On semi-typically real functions which are generated by a fixed semi-typically real function

Katarzyna Trąbka-Wiȩcław

Abstract

Let \mathcal{A} denote the family of all functions that are analytic in the unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$.

In this paper, we investigate the class \mathcal{T}_{G} defined as follows $$
\mathcal{T}_{G}:=\{\sqrt{F(z) G(z)}: F \in \mathcal{T}\}, \quad G \in \mathcal{T},
$$ where \mathcal{T} denotes the class of all semi-typically real functions i.e. $\mathcal{T}:=\{F \in$ $\mathcal{A}: F(z)>0 \Longleftrightarrow z \in(0,1)\}$. We find the sets $\bigcup_{G \in \mathcal{T}} \mathcal{T}_{G}$ and $\bigcap_{G \in \mathcal{T}} \mathcal{T}_{G}$, the set of all extreme points of \mathcal{T}_{G} and the set of all support points of \mathcal{T}_{G}. Moreover, for the fixed G, we determine the radii of local univalence, of starlikeness and of univalence of \mathcal{T}_{G}.

1 Some properties of the class \mathcal{T}.

Let \mathcal{A} denote the family of all functions that are analytic in the unit disk $\Delta:=$ $\{z \in \mathbb{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. Let A be a subclass of \mathcal{A} and let $A^{(2)}:=\{f \in A: f(z)=-f(-z)$ for $z \in \Delta\}$.

Let T denote the well-known class of all typically real functions, i.e. T is the subclass of \mathcal{A} consisting of functions f such that $\operatorname{Im} z \operatorname{Im} f(z) \geq 0, z \in \Delta$. From the

[^0]definition we conclude that $\mathrm{T}=\{f \in \mathcal{A}: f(z) \in \mathbb{R} \Longleftrightarrow z \in(-1,1)\}$. Robertson in [7] gave the explicit relation between a function $f \in \mathrm{~T}$ and a probability measure μ defined on $[-1,1]$. Namely
(1) $\quad f \in \mathrm{~T} \Longleftrightarrow f(z)=\int_{-1}^{1} k_{t}(z) d \mu(t), \quad$ where $\quad k_{t}(z)=\frac{z}{1-2 t z+z^{2}}$.

The class of semi-typically real functions was considered in [5] and was defined as follows

$$
\mathcal{T}:=\{F \in \mathcal{A}: F(z)>0 \Longleftrightarrow z \in(0,1)\}
$$

For simplicity, instead of h or $z \mapsto h(z)$ we will use $h(z)$. We know that for $F \in \mathcal{T}$ we have $\frac{F(z)}{z} \neq 0$. Thus for $F, G \in \mathcal{T}$ let us define

$$
F^{\varepsilon}(z) G^{1-\varepsilon}(z):=z\left(\frac{F(z)}{z}\right)^{\varepsilon}\left(\frac{G(z)}{z}\right)^{1-\varepsilon}, \varepsilon \in[0,1], 1^{\varepsilon}=1
$$

Let us recall some properties of the class \mathcal{T} as the following lemma (see [5]).

Lemma 1.

$$
\begin{align*}
& F \in \mathcal{T} \Longleftrightarrow \sqrt{F\left(z^{2}\right)} \in \mathrm{T}^{(2)} \tag{2}\\
& F \in \mathcal{T} \Longleftrightarrow \frac{\sqrt{z F(z)}}{1+z} \in \mathrm{~T}
\end{align*}
$$

P. Todorov in [9] gave the estimation for the operator $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}$ for $f \in \mathrm{~T}$. Namely

Theorem 1. [P.G. Todorov] For each typically real function we have:
(i)

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-6 r^{2}+r^{4}}{1-r^{4}}, \quad \text { for } \quad 2-\sqrt{3} \leq r=|z|<1
$$

with equality for the function $f(z)=\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}}=\frac{1}{2} k_{1}(z)+\frac{1}{2} k_{-1}(z)$ at the points $z= \pm i r$.
(ii)

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-r}{1+r}, \quad \text { for } \quad 0 \leq r=|z| \leq 2-\sqrt{3}
$$

with equality for the functions $k_{1}(z)=\frac{z}{(1-z)^{2}}$ and $k_{-1}(z)=\frac{z}{(1+z)^{2}}$ at the points $-r$ and r, respectively.

Now let us prove that for odd typically real functions the following estimation is satisfied.

Theorem 2. For $f \in \mathrm{~T}^{(2)}$ we have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-6 r^{2}+r^{4}}{1-r^{4}} \quad \text { for } \quad z \in \Delta, r=|z|
$$

with equality for the function $f(z)=\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}}$ at the points $z= \pm$ ir.
Proof. For $r \geq 2-\sqrt{3}$ the above estimation is an obvious corollary from the Todorov Theorem. So let us prove it for $r<2-\sqrt{3}$.

Suppose that $f \in \mathrm{~T}^{(2)}$. Then $f(z)=\frac{\left(1+z^{2}\right)}{z} h\left(z^{2}\right)$ for some $h \in \mathrm{~T}$ (see [6]). Thus

$$
\frac{z f^{\prime}(z)}{f(z)}=z\left(\frac{2 z}{1+z^{2}}+\frac{2 z h^{\prime}\left(z^{2}\right)}{h\left(z^{2}\right)}-\frac{1}{z}\right)=-\frac{1-z^{2}}{1+z^{2}}+\frac{2 z^{2} h^{\prime}\left(z^{2}\right)}{h\left(z^{2}\right)} .
$$

We have $|z|^{2}<2-\sqrt{3}$ and $\left|\frac{1-z^{2}}{1+z^{2}}\right| \leq \frac{1+r^{2}}{1-r^{2}}$. From these and the Todorov Theorem we get

$$
\begin{aligned}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} & =-\operatorname{Re} \frac{1-z^{2}}{1+z^{2}}+2 \operatorname{Re} \frac{z^{2} h^{\prime}\left(z^{2}\right)}{h\left(z^{2}\right)} \\
& \geq-\frac{1+r^{2}}{1-r^{2}}+2 \frac{1-r^{2}}{1+r^{2}}=\frac{1-6 r^{2}+r^{4}}{1-r^{4}}
\end{aligned}
$$

and the proof is complete.
From (2) we have $F \in \mathcal{T} \Longleftrightarrow F\left(z^{2}\right)=f^{2}(z), f \in \mathrm{~T}^{(2)}$. This relation and Theorem 2 give us

$$
\operatorname{Re} \frac{z^{2} F^{\prime}\left(z^{2}\right)}{F\left(z^{2}\right)}=\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \frac{1-6 r^{2}+r^{4}}{1-r^{4}}, \quad r=|z| .
$$

Hence, $\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} \geq \frac{1-6 r+r^{2}}{1-r^{2}}$ and we get the following corollary.
Corollary 1. For $F \in \mathcal{T}$ we have

$$
\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} \geq \frac{1-6 r+r^{2}}{1-r^{2}} \quad \text { for } \quad z \in \Delta, r=|z|
$$

with equality for the function $F(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}$ at the points $z=-r$.
In this paper, we determine the radii of starlikeness $r_{S T}$, of local univalence $r_{L U}$ and of univalence r_{S} in certain classes of \mathcal{T}. Let us recall some definitions. Hereafter, let A be a given subclass of \mathcal{A}.

Definition 1. We say that $r_{S T}(\mathrm{~A})$ is the radius of starlikeness in the class A , if it is the maximum of the numbers $r \in(0,1]$, such that the inequality $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0$ holds in the disk $|z|<r$ for each function $f \in \mathrm{~A}$.

Definition 2. We say that $r_{S}(\mathrm{~A})\left(r_{L U}(\mathrm{~A})\right)$ is called the radius of univalence (local univalence) in the class A, if it is the maximum of numbers $r \in(0,1]$, such that every function $f \in \mathrm{~A}$ is univalent (local univalent) in $|z|<r$.

In the class A the following inequalities are satisfied

$$
\begin{equation*}
r_{S T}(A) \leq r_{S}(A) \leq r_{L U}(A) \tag{4}
\end{equation*}
$$

Definition 3. A set $G \subset \Delta$ is called the set of local univalence in the class A, if $\forall_{f \in \mathrm{~A}} \forall_{z \in G} f^{\prime}(z) \neq 0$ and $\forall_{z \in \Delta \backslash G} \exists_{f \in A} f^{\prime}(z)=0$. We denote the set of local univalence in the class A by $G_{L U}(\mathrm{~A})$.
Definition 4. The class A is convex, if $\forall_{f_{1}, f_{2} \in \mathrm{~A}} \forall_{\varepsilon \in[0,1]} \varepsilon f_{1}+(1-\varepsilon) f_{2} \in \mathrm{~A}$.

2 Some properties of the class \mathcal{T}_{G}.

For typically real functions f, g and $\varepsilon \in[0,1]$ we know that $f^{\varepsilon} g^{1-\varepsilon} \in \mathrm{T}$. Analogously for functions $f, g \in \mathrm{~T}^{(2)}$ and $\varepsilon \in[0,1]$ we have $f^{\varepsilon} g^{1-\varepsilon} \in \mathrm{T}^{(2)}$. Because $\mathcal{T}=\left\{F: \sqrt{F\left(z^{2}\right)} \in \mathrm{T}^{(2)}\right\}$, thus for semi-typically real functions F, G we get $F^{\varepsilon} G^{1-\varepsilon} \in \mathcal{T}, \varepsilon \in[0,1]$. In this paper, we investigate functions $F^{\varepsilon} G^{1-\varepsilon}$ for $\varepsilon=\frac{1}{2}$, i.e. $\sqrt{F G}$. Denote
(5) $\quad \mathcal{T}_{G}:=\{\sqrt{F(z) G(z)}: F \in \mathcal{T}\}$ for some fixed function $G \in \mathcal{T}$.

Observe that the class \mathcal{T}_{G} is not empty, because the function G belongs to \mathcal{T}_{G}. In the next few theorems we introduce successive important properties of the class \mathcal{T}_{G}.

Theorem 3. $\mathcal{T}_{G}=\left\{F(z): F\left(z^{2}\right)=\sqrt{G\left(z^{2}\right)} f(z), f \in \mathrm{~T}^{(2)}\right\}$.
Proof. Let $G \in \mathcal{T}$. Thus from (5) and the fact that $H \in \mathcal{T} \Longleftrightarrow \sqrt{H\left(z^{2}\right)}=f(z)$, $f \in \mathrm{~T}^{(2)}$ we get

$$
\begin{aligned}
\mathcal{T}_{G} & =\left\{F(z): F\left(z^{2}\right)=\sqrt{H\left(z^{2}\right) G\left(z^{2}\right)}, H \in \mathcal{T}\right\} \\
& =\left\{F(z): F\left(z^{2}\right)=f(z) \sqrt{G\left(z^{2}\right)}, f \in \mathrm{~T}^{(2)}\right\} .
\end{aligned}
$$

Theorem 4. $\mathcal{T}_{G}=\left\{(1+z) \sqrt{\frac{G(z)}{z}} f(z): f \in \mathrm{~T}\right\}$.
Proof. Assume that $G \in \mathcal{T}$. Therefore from (5) and the fact that $F \in \mathcal{T} \Longleftrightarrow$ $F(z)=\frac{(1+z)^{2}}{z} f^{2}(z), f \in \mathrm{~T}$ we obtain

$$
\mathcal{T}_{G}=\left\{\sqrt{\frac{(1+z)^{2}}{z} f^{2}(z) G(z)}: f \in \mathrm{~T}\right\}=\left\{(1+z) f(z) \sqrt{\frac{G(z)}{z}}: f \in \mathrm{~T}\right\}
$$

Since the class T is convex, then from Theorem 4 we get the following corollary.

Corollary 2. For all $G \in \mathcal{T}$, the class \mathcal{T}_{G} is convex.
We know that (see for example [2] and [3]):

$$
\begin{aligned}
\mathcal{E} \mathrm{T} & =\left\{k_{t}: t \in[-1,1]\right\}, \\
\sigma \mathrm{T} & =\left\{\sum_{i=1}^{n} \varepsilon_{i} k_{t_{i}}: \varepsilon_{i} \in[0,1], \sum_{i=1}^{n} \varepsilon_{i}=1, t_{i} \in[-1,1]\right\},
\end{aligned}
$$

where $\mathcal{E} A$ is the set of all extreme points of $A, \sigma A$ is the set of all support points of A and the function k_{t} is given by (1). Hence for the class \mathcal{T}_{G} we have:

$$
\begin{aligned}
\mathcal{E} \mathcal{T}_{G} & =\left\{(1+z) \sqrt{\frac{G(z)}{z}} f(z): f \in \mathcal{E} \mathrm{~T}\right\} \\
& =\left\{(1+z) \sqrt{\frac{G(z)}{z}} k_{t}(z): t \in[-1,1]\right\} \\
\sigma \mathcal{T}_{G} & =\left\{(1+z) \sqrt{\frac{G(z)}{z}} f(z): f \in \sigma \mathrm{~T}\right\} \\
& =\left\{(1+z) \sqrt{\frac{G(z)}{z}} \sum_{i=1}^{n} \varepsilon_{i} k_{t_{i}}(z): \varepsilon_{i} \in[0,1], \sum_{i=1}^{n} \varepsilon_{i}=1, t_{i} \in[-1,1]\right\}
\end{aligned}
$$

Theorem 5.

(i) $\bigcup_{G \in \mathcal{T}} \mathcal{T}_{G}=\mathcal{T}$.
(ii) $\bigcap_{G \in \mathcal{T}} \mathcal{T}_{G}=\left\{\frac{z}{(1-z)^{2}}\right\}$.

Proof. Notice that $\mathcal{T}_{G} \subset \mathcal{T}$. Hence, $\cup_{G \in \mathcal{T}} \mathcal{T}_{G} \subset \mathcal{T}$. Moreover, $G \in \mathcal{T}_{G}$, so $\bigcup_{G \in \mathcal{T}} \mathcal{T}_{G} \supset \bigcup_{G \in \mathcal{T}}\{G\}=\mathcal{T}$. From these facts we conclude that $\bigcup_{G \in \mathcal{T}} \mathcal{T}_{G}=\mathcal{T}$.

Now we prove the second part of Theorem 5.
Assume that $g_{1}(z)=\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}}$ and $g_{2}(z)=\frac{z}{1+z^{2}}$. Since $g_{1}, g_{2} \in \mathrm{~T}^{(2)}$, so functions $F_{1}(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}, F_{2}(z)=\frac{z}{(1+z)^{2}}$ belong to \mathcal{T}.

First we prove that $\mathcal{T}_{F_{1}} \cap \mathcal{T}_{F_{2}}=\left\{\frac{z}{(1-z)^{2}}\right\}$. Let $F \in \mathcal{T}_{F_{1}} \cap \mathcal{T}_{F_{2}}$. Therefore from Theorem 4 we have

$$
F(z)=(1+z) \sqrt{\frac{F_{1}(z)}{z}} f_{1}(z)=(1+z) \sqrt{\frac{F_{2}(z)}{z}} f_{2}(z), \text { where } f_{1}, f_{2} \in \mathrm{~T}
$$

Suppose that $f_{1}(z)=z+a_{2} z^{2}+\ldots$ and $f_{2}(z)=z+b_{2} z^{2}+\ldots$. Then

$$
F(z)=\left(1+4 z+8 z^{2}+\ldots\right)\left(z+a_{2} z^{2}+\ldots\right)=z+\left(4+a_{2}\right) z^{2}+\ldots
$$

and

$$
F(z)=f_{2}(z)=z+b_{2} z^{2}+\ldots
$$

Because $f_{1}, f_{2} \in \mathrm{~T}$, so $-2 \leq a_{2} \leq 2$ and $-2 \leq b_{2} \leq 2$. From these and the equality $4+a_{2}=b_{2}$ we conclude that $a_{2}=-2$ (and $b_{2}=2$). Thus $f_{1}(z)=$ $\frac{z}{(1+z)^{2}}=z-2 z^{2}+3 z^{3}+\ldots$ (and $f_{2}(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\ldots$). Hence $F(z)=\frac{z}{(1-z)^{2}}$.

We obtain that $\bigcap_{G \in \mathcal{T}} \mathcal{T}_{G} \subset \mathcal{T}_{F_{1}} \cap \mathcal{T}_{F_{2}}=\left\{\frac{z}{(1-z)^{2}}\right\}$.
Now we prove that $\frac{z}{(1-z)^{2}} \in \mathcal{T}_{G}$ for all $G \in \mathcal{T}$. From [8] we know the Rogosinski representation

$$
\begin{equation*}
h \in \mathrm{~T} \Longleftrightarrow h(z)=\frac{z p(z)}{1-z^{2}}, \quad p \in P_{R} \tag{6}
\end{equation*}
$$

where P_{R} consists of all analytic functions p such that $\operatorname{Re} p(z)>0, p(0)=1$ and having real coefficients. From (6) and the fact that $p \in P_{R} \Longleftrightarrow \frac{1}{p} \in P_{R}$ we get

$$
\frac{1}{p(z)}=\frac{z}{\left(1-z^{2}\right) h(z)} \in P_{R}
$$

Let $f(z)=\frac{z}{1-z^{2}} \frac{1}{p(z)}=\left(\frac{z}{1-z^{2}}\right)^{2} \frac{1}{h(z)}$. From the above relations $f \in \mathrm{~T} \Longleftrightarrow h \in \mathrm{~T}$.
From Theorem 4 we get

$$
\mathcal{T}_{G}=\left\{\frac{(1+z)}{z} \sqrt{z G(z)} f(z): f \in \mathrm{~T}\right\}=\left\{\frac{(1+z)^{2}}{z} h(z) f(z): f \in \mathrm{~T}\right\}
$$

where $h(z)=\frac{\sqrt{z G(z)}}{1+z}$. From (3) we know that $h \in \mathrm{~T}$.
For $f(z)=\left(\frac{z}{1-z^{2}}\right)^{2} \frac{1}{h(z)}$ we know that the function $\frac{(1+z)^{2}}{z} h(z) f(z)=\frac{z}{(1-z)^{2}}$ is in \mathcal{T}_{G}.

3 Some properties of the class $\mathcal{T}_{i d}$.

Let us consider the class \mathcal{T}_{G}, where $G(z)=z$. Denote this class by $\mathcal{T}_{i d}$. Then $H \in \mathcal{T}_{\text {id }} \Longleftrightarrow H(z)=\sqrt{z F(z)}, F \in \mathcal{T}$. Hence

$$
\begin{equation*}
\frac{z H^{\prime}(z)}{H(z)}=\frac{1}{2}\left(\frac{z F^{\prime}(z)}{F(z)}+1\right), \quad F \in \mathcal{T} \tag{7}
\end{equation*}
$$

From (7) and Corollary 1 we have

$$
2 \operatorname{Re} \frac{z H^{\prime}(z)}{H(z)}=\operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}+1\right) \geq \frac{1-6 r+r^{2}}{1-r^{2}}+1=\frac{2-6 r}{1-r^{2}}
$$

for $z \in \Delta, r=|z|$. Therefore, $\operatorname{Re} \frac{z H^{\prime}(z)}{H(z)}>0$ for $0 \leq r<\frac{1}{3}$. So $r_{S T}\left(\mathcal{T}_{i d}\right) \geq \frac{1}{3}$. Observe that $\min \operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, thus $\min \operatorname{Re}\left(\frac{z H^{\prime}(z)}{H(z)}\right)$ is reached by the function $H_{0}(z)=\frac{z(1+z)}{(1-z)^{2}}$ for $z=-r$.

Furthermore, we have $H_{0}^{\prime}\left(-\frac{1}{3}\right)=0$. This implies $r_{L U}\left(\mathcal{T}_{i d}\right) \leq\left|-\frac{1}{3}\right|=\frac{1}{3}$. From these and (4) we get inequalities $\frac{1}{3} \leq r_{S T}\left(\mathcal{T}_{i d}\right) \leq r_{L U}\left(\mathcal{T}_{i d}\right) \leq \frac{1}{3}$, which finally lead us to equalities $r_{S T}\left(\mathcal{T}_{i d}\right)=r_{S}\left(\mathcal{T}_{i d}\right)=r_{L U}\left(\mathcal{T}_{\text {id }}\right)=\frac{1}{3}$.

We have proved the following theorem.
Theorem 6. $r_{S T}\left(\mathcal{T}_{i d}\right)=r_{S}\left(\mathcal{T}_{i d}\right)=r_{L U}\left(\mathcal{T}_{i d}\right)=\frac{1}{3}$.

4 Some properties of the class \mathcal{T}_{G} for $G(z)=\frac{z}{(1-z)^{2}}$.

Let us study \mathcal{T}_{G}, where $G(z)=\frac{z}{(1-z)^{2}}$. Thus $H \in \mathcal{T}_{G} \Longleftrightarrow H(z)=\frac{\sqrt{z F(z)}}{1-z}$, $F \in \mathcal{T}$. Therefore

$$
\begin{equation*}
\frac{z H^{\prime}(z)}{H(z)}=\frac{1}{2}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+z}{1-z}\right), \quad F \in \mathcal{T} . \tag{8}
\end{equation*}
$$

Taking into account (8) and Corollary 1 we obtain

$$
\begin{aligned}
2 \operatorname{Re} \frac{z H^{\prime}(z)}{H(z)} & =\operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+z}{1-z}\right) \\
& \geq \frac{1-6 r+r^{2}}{1-r^{2}}+\frac{1-r}{1+r}=\frac{2\left(1-4 r+r^{2}\right)}{1-r^{2}}
\end{aligned}
$$

for $z \in \Delta, r=|z|$. Then, $\operatorname{Re} \frac{z H^{\prime}(z)}{H(z)}>0$ for $0 \leq r<2-\sqrt{3}$. Hence $r_{S T}\left(\mathcal{T}_{G}\right) \geq$ $2-\sqrt{3}$. Since $\min \operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, so $\min \operatorname{Re}\left(\frac{z H^{\prime}(z)}{H(z)}\right)$ is reached by the function $H_{0}(z)=\frac{z(1+z)}{(1-z)^{3}}$ for $z=-r$.

Moreover, $H_{0}^{\prime}(-2+\sqrt{3})=0$. Thus $r_{L U}\left(\mathcal{T}_{G}\right) \leq|-2+\sqrt{3}|=2-\sqrt{3}$. The inequality (4) and the above facts give us $2-\sqrt{3} \leq r_{S T}\left(\mathcal{T}_{G}\right) \leq r_{L U}\left(\mathcal{T}_{G}\right) \leq 2-\sqrt{3}$, so finally $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=2-\sqrt{3}$.

We have proved the following theorem.
Theorem 7. For $G(z)=\frac{z}{(1-z)^{2}}$ we have $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=2-\sqrt{3}$.

5 Some properties of the class \mathcal{T}_{G} for $G(z)=\frac{z}{(1+z)^{2}}$.

Let us investigate the class \mathcal{T}_{G}, where $G(z)=\frac{z}{(1+z)^{2}}$. Hence from Theorem 4 we get the following theorem.

Theorem 8. For $G(z)=\frac{z}{(1+z)^{2}}$ we have $\mathcal{T}_{G}=\mathrm{T}$.
Theorem 8 and also [1] and [4] give us the following corollary.
Corollary 3. For $G(z)=\frac{z}{(1+z)^{2}}$ have:
(i) $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=\sqrt{2}-1$.
(ii) $G_{L U}\left(\mathcal{T}_{G}\right)=\left\{z \in \Delta: 2|z|<\left|1+z^{2}\right|\right\}=\{z:|z+i|<\sqrt{2}\} \cap\{z:|z-i|<\sqrt{2}\}$.

6 Some properties of the class \mathcal{T}_{G} for $G(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}$.

Let us consider \mathcal{T}_{G}, where $G(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}$. This implies $H \in \mathcal{T}_{G} \Longleftrightarrow H(z)=$ $\frac{(1+z) \sqrt{z F(z)}}{(1-z)^{2}}, F \in \mathcal{T}$. Therefore

$$
\begin{equation*}
\frac{z H^{\prime}(z)}{H(z)}=\frac{1}{2}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+6 z+z^{2}}{1-z^{2}}\right), \quad F \in \mathcal{T} . \tag{9}
\end{equation*}
$$

Relation (9) and Corollary 1 give us

$$
\begin{aligned}
2 \operatorname{Re} \frac{z H^{\prime}(z)}{H(z)} & =\operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+6 z+z^{2}}{1-z^{2}}\right) \\
& \geq \frac{1-6 r+r^{2}}{1-r^{2}}+\frac{1-6 r+r^{2}}{1-r^{2}}=2 \frac{1-6 r+r^{2}}{1-r^{2}}
\end{aligned}
$$

for $z \in \Delta, r=|z|$. Thus, $\operatorname{Re} \frac{z H^{\prime}(z)}{H(z)}>0$ for $0 \leq r<3-2 \sqrt{2}=(\sqrt{2}-1)^{2}$. Therefore $r_{S T}\left(\mathcal{T}_{G}\right) \geq(\sqrt{2}-1)^{2}$. Due to the fact that $\min \operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, so $\min \operatorname{Re}\left(\frac{z H^{\prime}(z)}{H(z)}\right)$ is reached by the function $G(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}$ for $z=-r\left(G \in \mathcal{T}_{G}\right)$.

Apart from these, $G^{\prime}(-3+2 \sqrt{2})=0$. Then $r_{L U}\left(\mathcal{T}_{G}\right) \leq|-3+2 \sqrt{2}|=3-$ $2 \sqrt{2}=(\sqrt{2}-1)^{2}$. From these and (4) we get inequalities $(\sqrt{2}-1)^{2} \leq r_{S T}\left(\mathcal{T}_{G}\right) \leq$ $r_{L U}\left(\mathcal{T}_{G}\right) \leq(\sqrt{2}-1)^{2}$, so finally $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=(\sqrt{2}-1)^{2}$.

We have proved the following theorem.
Theorem 9. For $G(z)=\frac{z(1+z)^{2}}{(1-z)^{4}}{\text { we have } r_{S T}}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=(\sqrt{2}-1)^{2}$.

7 Some properties of the class \mathcal{T}_{G} for $G(z)=z(1+z)^{2}$.

Let us study the class \mathcal{T}_{G}, where $G(z)=z(1+z)^{2}$. Thus, $H \in \mathcal{T}_{G} \Longleftrightarrow H(z)=$ $(1+z) \sqrt{z F(z)}, F \in \mathcal{T}$. Then

$$
\begin{equation*}
\frac{z H^{\prime}(z)}{H(z)}=\frac{1}{2}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+3 z}{1+z}\right), \quad F \in \mathcal{T} . \tag{10}
\end{equation*}
$$

Taking into account (10) and Corollary 1 we conclude

$$
\begin{aligned}
2 \operatorname{Re} \frac{z H^{\prime}(z)}{H(z)} & =\operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}+\frac{1+3 z}{1+z}\right) \\
& \geq \frac{1-6 r+r^{2}}{1-r^{2}}+\frac{1-3 r}{1-r}=2 \frac{1-4 r-r^{2}}{1-r^{2}}
\end{aligned}
$$

for $z \in \Delta, r=|z|$. Therefore, $\operatorname{Re} \frac{z H^{\prime}(z)}{H(z)}>0$ for $0 \leq r<\sqrt{5}-2$. Hence $r_{S T}\left(\mathcal{T}_{G}\right) \geq$ $\sqrt{5}-2$. Since $\min \operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}\right)$ is reached by the function F given in Corollary 1, then $\min \operatorname{Re}\left(\frac{z H^{\prime}(z)}{H(z)}\right)$ is reached by the function $H_{0}(z)=\frac{z(1+z)^{2}}{(1-z)^{2}}$ for $z=-r$.

Moreover, $H_{0}^{\prime}(2-\sqrt{5})=0$. This implies $r_{L U}\left(\mathcal{T}_{G}\right) \leq|2-\sqrt{5}|=\sqrt{5}-2$. From these and (4) we have $\sqrt{5}-2 \leq r_{S T}\left(\mathcal{T}_{G}\right) \leq r_{L U}\left(\mathcal{T}_{G}\right) \leq \sqrt{5}-2$. These finally lead us to equalities $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=\sqrt{5}-2$.

We have proved the following theorem.
Theorem 10. For $G(z)=z(1+z)^{2}$ we have $r_{S T}\left(\mathcal{T}_{G}\right)=r_{S}\left(\mathcal{T}_{G}\right)=r_{L U}\left(\mathcal{T}_{G}\right)=\sqrt{5}-$ 2.

References

[1] Golusin G. On typically real functions, Mat. Sb. 27(69), 201-218 (1950).
[2] Goodman A.W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
[3] Hallenbeck D.J., MacGregor T.H., Linear problems and convexity techniques in geometric function theory, Pitman Pub., Boston-Melbourne 1984.
[4] Kirwan W.E., Extremal problems for the typically real functions, Amer. J. Math. 88, 942-954 (1966).
[5] Koczan L., Trąbka-Więcław K., On semi-typically real functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. LXIII, 139-148 (2009).
[6] Koczan L., Trąbka-Więcław K., Subclasses of typically real functions determined by some modular inequalities, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. LXIV, No. 1, 75-80 (2010).
[7] Robertson M.S., On the coefficients of typically real functions, Bull. Amer. Math. Soc. 41, 565-572 (1935).
[8] Rogosinski W.W., Über positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, (German) Math. Z. 35, 93-121 (1932).
[9] Todorov P.G., The radii of starlikness and convexity of order alpha of typically real functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 93-106 (1983).

Department of Mathematics, Mechanical Department Lublin University of Technology
ul. Nadbystrzycka 38D
20-618 Lublin, Poland
e-mail: k.trabka@pollub.pl

[^0]: Received by the editors January 2011.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 30C45,30C55.
 Key words and phrases : Typically real functions, set of local univalence, radius of local univalence, radius of starlikeness, radius of univalence, extreme points, support points.

