained in [4] and [6] about the commutant of the operator M_{φ}.

1 Introduction

Let G be a bounded domain in the complex plane. Let \mathcal{B} be a Banach space consisting of functions analytic on G such that $1 \in \mathcal{B}, z \mathcal{B} \subset \mathcal{B}$ and for every $\lambda \in G$ the linear functional e_{λ} of evaluation at λ is bounded on \mathcal{B}. Also assume that $\operatorname{ran}\left(M_{z}-\lambda\right)=\operatorname{ker}\left(e_{\lambda}\right)$ for every $\lambda \in G$ and if $f \in \mathcal{B}$ and $|f(\lambda)|>c>0$ for every $\lambda \in G$, then $\frac{1}{f}$ is a multiplier of \mathcal{B}.
In what follows G denotes a bounded domain in the complex plane, and by a Banach space of analytic functions \mathcal{B} on G, we mean, one satisfying the above conditions.

Some examples of such spaces are as follows:

[^0]1) The algebra $A(G)$ which is the algebra of all continuous functions on the closure of G that are analytic on G.
2) The Bergman space of analytic functions defined on $G, L_{a}^{P}(G)$ for $1 \leq p \leq$ ∞.
3) The spaces D_{α} of all functions $f(z)=\sum \hat{f}(n) z^{n}$, holomorphic in the complex unit disc D, for which $\|f\|^{2}=\sum(n+1)^{\alpha}|\hat{f}(n)|^{2}<\infty$ for every $\alpha \geq 1$ or $\alpha \leq 0$.
4) The analytic Lipschitz spaces $\operatorname{Lip}(\alpha, \bar{G})$ for $0<\alpha<1$, i.e., the space of all analytic functions defined on G that satisfy a Lipschitz condition of order α.
5) The subspace $\operatorname{lip}(\alpha, \bar{G})$ of $\operatorname{Lip}(\alpha, \bar{G})$, consisting of functions f in $\operatorname{Lip}(\alpha, \bar{G})$ for which

$$
\lim _{z \rightarrow w} \frac{|f(z)-f(w)|}{|z-w|^{\alpha}}=0
$$

6) The classical Hardy spaces H^{p} for $1 \leq p \leq \infty$.

Let E be a subset of \mathbf{C}. We say that f is in $H(E)$ if there is an open set U that contains E such that f is analytic in U. We denote by $B(a ; r)$ the set $\{z \in \mathbb{C}$: $|z-a|<r\}$.

A complex valued function φ defined on G is called a multiplier of \mathcal{B} if $\varphi \mathcal{B} \subset$ \mathcal{B} and the collection of all these multipliers is denoted by $\mathcal{M}(\mathcal{B})$. As it is shown in [11] each multiplier φ is bounded on G. Given a multiplier φ, we call M_{φ}, defined by $M_{\varphi}(f)=\phi f$ for every function $f \in \mathcal{B}$, the operator of multiplication by φ. The continuity of M_{φ} follows from the Closed Graph Theorem. We denote $\left\{M_{\varphi}\right\}^{\prime}$ to be the set of all bounded linear operators X on \mathcal{B} such that $M_{\varphi} X=X M_{\varphi}$, i.e., the commutant of M_{φ}. It is easy to see that $\left\{M_{z}\right\}^{\prime}=\left\{M_{\varphi}: \varphi \in \mathcal{M}(\mathcal{B})\right\}$. Two good sources on this topics are [10] and [11].

Let φ be an analytic function in a neighborhood of \bar{G} and $\lambda \in \bar{G}$. If φ has a zero of order one at λ and $\varphi(z) \neq 0$ for all $z \neq \lambda$ in \bar{G}, we say that φ has only a simple zero in \bar{G}. Also for $\lambda \in G$ if $\varphi \in A(G)$ has a zero of order one at λ and $\varphi(z) \neq 0$ for all $z \neq \lambda$ in \bar{G}, then we say that φ has only a simple zero in \bar{G}.

Recall that a bounded linear operator T on a Banach space is called Fredholm, if it is invertible modulo of the compact operators. It is known that T is Fredholm if its range is closed and both $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are finite dimensional. If T is a Fredholm operator, we define the index of T as

$$
\operatorname{ind}(T)=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*} .
$$

The commutant of multiplication operators on spaces of analytic functions on D, were investigated by many authors for certain multiplication operators. See for example, $[1-8,10-15]$. only a few works has been done in studying commutants of multiplications operators on the spaces of analytic functions on bounded domains different from the unit disc. See for examples [4], [6], and [8].

The aim of this article is to investigate the commutant of the operator M_{φ} for certain function $\varphi \in \mathcal{M}(\mathcal{B})$. In particular, when φ is a polynomial or a rational function with poles off \bar{G}, under certain conditions on the its coefficients, we show that $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$. In [4] Ž. Čučković and Dashan Fan have shown that if $G=\{z \in \mathbb{C}: r<|z|<1\}, \mathcal{B}=L_{a}^{2}(G)$ and $p(z)=z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where
$a_{i} \geq 0$ and $p(z)-p(1)$ has n distinct zeros, then $\left\{M_{p}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$. As a result, Theorem 2.4 and Corollary 2.6 extend the result obtained in [4] to Banach spaces of analytic functions on various domains G and certain polynomial or rational symbols. Also we extend the results obtained in [6]. Moreover in the both papers the authors used the condition that the zeros of the function p outside \bar{G} are distinct which we omit this condition.

2 The main results

We begin this section with a theorem about the commutant of the multiplication operator M_{φ}. In fact we show that if for some $\lambda \in G$ the operator $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator such that its index equal to -1 , then $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Theorem 2.1 Let \mathcal{B} be a Banach space of analytic functions on G, and let $\varphi \in \mathcal{M}(\mathcal{B})$. If there is a $\lambda \in G$ such that $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator with $\operatorname{ind}\left(M_{\varphi-\varphi(\lambda)}\right)=-1$, then $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Proof. Let $T \in\left\{M_{\varphi}\right\}^{\prime}$. It is easy to see that $T^{*}\left(e_{\lambda}\right)$ and e_{λ} are in $\operatorname{ker}\left(M_{\varphi-\varphi(\lambda)}\right)^{*}$. Since $M_{\varphi-\varphi(\lambda)}$ is one to one and by assumption ind $\left(M_{\varphi-\varphi(\lambda)}\right)=-1$, we conclude that $\operatorname{dim} \operatorname{ker}\left(M_{\varphi-\varphi(\lambda)}\right)^{*}=1$. Therefore $\left.T^{*}\left(e_{\lambda}\right)\right)=\psi(\lambda) e_{\lambda}$ for some constant $\psi(\lambda)$. Hence, we have

$$
T(f)(\lambda)=<T(f), e_{\lambda}>=<f, T^{*}\left(e_{\lambda}\right)>=\psi(\lambda)<f, e_{\lambda}>=\psi(\lambda) f(\lambda)
$$

for each $f \in \mathcal{B}$. In particular $\psi(\lambda)=T(1)(\lambda)$. Since $M_{\varphi-\varphi(\lambda)}$ is Fredholm, there is a positive number ϵ such that if U is a bounded linear operator on \mathcal{B} and $\|U\|<$ ϵ, then $M_{\varphi-\varphi(\lambda)}+U$ is Fredholm and ind $\left(M_{\varphi-\varphi(\lambda)}\right)=\operatorname{ind}\left(M_{\varphi-\varphi(\lambda)}+U\right)$. Now by continuity of $\varphi-\varphi(\lambda)$ at λ, there is a positive number δ such that for each $t \in G$ with $|t-\lambda|<\delta$, we have $|\varphi(t)-\varphi(\lambda)|<\epsilon$. So the operator $M_{\varphi-\varphi(t)}$ is Fredholm and ind $\left(M_{\varphi-\varphi(t)}\right)=-1$. Hence $T(f)(t)=T(1)(t) f(t)$ for each $f \in \mathcal{B}$ and for every $t \in B(\lambda ; \delta) \cap G$. Set $\psi=T(1)$. Since two analytic functions $T(f)$ and ψf are equal on $B(\lambda ; \delta) \cap G$ and G is connected, we have $T(f)=\psi f$ for all $f \in \mathcal{B}$, which proves the theorem.

Theorem 2.2 Let \mathcal{B} be a Banach space of analytic functions on G, let $\varphi \in$ $\mathcal{M}(\mathcal{B}) \cap A(G)$, and let $\lambda \in G$. If $\varphi(z)-\varphi(\lambda)$ has only a simple zero in \bar{G}, then $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator with $\operatorname{ind}\left(M_{\varphi-\varphi(\lambda)}\right)=-1$, so by Theorem 2.1, $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$.

Proof. First we show that $\operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right)=\operatorname{kere}_{\lambda}$. It is easy to see that $\operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right) \subset \operatorname{kere}_{\lambda}$.

To show the converse, since $\operatorname{ran}\left(M_{z}-\lambda\right)=\operatorname{kere}_{\lambda}$, we have $(\varphi-\varphi(\lambda))(z)=$ $(z-\lambda) h(z)$ for some $h \in \mathcal{B}$. Because $\varphi \in A(G), h$ has a continuous extension on \bar{G} which we denote it again with h. By assumption $h(z) \neq 0$ for every $z \in \bar{G}$. Therefore $\frac{1}{h}$ is in $\mathcal{M}(\mathcal{B})$ and we have $z-\lambda=\frac{\varphi(z)-\varphi(\lambda)}{h(z)}$. Now if $f \in \operatorname{kere}_{\lambda}$, then
$f=(z-\lambda) g$ for some function $g \in \mathcal{B}$. Hence

$$
f=\frac{\varphi-\varphi(\lambda)}{h} g=(\varphi-\varphi(\lambda)) \frac{g}{h}
$$

Since $g \in \mathcal{B}$ and $\frac{1}{h} \in \mathcal{M}(\mathcal{B})$, we have $\frac{g}{h} \in \mathcal{B}$ and $\operatorname{kere}_{\lambda} \subset \operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right)$.
From $\operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right)=\operatorname{kere}_{\lambda}$, we conclude that $\operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right)$ is closed and $\operatorname{dim} \operatorname{ker}\left(M_{\varphi-\varphi(\lambda)}\right)^{*}=1$. On the other hand $M_{\varphi-\varphi(\lambda)}$ is one to one, therefore $\operatorname{dim} \operatorname{ker}\left(M_{\varphi-\varphi(\lambda)}\right)=0$. Hence $M_{\varphi-\varphi(\lambda)}$ is a Fredholm operator and its index equal to -1 .

From now on we assume that $r(z)=p(z) / q(z)$ is a rational function such that $p(z)$ and $q(z)$ are polynomials without common factors. Also the poles of $r(z)$ which are exactly the zeros of $q(z)$ are off \bar{G}.

Proposition 2.3 Let \mathcal{B} be a Banach space of analytic functions on G, where G is the interior of \bar{G}, and let $r(z)=p(z) / q(z)$ be a rational function with poles off \bar{G}. If there are α and β in G such that $p(z)-p(\alpha)$ has only a simple zero in $\bar{G}, r(\beta) \neq 0$, and $|r(\beta) q(z)-p(\alpha)|<|p(z)-p(\alpha)|$ for each $z \in \partial G$, then $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Proof. By assumptions, we have

$$
r(z)-r(\beta)=\frac{p(z) q(\beta)-q(z) p(\beta)}{q(z) q(\beta)}=\frac{q(\beta)(p(z)-p(\alpha)-r(\beta) q(z)+p(\alpha))}{q(z) q(\beta)} .
$$

Thus, $r(z)-r(\beta)=0$ if and only if $(p(z)-p(\alpha)-r(\beta) q(z)+p(\alpha)=0$. Using general form of Rouche's Theorem we conclude that $r(z)-r(\beta)$ has only a simple zero at β. So by Theorem 2.2, the proof is complete.

Remark. The above proposition holds if there are α and β in G such that $q(z)-$ $q(\alpha)$ has only a simple zero in \bar{G} and $r(\beta) \neq 0$, moreover, $|p(z)-r(\beta) q(\alpha)|<$ $|r(\beta)(q(z)-q(\alpha))|$ for each $z \in \partial G$.

In Theorem 2.2, λ is in G and $\varphi \in \mathcal{M}(\mathcal{B}) \cap A(G)$. The same proof does not work for $\lambda \in \bar{G}$. In the next theorem we obtain a similar result, whenever $\lambda \in \bar{G}$ and $\varphi \in H(\bar{G}) \cap \mathcal{M}(\mathcal{B})$.

Theorem 2.4 Let $\varphi \in H(\bar{G}) \cap \mathcal{M}(\mathcal{B})$, let $\lambda \in \bar{G}$ and let $\varphi(z)-\varphi(\lambda)$ has only a simple zero in \bar{G}. Then $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$.

Proof. Let Ω be an open set that contains \bar{G} such that $\varphi \in H(\Omega)$ and let g to be defined in $\Omega \times \Omega$ by

$$
g(z, w)= \begin{cases}\frac{\varphi(z)-\varphi(w)}{z-w} & z \neq w \\ \varphi^{\prime}(z) & z=w\end{cases}
$$

It is obvious that g is continuous in $\Omega \times \Omega$ and so g is uniformly continuous in $\bar{G} \times \bar{G}$. Since by assumption $g(z, \lambda) \neq 0$ for each $z \in \bar{G}$ and $g(z, \lambda)$ is continuous as a function of z in \bar{G}, there is some $\varepsilon \geq 0$ such that $|g(z, \lambda)|>\varepsilon$ for each $z \in \bar{G}$. Now by uniform continuity of g in $\bar{G} \times \bar{G}$ there is an open set $U \subset G$
such that for each $w \in U$ and for all $z \in \bar{G}$, we have $|g(z, w)|>\frac{\varepsilon}{2}$. Therefore $\varphi(z)-\varphi(w)$ has only a simple zero in \bar{G} for each $w \in U$. Now by Theorem 2.2, we have $\left\{M_{\varphi}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$.

Corollary 2.5 Let \mathcal{B} be a Banach space of analytic functions on G. Suppose that $\varphi \in H(\bar{G})$ and for some λ in \bar{G} the function $\varphi(z)-\varphi(\lambda)$ has only a simple zero in \bar{G}. If $\psi \in H(\bar{G})$ is a univalent map from \bar{G} onto \bar{G}, and $\varphi \circ \psi \in \mathcal{M}(\mathcal{B})$, then $\left\{M_{\varphi \circ \psi}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

In the next corollary we extend the result obtained in Theorem 4 in [4] to Banach spaces of analytic functions, to more general domains, Also we show that it is not necessary that all of the n zeros of $p(z)-p(1)$ are distinct .

Corollary 2.6 Let \mathcal{B} be a Banach space of analytic functions on G, let $G \subset D$ be such that $1 \in \bar{G}$ and let $p(z)=z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where $a_{i} \geq 0$ for $i=2, \cdots, n$. Then $\left\{M_{p}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Proof. It is easy to see that $p(1)>|p(z)|$ for all $z \in \bar{G}-\{1\}$, since $p^{\prime}(1) \neq 0$ the function $p(z)-p(1)$ has only a simple zero in \bar{G}, and by Theorem 2.4 the proof is complete.

Let $r(z)=p(z) / q(z)$ be a rational function with poles off \bar{G}, if $n=\max \{\operatorname{deg}(p)$, $\operatorname{deg}(q)\}=1$, then r is univalent and it is well known that $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$. Therefore in the reminder of this section we assume that $n=\max \{\operatorname{deg}(p), \operatorname{deg}(q)\} \geq 2$. Let $\lambda \in \bar{G}$. If $r(z)-r(\lambda)$ has $n-1$ zeros outside of \bar{G}, then $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$. In particular if $p(z)$ has only a simple zero at a point $\lambda \in \bar{G}$, then $r(z)$ has only a simple zero at λ and therefore, $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

From now on, we assume that $G \subset D$.
Corollary 2.7 Let \mathcal{B} be a Banach space of analytic functions on G. Suppose that $n \geq 2$ is an integer, $a \neq 0$ is a complex number with $|a|>1$ and $p(z)=z^{n}+a z$. If $r(z)=\frac{p(z)}{q(z)}$ is a rational function with poles off \bar{G} and $0 \in \bar{G}$, then $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Proof. Let $\lambda=0$ it is easy to see that $r(z)-r(\lambda)=r(z)$ has $n-1$ distinct zeros outside of \bar{D}. Hence by Theorem 2.4, we have $\left\{M_{r}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$.

In the next theorem we extend some results obtained in [6], in fact we omit the condition that the zeros of the polynomials outside \bar{G} must be distinct.

Theorem 2.8 Let \mathcal{B} be a Banach space of analytic functions on G and let $p=$ $a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a polynomial of degree $n \geq 2$ such that $a_{1} \neq 0$. If each of the following conditions holds, then $\left\{M_{p}\right\}^{\prime}=\left\{M_{\Psi}: \quad \Psi \in \mathcal{M}(\mathcal{B})\right\}$.
(a) For some real constant θ_{0}, we have $\operatorname{Arg} a_{i}=\theta_{0}$ for $a_{i} \neq 0$ with $i \geq 1$ and $1 \in \partial G$.
(b) For each $a_{i} \neq 0$ with $i \geq 1, \operatorname{Arg} a_{i}=\theta_{0}$ for i odd and $\operatorname{Arg} a_{i}=\theta_{0}+\pi$ or $\operatorname{Arg} a_{i}=\theta_{0}-\pi$ for i even, and $-1 \in \bar{G}$.
(c) There is a $z_{0} \in \partial D \cap \partial G$ such that all nonzero terms $a_{i} z_{0}{ }^{i}$ for $i \geq 1$ are positive or all are negative.

Proof. By assumption $\left|p(1)-a_{0}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|$. Therefore $p(z)-p(1)=0$ implies that

$$
\left|a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| .
$$

For $z \in D$, we have

$$
\left|a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}\right|<\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

so $p(z)-p(1)$ has no zero in D. On the other hand if $w \in \partial D$ is a zero of $p(z)-$ $p(1)$, then

$$
\begin{aligned}
\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| & =\left|a_{1} w\right|+\left|a_{2} w^{2}\right|+\cdots+\left|a_{n} w^{n}\right| \\
& =\left|a_{1} w+a_{2} w^{2}+\cdots+a_{n} w^{n}\right|
\end{aligned}
$$

Hence $\operatorname{Arg}\left(a_{1} w+a_{2} w^{2}+\cdots+a_{n} w^{n}\right)=\operatorname{Arg}\left(a_{1} w\right)$. Since $p(w)-a_{0}=p(1)-$ $a_{0}=e^{i \theta_{0}}\left(\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|\right)$, we have $\operatorname{Arg}\left(a_{1} w+a_{2} w^{2}+\cdots+a_{n} w^{n}\right)=$ $\operatorname{Arg}\left(a_{1} w\right)=\theta_{0}$, which implies that $w=1$. It is easy to see that $p^{\prime}(1) \neq 0$, so the polynomial $p(z)-p(1)$ has only a simple zero at 1 , and by Theorem 2.4, (a) holds.

Using similar argument as used in the proof of part (a) we conclude (b) and (c).

Proposition 2.9 Let \mathcal{B} be a Banach space of analytic functions on D, let p be a polynomial of degree $n \geq 2$ and let $r(z)=\frac{p(z)}{q(z)}$ be a rational function. If there is $z_{0} \in \partial D$ such that $\left|r\left(z_{0}\right)\right|>|r(z)|$ for all $z \in \bar{D}-\left\{z_{0}\right\}$, then $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime} .$.

Proof. By assumptions $\left|r\left(z_{0}\right)\right|>|r(z)|$ for all $z \in \bar{D}-\left\{z_{0}\right\}$, which implies that $r(z)-r\left(z_{0}\right)$ has no zero in $\bar{D}-\left\{z_{0}\right\}$ and $r^{\prime}\left(z_{0}\right) \neq 0$. So we conclude that $r(z)-r\left(z_{0}\right)$ has only a simple zero in \bar{D}, and by Theorem 2.4, the proof is complete.

Remark. Proposition 2.9 holds if there is $z_{0} \in \partial D$ such that $\left|r\left(z_{0}\right)\right| \leq|r(z)|$ for all $z \in \bar{D}-\left\{z_{0}\right\}$ and $r^{\prime}\left(z_{0}\right) \neq 0$.

Corollary 2.10 Suppose that \mathcal{B} is a Banach space of analytic functions on G. Let $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial of degree $n \geq 2$ with nonnegative real coefficients and let $1 \in \partial G$. If there is a positive integer $m \leq n$ such that a_{m} and a_{m-1} are not equal to zero, then $\left\{M_{p}\right\}^{\prime}=\left\{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\right\}$.

Proof. It is easy to see that $|p(1)|>|p(z)|$ for all $z \in \bar{D}-\{1\}$. In fact, if $z=e^{i \theta}$ for some $\theta,-\pi<\theta \leq \pi$ and $|p(z)|=|p(1)|$, we have $\left|a_{m} e^{i m \theta}+a_{m-1} e^{i(m-1) \theta}\right|=$ $a_{m}+a_{m-1}$. Thus, $m \theta=(m-1) \theta+2 k \pi$ for some integer k. Hence $z=1$, and so by Proposition 2.9, the proof is complete.

Lemma 2.11 Let functions $f(z)$ and $g(z)$ be analytic in the open unit disk D and continuous on ∂D. Suppose that there is a point $e^{i \theta_{0}} \in \partial D$ such that $|f(z)|>|g(z)|$ for all $z \in \partial D-\left\{e^{i \theta_{0}}\right\}$ and $f\left(e^{i \theta_{0}}\right)=-g\left(e^{\left.i \theta_{0}\right)} \neq 0\right.$. Let also
the functions $f(z)$ and $g(z)$ have the derivatives at the point $z_{0}=e^{i \theta_{0}}$ and the following inequality holds

$$
\frac{e^{i \theta_{0}}\left(f^{\prime}\left(e^{i \theta_{0}}\right)+g^{\prime}\left(e^{i \theta_{0}}\right)\right)}{f\left(e^{i \theta_{0}}\right)}<0
$$

Then N_{f+g} and N_{f}, the numbers of zeros of the functions $f+g$ and f according to multiplicity in D are equal.

Proof. Set $F(z)=f\left(e^{i \theta_{0}} z\right)$ and $G(z)=g\left(e^{i \theta_{0}} z\right)$. Then $F(1)=-G(1) \neq 0$, for all $z \in \partial D-\{1\}$ we have $|F(z)|>|G(z)|$ and $\frac{F^{\prime}(1)+G^{\prime}(1)}{F(1)}<0$. Now by Corollary 2 in [9], the lemma follows.

Proposition 2.12 Let \mathcal{B} be a Banach space of analytic functions on D, let f and g belong to $H(\bar{D})$ and let f, g and $e^{i \theta_{0}}$ satisfy in the conditions of Lemma 2.11. If N_{f}, the number of zeros of f according to multiplicity in D is equal to zero, then $\left\{M_{f+g}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

Proof. By Lemma 2.11, we have $N_{f+g}=0$. Hence by assumption $f+g$ has only a simple zero at $e^{i \theta_{0}}$, and by Theorem 2.4, the proof is complete.

In the next example we present some applications of the above theorems.

Example 2.13

a) If $q(z)$ is a polynomial which has no zero in \bar{D}, then there is a point $\lambda=e^{i \theta_{0}}$ such that $|q(\lambda)| \leq|q(z)|$ for all $z \in \bar{D}$. Now let $a=|a| e^{i \theta_{0}}$ be a nonzero constant, $p(z)=z^{n}+a z^{n-1}$, and $\lambda \in \bar{G}$. It is not hard to see that $|p(z)|<|p(\lambda)|$ for every $z \in \bar{D}-\{\lambda\}$. Hence by the proof of Proposition 2.9, $r(z)-r\left(z_{0}\right)$ has only a simple zero in \bar{D}, and therefore in \bar{G}. Now by Theorem 2.4, we have $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$, where $r(z)=\frac{p(z)}{q(z)}$. For example $r(z)=\frac{z^{7}+i z^{6}}{(z-2 i)^{4}(z-5 i)^{2}}$ when $G=\{z \in \mathbf{C}: \mathbf{c}<$ $|\mathbf{z}|<\mathbf{1}\}$ for some nonnegative constant $0 \leq c<1$, or $G=D$ is such a rational function.
b) Let $r(z)=\frac{z^{2}+z+4}{z^{3}+2 z^{2}+6 z+4}$ be a rational function, if in the remark after Proposition 2.3 we set $\alpha=\beta=0$, then $r(z)-r(0)$ has only a simple zero in \bar{D}, so $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.
c) Let G be an open set such that $i \in \partial G$ (recall that after Proposition 2.5, we assume that $G \subset D$). Let $p(z)=z^{8}-z^{6}+2 i z^{3}-4$ and let $q(z)$ be a polynomial with zeros off \bar{G} without common factor with $p(z)$. If in Proposition 2.12 we set $f(z)=2 i z^{3}-4, g(z)=z^{8}-z^{6}$ and $\theta_{0}=\frac{\pi}{2}$ we have

$$
\frac{e^{i \theta_{0}}\left(f^{\prime}\left(e^{i \theta_{0}}\right)+g^{\prime}\left(e^{i \theta_{0}}\right)\right)}{f\left(e^{i \theta_{0}}\right)}=\frac{-17}{2} .
$$

Moreover $|g(z)| \leq 2 \leq|f(z)|$. In the other hand $|g(z)|=\left|z^{2}-1\right|=2$ if and only if $z=i$ or $z=-i$. But $|f(-i)|=6$, so we have $|f(z)|>|g(z)|$ for all $z \in \partial D-\left\{e^{i \theta_{0}}\right\}$ and $f\left(e^{i \theta_{0}}\right)=-g\left(e^{i \theta_{0}}\right) \neq 0$. Therefore p has only a simple zero at i on \bar{D}. Now if $r(z)=\frac{p(z)}{q(z)}$, then $r(z)$ has only a simple zero at i in \bar{G}, and we have $\left\{M_{r}\right\}^{\prime}=\left\{M_{z}\right\}^{\prime}$.

References

[1] I. N. Baker, J. A. Deddens and J. L. Ullman, A theorem on entire functions with applications to Toeplitz operators, Duke Math. J. 41(1974), 739-745.
[2] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239(1978), 1-31.
[3] Ž. Čučkovic, Commutants of Toeplitz operators on the Bergman space, Pacific J. Math. 162(1994), 277-285.
[4] Ž. Čučkovic and Dashan Fan, Commutant of Toeplitz operators on ball and annulus, Glasgow Math. J. 37(1995) 303-309.
[5] J. A. Deddens and T. K. Wong, The commutant of analytic toeplitz operators, Trans. Amer. Math. Soc. 184(1973), 261-273.
[6] B. Khani, On the commutant of multiplication operators with analytic polynomial symbols, Bull. Korean Math. soc. 44 (2007)No. 4 pp.683-689.
[7] B. Khani Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, Proc. Amer. Math. Soc. 129(2001), 23792383.
[8] \qquad , On the commutant of multiplication operators with analytic symbols, Rocky Mountain J. Math. 33(2003), 1049-1056.
[9] V. Klimenok, On the modification of Rouche's Theorem for the Queueing theory problems, Queueing Systems 38(2001), 431-434.
[10] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616.
[11] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788.
[12] J. E. Thomson, The commutant of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54(1976), 165-169.
[13] \qquad , the commutants of a class of analytic Toeplitz operators, Amer. J. Math. 99(1977), 522-529.
[14] K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. 62(2000), 553-568.
[15] \qquad , Irreducible multiplication operators on spaces of analytic functions, J. Operator Theory 51(2004), 377-385.

Department of Mathematics,College of Sciences, Shiraz University, Shiraz 71454, IRAN.
E-mail: bkhani@shirazu.ac.ir, shaabani@shirazu.ac.ir

[^0]: Received by the editors February 2011.
 Communicated by F. Brakcx.
 2000 Mathematics Subject Classification : Primary 47B35; Secondary 47B3.
 Key words and phrases : commutant, multiplication operators, Banach space of analytic functions, rational function, only a simple zero.

