On semi-typically real functions which are generated by a fixed semi-typically real function

Katarzyna Trąbka-Więcław

Abstract

Let \mathcal{A} denote the family of all functions that are analytic in the unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0. In this paper, we investigate the class \mathcal{T}_G defined as follows

$$\mathcal{T}_G := \left\{ \sqrt{F(z)G(z)} : F \in \mathcal{T}
ight\}, \quad G \in \mathcal{T},$$

where \mathcal{T} denotes the class of all semi-typically real functions i.e. $\mathcal{T} := \{F \in \mathcal{A} : F(z) > 0 \iff z \in (0,1)\}$. We find the sets $\bigcup_{G \in \mathcal{T}} \mathcal{T}_G$ and $\bigcap_{G \in \mathcal{T}} \mathcal{T}_G$, the set of all extreme points of \mathcal{T}_G and the set of all support points of \mathcal{T}_G . Moreover, for the fixed *G*, we determine the radii of local univalence, of starlikeness and of univalence of \mathcal{T}_G .

1 Some properties of the class T.

Let \mathcal{A} denote the family of all functions that are analytic in the unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0. Let A be a subclass of \mathcal{A} and let $A^{(2)} := \{f \in A : f(z) = -f(-z) \text{ for } z \in \Delta\}.$

Let T denote the well-known class of all typically real functions, i.e. T is the subclass of A consisting of functions f such that $\text{Im} z \text{ Im} f(z) \ge 0, z \in \Delta$. From the

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 81–90

Received by the editors January 2011.

Communicated by F. Brackx.

²⁰⁰⁰ Mathematics Subject Classification : 30C45, 30C55.

Key words and phrases : Typically real functions, set of local univalence, radius of local univalence, radius of starlikeness, radius of univalence, extreme points, support points.

definition we conclude that $T = \{f \in A : f(z) \in \mathbb{R} \iff z \in (-1,1)\}$. Robertson in [7] gave the explicit relation between a function $f \in T$ and a probability measure μ defined on [-1, 1]. Namely

(1)
$$f \in \mathbf{T} \iff f(z) = \int_{-1}^{1} k_t(z) d\mu(t)$$
, where $k_t(z) = \frac{z}{1 - 2tz + z^2}$.

The class of semi-typically real functions was considered in [5] and was defined as follows

$$\mathcal{T} := \{ F \in \mathcal{A} : F(z) > 0 \iff z \in (0,1) \}.$$

For simplicity, instead of *h* or $z \mapsto h(z)$ we will use h(z). We know that for $F \in \mathcal{T}$ we have $\frac{F(z)}{z} \neq 0$. Thus for $F, G \in \mathcal{T}$ let us define

$$F^{\varepsilon}(z) \ G^{1-\varepsilon}(z) := z \left(\frac{F(z)}{z}\right)^{\varepsilon} \left(\frac{G(z)}{z}\right)^{1-\varepsilon}, \ \varepsilon \in [0,1], \ 1^{\varepsilon} = 1.$$

Let us recall some properties of the class T as the following lemma (see [5]).

Lemma 1.

(2)
$$F \in \mathcal{T} \iff \sqrt{F(z^2)} \in \mathbf{T}^{(2)}$$

(3)
$$F \in \mathcal{T} \iff \frac{\sqrt{z F(z)}}{1+z} \in \mathbb{T}.$$

P. Todorov in [9] gave the estimation for the operator $\operatorname{Re} \frac{zf'(z)}{f(z)}$ for $f \in T$. Namely

Theorem 1. [P.G. Todorov] For each typically real function we have:

(i)

$$\operatorname{Re}\frac{zf'(z)}{f(z)} \ge \frac{1-6r^2+r^4}{1-r^4}, \quad for \quad 2-\sqrt{3} \le r = |z| < 1$$

with equality for the function $f(z) = \frac{z(1+z^2)}{(1-z^2)^2} = \frac{1}{2}k_1(z) + \frac{1}{2}k_{-1}(z)$ at the points $z = \pm ir$.

(ii)

$$\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \frac{1-r}{1+r}, \quad for \quad 0 \le r = |z| \le 2 - \sqrt{3}$$

with equality for the functions $k_1(z) = \frac{z}{(1-z)^2}$ and $k_{-1}(z) = \frac{z}{(1+z)^2}$ at the points -r and r, respectively.

Now let us prove that for odd typically real functions the following estimation is satisfied.

Theorem 2. For $f \in T^{(2)}$ we have

$$\operatorname{Re}rac{z\,f'(z)}{f(z)} \geq rac{1-6r^2+r^4}{1-r^4}$$
 for $z \in \Delta$, $r = |z|$

with equality for the function $f(z) = \frac{z(1+z^2)}{(1-z^2)^2}$ at the points $z = \pm ir$.

Proof. For $r \ge 2 - \sqrt{3}$ the above estimation is an obvious corollary from the Todorov Theorem. So let us prove it for $r < 2 - \sqrt{3}$.

Suppose that $f \in T^{(2)}$. Then $f(z) = \frac{(1+z^2)}{z} h(z^2)$ for some $h \in T$ (see [6]). Thus

$$\frac{zf'(z)}{f(z)} = z\left(\frac{2z}{1+z^2} + \frac{2zh'(z^2)}{h(z^2)} - \frac{1}{z}\right) = -\frac{1-z^2}{1+z^2} + \frac{2z^2h'(z^2)}{h(z^2)}.$$

We have $|z|^2 < 2 - \sqrt{3}$ and $\left|\frac{1-z^2}{1+z^2}\right| \le \frac{1+r^2}{1-r^2}$. From these and the Todorov Theorem we get

$$\operatorname{Re} \frac{z f'(z)}{f(z)} = -\operatorname{Re} \frac{1 - z^2}{1 + z^2} + 2\operatorname{Re} \frac{z^2 h'(z^2)}{h(z^2)}$$
$$\geq -\frac{1 + r^2}{1 - r^2} + 2\frac{1 - r^2}{1 + r^2} = \frac{1 - 6r^2 + r^4}{1 - r^4}$$

and the proof is complete.

From (2) we have $F \in \mathcal{T} \iff F(z^2) = f^2(z), f \in T^{(2)}$. This relation and Theorem 2 give us

$$\operatorname{Re} \frac{z^2 F'(z^2)}{F(z^2)} = \operatorname{Re} \frac{z f'(z)}{f(z)} \ge \frac{1 - 6r^2 + r^4}{1 - r^4}, \quad r = |z|.$$

Hence, $\operatorname{Re} \frac{z F'(z)}{F(z)} \ge \frac{1-6r+r^2}{1-r^2}$ and we get the following corollary.

Corollary 1. *For* $F \in \mathcal{T}$ *we have*

$$\operatorname{Re}rac{z\,F'(z)}{F(z)}\geq rac{1-6r+r^2}{1-r^2}$$
 for $z\in\Delta,\ r=|z|$

with equality for the function $F(z) = \frac{z(1+z)^2}{(1-z)^4}$ at the points z = -r.

In this paper, we determine the radii of starlikeness r_{ST} , of local univalence r_{LU} and of univalence r_S in certain classes of \mathcal{T} . Let us recall some definitions. Hereafter, let A be a given subclass of \mathcal{A} .

Definition 1. We say that $r_{ST}(A)$ is the radius of starlikeness in the class A, if it is the maximum of the numbers $r \in (0, 1]$, such that the inequality $\operatorname{Re} \frac{z f'(z)}{f(z)} > 0$ holds in the disk |z| < r for each function $f \in A$.

Definition 2. We say that $r_S(A)$ ($r_{LU}(A)$) is called the radius of univalence (local univalence) in the class A, if it is the maximum of numbers $r \in (0, 1]$, such that every function $f \in A$ is univalent (local univalent) in |z| < r.

In the class A the following inequalities are satisfied

(4)
$$r_{ST}(A) \le r_S(A) \le r_{LU}(A).$$

Definition 3. A set $G \subset \Delta$ is called the set of local univalence in the class A, if $\forall_{f \in A} \forall_{z \in G} f'(z) \neq 0$ and $\forall_{z \in \Delta \setminus G} \exists_{f \in A} f'(z) = 0$. We denote the set of local univalence in the class A by $G_{LU}(A)$.

Definition 4. The class A is convex, if $\forall_{f_1,f_2 \in A} \forall_{\epsilon \in [0,1]} \epsilon f_1 + (1-\epsilon)f_2 \in A$.

2 Some properties of the class T_G .

For typically real functions f, g and $\varepsilon \in [0, 1]$ we know that $f^{\varepsilon}g^{1-\varepsilon} \in T$. Analogously for functions $f, g \in T^{(2)}$ and $\varepsilon \in [0, 1]$ we have $f^{\varepsilon}g^{1-\varepsilon} \in T^{(2)}$. Because $\mathcal{T} = \left\{F : \sqrt{F(z^2)} \in T^{(2)}\right\}$, thus for semi-typically real functions F, G we get $F^{\varepsilon}G^{1-\varepsilon} \in \mathcal{T}, \varepsilon \in [0, 1]$. In this paper, we investigate functions $F^{\varepsilon}G^{1-\varepsilon}$ for $\varepsilon = \frac{1}{2}$, i.e. \sqrt{FG} . Denote

(5)
$$\mathcal{T}_G := \left\{ \sqrt{F(z) G(z)} : F \in \mathcal{T} \right\}$$
 for some fixed function $G \in \mathcal{T}$.

Observe that the class \mathcal{T}_G is not empty, because the function G belongs to \mathcal{T}_G . In the next few theorems we introduce successive important properties of the class \mathcal{T}_G .

Theorem 3.
$$\mathcal{T}_G = \left\{ F(z) : F(z^2) = \sqrt{G(z^2)} f(z), f \in T^{(2)} \right\}$$

Proof. Let $G \in \mathcal{T}$. Thus from (5) and the fact that $H \in \mathcal{T} \iff \sqrt{H(z^2)} = f(z)$, $f \in T^{(2)}$ we get

$$\mathcal{T}_{G} = \left\{ F(z) : F(z^{2}) = \sqrt{H(z^{2}) G(z^{2})}, \ H \in \mathcal{T} \right\} \\ = \left\{ F(z) : F(z^{2}) = f(z) \ \sqrt{G(z^{2})}, \ f \in \mathbf{T}^{(2)} \right\}.$$

Theorem 4. $\mathcal{T}_G = \left\{ (1+z) \sqrt{\frac{G(z)}{z}} f(z) : f \in \mathbf{T} \right\}.$

Proof. Assume that $G \in \mathcal{T}$. Therefore from (5) and the fact that $F \in \mathcal{T} \iff F(z) = \frac{(1+z)^2}{z} f^2(z), f \in T$ we obtain

$$\mathcal{T}_G = \left\{ \sqrt{\frac{(1+z)^2}{z}} f^2(z) \ G(z) : f \in \mathcal{T} \right\} = \left\{ (1+z) f(z) \sqrt{\frac{G(z)}{z}} : f \in \mathcal{T} \right\}.$$

Since the class T is convex, then from Theorem 4 we get the following corollary.

Corollary 2. For all $G \in \mathcal{T}$, the class \mathcal{T}_G is convex.

We know that (see for example [2] and [3]):

$$\mathcal{E}T = \{k_t : t \in [-1,1]\},\$$

$$\sigma T = \left\{\sum_{i=1}^n \varepsilon_i k_{t_i} : \varepsilon_i \in [0,1], \sum_{i=1}^n \varepsilon_i = 1, t_i \in [-1,1]\right\},\$$

where $\mathcal{E}A$ is the set of all extreme points of A, σA is the set of all support points of *A* and the function k_t is given by (1). Hence for the class \mathcal{T}_G we have:

$$\begin{aligned} \mathcal{ET}_G &= \left\{ (1+z) \sqrt{\frac{G(z)}{z}} f(z) : f \in \mathcal{ET} \right\} \\ &= \left\{ (1+z) \sqrt{\frac{G(z)}{z}} k_t(z) : t \in [-1,1] \right\}, \\ \sigma \mathcal{T}_G &= \left\{ (1+z) \sqrt{\frac{G(z)}{z}} f(z) : f \in \sigma T \right\} \\ &= \left\{ (1+z) \sqrt{\frac{G(z)}{z}} \sum_{i=1}^n \varepsilon_i k_{t_i}(z) : \varepsilon_i \in [0,1], \sum_{i=1}^n \varepsilon_i = 1, t_i \in [-1,1] \right\}. \end{aligned}$$

Theorem 5.

(i)
$$\bigcup_{G \in \mathcal{T}} \mathcal{T}_G = \mathcal{T}.$$

(ii) $\bigcap_{G \in \mathcal{T}} \mathcal{T}_G = \left\{ \frac{z}{(1-z)^2} \right\}.$

Proof. Notice that $\mathcal{T}_G \subset \mathcal{T}$. Hence, $\bigcup_{G \in \mathcal{T}} \mathcal{T}_G \subset \mathcal{T}$. Moreover, $G \in \mathcal{T}_G$, so $\bigcup_{G \in \mathcal{T}} \mathcal{T}_G \supset \bigcup_{G \in \mathcal{T}} \{G\} = \mathcal{T}.$ From these facts we conclude that $\bigcup_{G \in \mathcal{T}} \mathcal{T}_G = \mathcal{T}.$ Now we prove the second part of Theorem 5. Assume that $g_1(z) = \frac{z \ (1+z^2)}{(1-z^2)^2}$ and $g_2(z) = \frac{z}{1+z^2}.$ Since $g_1, g_2 \in T^{(2)}$, so func-

tions $F_1(z) = \frac{z(1+z)^2}{(1-z)^4}$, $F_2(z) = \frac{z}{(1+z)^2}$ belong to \mathcal{T} .

First we prove that $\mathcal{T}_{F_1} \cap \mathcal{T}_{F_2} = \left\{ \frac{z}{(1-z)^2} \right\}$. Let $F \in \mathcal{T}_{F_1} \cap \mathcal{T}_{F_2}$. Therefore from Theorem 4 we have

$$F(z) = (1+z)\sqrt{\frac{F_1(z)}{z}}f_1(z) = (1+z)\sqrt{\frac{F_2(z)}{z}}f_2(z)$$
, where $f_1, f_2 \in \mathbb{T}$.

Suppose that $f_1(z) = z + a_2 z^2 + ...$ and $f_2(z) = z + b_2 z^2 + ...$ Then

$$F(z) = (1 + 4z + 8z^{2} + \dots)(z + a_{2}z^{2} + \dots) = z + (4 + a_{2})z^{2} + \dots$$

and

$$F(z) = f_2(z) = z + b_2 z^2 + \dots$$

Because $f_1, f_2 \in T$, so $-2 \leq a_2 \leq 2$ and $-2 \leq b_2 \leq 2$. From these and the equality $4 + a_2 = b_2$ we conclude that $a_2 = -2$ (and $b_2 = 2$). Thus $f_1(z) = \frac{z}{(1+z)^2} = z - 2z^2 + 3z^3 + \dots$ (and $f_2(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \dots$). Hence $F(z) = \frac{z}{(1-z)^2}.$

We obtain that $\bigcap_{G \in \mathcal{T}} \mathcal{T}_G \subset \mathcal{T}_{F_1} \cap \mathcal{T}_{F_2} = \left\{ \frac{z}{(1-z)^2} \right\}$. Now we prove that $\frac{z}{(1-z)^2} \in \mathcal{T}_G$ for all $G \in \mathcal{T}$. From [8] we know the Rogosin-

ski representation

(6)
$$h \in \mathbf{T} \iff h(z) = \frac{z \, p(z)}{1 - z^2}, \quad p \in P_R,$$

where P_R consists of all analytic functions p such that $\operatorname{Re} p(z) > 0$, p(0) = 1 and having real coefficients. From (6) and the fact that $p \in P_R \iff \frac{1}{p} \in P_R$ we get

$$rac{1}{p(z)} = rac{z}{(1-z^2) h(z)} \in P_R.$$

Let $f(z) = \frac{z}{1-z^2} \frac{1}{p(z)} = \left(\frac{z}{1-z^2}\right)^2 \frac{1}{h(z)}$. From the above relations $f \in \mathbb{T} \iff h \in \mathbb{T}$. From Theorem 4 we get

$$\mathcal{T}_{G} = \left\{ \frac{(1+z)}{z} \sqrt{z \, G(z)} \, f(z) : \, f \in \mathbf{T} \right\} = \left\{ \frac{(1+z)^{2}}{z} \, h(z) \, f(z) : \, f \in \mathbf{T} \right\},$$

where $h(z) = \frac{\sqrt{z G(z)}}{1+z}$. From (3) we know that $h \in T$. For $f(z) = \left(\frac{z}{1-z^2}\right)^2 \frac{1}{h(z)}$ we know that the function $\frac{(1+z)^2}{z} h(z) f(z) = \frac{z}{(1-z)^2}$ is in \mathcal{T}_G .

Some properties of the class T_{id} . 3

Let us consider the class \mathcal{T}_G , where G(z) = z. Denote this class by \mathcal{T}_{id} . Then $H \in \mathcal{T}_{id} \iff H(z) = \sqrt{z F(z)}, F \in \mathcal{T}$. Hence

(7)
$$\frac{z H'(z)}{H(z)} = \frac{1}{2} \left(\frac{z F'(z)}{F(z)} + 1 \right), \quad F \in \mathcal{T}.$$

From (7) and Corollary 1 we have

$$2\operatorname{Re}\frac{z\,H'(z)}{H(z)} = \operatorname{Re}\left(\frac{z\,F'(z)}{F(z)} + 1\right) \ge \frac{1 - 6r + r^2}{1 - r^2} + 1 = \frac{2 - 6r}{1 - r^2}$$

for $z \in \Delta$, r = |z|. Therefore, $\operatorname{Re} \frac{zH'(z)}{H(z)} > 0$ for $0 \le r < \frac{1}{3}$. So $r_{ST}(\mathcal{T}_{id}) \ge \frac{1}{3}$. Observe that min $\operatorname{Re} \left(\frac{zF'(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, thus min $\operatorname{Re} \left(\frac{zH'(z)}{H(z)}\right)$ is reached by the function $H_0(z) = \frac{z(1+z)}{(1-z)^2}$ for z = -r.

Furthermore, we have $H'_0\left(-\frac{1}{3}\right) = 0$. This implies $r_{LU}(\mathcal{T}_{id}) \leq \left|-\frac{1}{3}\right| = \frac{1}{3}$. From these and (4) we get inequalities $\frac{1}{3} \leq r_{ST}(\mathcal{T}_{id}) \leq r_{LU}(\mathcal{T}_{id}) \leq \frac{1}{3}$, which finally lead us to equalities $r_{ST}(\mathcal{T}_{id}) = r_S(\mathcal{T}_{id}) = r_{LU}(\mathcal{T}_{id}) = \frac{1}{3}$.

We have proved the following theorem.

Theorem 6. $r_{ST}(\mathcal{T}_{id}) = r_S(\mathcal{T}_{id}) = r_{LU}(\mathcal{T}_{id}) = \frac{1}{3}$.

4 Some properties of the class \mathcal{T}_G for $G(z) = \frac{z}{(1-z)^2}$.

Let us study \mathcal{T}_G , where $G(z) = \frac{z}{(1-z)^2}$. Thus $H \in \mathcal{T}_G \iff H(z) = \frac{\sqrt{zF(z)}}{1-z}$, $F \in \mathcal{T}$. Therefore

(8)
$$\frac{z H'(z)}{H(z)} = \frac{1}{2} \left(\frac{z F'(z)}{F(z)} + \frac{1+z}{1-z} \right), \quad F \in \mathcal{T}.$$

Taking into account (8) and Corollary 1 we obtain

$$2\operatorname{Re}\frac{z H'(z)}{H(z)} = \operatorname{Re}\left(\frac{z F'(z)}{F(z)} + \frac{1+z}{1-z}\right)$$

$$\geq \frac{1-6r+r^2}{1-r^2} + \frac{1-r}{1+r} = \frac{2(1-4r+r^2)}{1-r^2},$$

for $z \in \Delta$, r = |z|. Then, $\operatorname{Re} \frac{zH'(z)}{H(z)} > 0$ for $0 \le r < 2 - \sqrt{3}$. Hence $r_{ST}(\mathcal{T}_G) \ge 2 - \sqrt{3}$. Since min $\operatorname{Re} \left(\frac{zF'(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, so min $\operatorname{Re} \left(\frac{zH'(z)}{H(z)}\right)$ is reached by the function $H_0(z) = \frac{z(1+z)}{(1-z)^3}$ for z = -r. Moreover, $H'_0\left(-2 + \sqrt{3}\right) = 0$. Thus $r_{LU}(\mathcal{T}_G) \le \left|-2 + \sqrt{3}\right| = 2 - \sqrt{3}$. The inequality (4) and the above facts give us $2 - \sqrt{3} \le r_{ST}(\mathcal{T}_G) \le r_{LU}(\mathcal{T}_G) \le 2 - \sqrt{3}$, so finally $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = 2 - \sqrt{3}$.

We have proved the following theorem.

Theorem 7. For $G(z) = \frac{z}{(1-z)^2}$ we have $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = 2 - \sqrt{3}$.

5 Some properties of the class \mathcal{T}_G for $G(z) = \frac{z}{(1+z)^2}$.

Let us investigate the class \mathcal{T}_G , where $G(z) = \frac{z}{(1+z)^2}$. Hence from Theorem 4 we get the following theorem.

Theorem 8. For $G(z) = \frac{z}{(1+z)^2}$ we have $\mathcal{T}_G = T$.

Theorem 8 and also [1] and [4] give us the following corollary.

Corollary 3. For $G(z) = \frac{z}{(1+z)^2}$ have:

(i)
$$r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = \sqrt{2} - 1.$$

(ii) $G_{LU}(\mathcal{T}_G) = \{z \in \Delta : 2|z| < |1 + z^2|\} = \{z : |z + i| < \sqrt{2}\} \cap \{z : |z - i| < \sqrt{2}\}$

6 Some properties of the class \mathcal{T}_G for $G(z) = \frac{z(1+z)^2}{(1-z)^4}$.

Let us consider \mathcal{T}_G , where $G(z) = \frac{z(1+z)^2}{(1-z)^4}$. This implies $H \in \mathcal{T}_G \iff H(z) = \frac{(1+z)\sqrt{zF(z)}}{(1-z)^2}$, $F \in \mathcal{T}$. Therefore

(9)
$$\frac{z H'(z)}{H(z)} = \frac{1}{2} \left(\frac{z F'(z)}{F(z)} + \frac{1 + 6z + z^2}{1 - z^2} \right), \quad F \in \mathcal{T}.$$

Relation (9) and Corollary 1 give us

$$2\operatorname{Re}\frac{z H'(z)}{H(z)} = \operatorname{Re}\left(\frac{z F'(z)}{F(z)} + \frac{1+6z+z^2}{1-z^2}\right)$$
$$\geq \frac{1-6r+r^2}{1-r^2} + \frac{1-6r+r^2}{1-r^2} = 2\frac{1-6r+r^2}{1-r^2},$$

for $z \in \Delta$, r = |z|. Thus, $\operatorname{Re} \frac{zH'(z)}{H(z)} > 0$ for $0 \le r < 3 - 2\sqrt{2} = (\sqrt{2} - 1)^2$. Therefore $r_{ST}(\mathcal{T}_G) \ge (\sqrt{2} - 1)^2$. Due to the fact that min $\operatorname{Re} \left(\frac{zF'(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, so min $\operatorname{Re} \left(\frac{zH'(z)}{H(z)}\right)$ is reached by the function $G(z) = \frac{z(1+z)^2}{(1-z)^4}$ for z = -r ($G \in \mathcal{T}_G$).

Apart from these, $G'(-3+2\sqrt{2}) = 0$. Then $r_{LU}(\mathcal{T}_G) \leq |-3+2\sqrt{2}| = 3 - 2\sqrt{2} = (\sqrt{2}-1)^2$. From these and (4) we get inequalities $(\sqrt{2}-1)^2 \leq r_{ST}(\mathcal{T}_G) \leq r_{LU}(\mathcal{T}_G) \leq (\sqrt{2}-1)^2$, so finally $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = (\sqrt{2}-1)^2$. We have proved the following theorem.

Theorem 9. For $G(z) = \frac{z(1+z)^2}{(1-z)^4}$ we have $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = (\sqrt{2}-1)^2$.

7 Some properties of the class T_G for $G(z) = z(1+z)^2$.

Let us study the class \mathcal{T}_G , where $G(z) = z(1+z)^2$. Thus, $H \in \mathcal{T}_G \iff H(z) = (1+z)\sqrt{z F(z)}$, $F \in \mathcal{T}$. Then

(10)
$$\frac{z H'(z)}{H(z)} = \frac{1}{2} \left(\frac{z F'(z)}{F(z)} + \frac{1+3z}{1+z} \right), \quad F \in \mathcal{T}$$

Taking into account (10) and Corollary 1 we conclude

$$2\operatorname{Re}\frac{z H'(z)}{H(z)} = \operatorname{Re}\left(\frac{z F'(z)}{F(z)} + \frac{1+3z}{1+z}\right)$$

$$\geq \frac{1-6r+r^2}{1-r^2} + \frac{1-3r}{1-r} = 2\frac{1-4r-r^2}{1-r^2},$$

for $z \in \Delta$, r = |z|. Therefore, $\operatorname{Re} \frac{z H'(z)}{H(z)} > 0$ for $0 \le r < \sqrt{5} - 2$. Hence $r_{ST}(\mathcal{T}_G) \ge \sqrt{5} - 2$. Since min $\operatorname{Re} \left(\frac{z F'(z)}{F(z)} \right)$ is reached by the function F given in Corollary 1, then min $\operatorname{Re} \left(\frac{z H'(z)}{H(z)} \right)$ is reached by the function $H_0(z) = \frac{z(1+z)^2}{(1-z)^2}$ for z = -r. Moreover, $H'_0\left(2 - \sqrt{5}\right) = 0$. This implies $r_{LU}(\mathcal{T}_G) \le \left|2 - \sqrt{5}\right| = \sqrt{5} - 2$. From these and (4) we have $\sqrt{5} - 2 \le r_{ST}(\mathcal{T}_G) \le r_{LU}(\mathcal{T}_G) \le \sqrt{5} - 2$. These finally lead us to equalities $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = \sqrt{5} - 2$.

We have proved the following theorem.

Theorem 10. For $G(z) = z(1+z)^2$ we have $r_{ST}(\mathcal{T}_G) = r_S(\mathcal{T}_G) = r_{LU}(\mathcal{T}_G) = \sqrt{5} - 2$.

References

- [1] Golusin G. On typically real functions, Mat. Sb. 27(69), 201-218 (1950).
- [2] Goodman A.W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
- [3] Hallenbeck D.J., MacGregor T.H., *Linear problems and convexity techniques in geometric function theory*, Pitman Pub., Boston-Melbourne 1984.
- [4] Kirwan W.E., *Extremal problems for the typically real functions*, Amer. J. Math. 88, 942-954 (1966).
- [5] Koczan L., Trąbka-Więcław K., On semi-typically real functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. LXIII, 139-148 (2009).
- [6] Koczan L., Trąbka-Więcław K., Subclasses of typically real functions determined by some modular inequalities, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. LXIV, No. 1, 75-80 (2010).
- [7] Robertson M.S., On the coefficients of typically real functions, Bull. Amer. Math. Soc. 41, 565-572 (1935).

- [8] Rogosinski W.W., Über positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, (German) Math. Z. 35, 93-121 (1932).
- [9] Todorov P.G., *The radii of starlikness and convexity of order alpha of typically real functions*, Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 93-106 (1983).

Department of Mathematics, Mechanical Department Lublin University of Technology ul. Nadbystrzycka 38D 20-618 Lublin, Poland e-mail: k.trabka@pollub.pl