Subordination of p-harmonic mappings*

J. Qiao
X. Wang ${ }^{\dagger}$

Abstract

A $2 p(p \geq 1)$ times continuously differentiable complex-valued function $F=u+i v$ in a domain $D \subseteq \mathbb{C}$ is p-harmonic if F satisfies the p-harmonic equation $\Delta^{p} F=\Delta\left(\Delta^{p-1}\right) F=0$, where Δ represents the complex Laplacian operator $$
\Delta=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

In this paper, the main aim is to investigate the subordination of p-harmonic mappings. First, the characterization for p-harmonic mappings to be subordinate are obtained. Second, we get two results on the relation of integral means of subordinate p-harmonic mappings. Finally, we discuss the existence of extreme points for subordination families of p-harmonic mappings. Two sufficient conditions for p-harmonic mappings to be extreme points of the closed convex hulls of the corresponding subordination families are established.

1 Introduction

A $2 p(p \geq 1)$ times continuously differentiable complex-valued function $F=$ $u+i v$ in a domain $D \subseteq \mathbb{C}$ is p-harmonic if F satisfies the p-harmonic equation $\Delta^{p} F=\Delta\left(\Delta^{p-1}\right) F=0$, where Δ represents the complex Laplacian operator

[^0]$$
\Delta=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

A mapping F is p-harmonic in a simply connected domain D if and only if F has the following representation:

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z),
$$

where each G_{p-k+1} is harmonic, i.e., $\Delta G_{p-k+1}(z)=0$ for $k \in\{1, \cdots, p\}$ (cf. [7, Proposition 1]).

Obviously, when $p=1$ (resp. 2), F is harmonic (resp. biharmonic). The properties of harmonic and biharmonic mappings have been investigated by many authors, see $[1,2,3,8,11]$ etc.

Throughout this paper we consider p-harmonic mappings in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

It is known that every composition of a harmonic mapping with an analytic function is harmonic, but this useful fact does not always hold for p-harmonic mappings $(p>1)$. For example, let $F(z)=|z|^{2(p-1)} z$ and $\varphi(z)=z^{2}$. Then F is p-harmonic and φ is analytic in \mathbb{D}. It is easy to show that $F \circ \varphi$ is not p-harmonic. Thus we can not give the definition of subordination of p-harmonic mappings by composition with a Schwarz function as those in the cases of analytic functions and harmonic mappings. Now we introduce the following definition.

Definition 1.1. Let

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z) \text { and } F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be two p-harmonic mappings of \mathbb{D}. We will say that f is subordinate to F and write $f \prec F$ or $f(z) \prec F(z)$ if there exists a Schwarz function φ of \mathbb{D}, that is, φ is analytic, $\varphi(0)=0$ and $|\varphi(z)| \leq|z|$ for $z \in \mathbb{D}$, such that

$$
\begin{equation*}
\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(\varphi(z)) . \tag{1.1}
\end{equation*}
$$

Obviously, when $p=1$, this is the same as the case of harmonic mappings, see $[6,11,21]$ for the details.

Note that for analytic functions f and F, it is known that if F is univalent, then $f(\mathbb{D}) \subset F(\mathbb{D})$ if and only if $f \prec F$ (cf. [10]). This useful property is not valid for p-harmonic mappings, even for the case $p=1$ (cf. [21]). We study this property further. In Section 3, we establish the characterization for p-harmonic mappings to be subordinate, which is stated as Theorem 3.1. The idea of the method used in the proof of our main result comes from [12] which is about the decomposition of harmonic mappings.

In [21], Schaubroeck considered the relation of the integral means of subordinate harmonic mappings. The following is one of the main results in [21], which is a generalization of the corresponding one in [17].

Theorem A. ([21, Theorem 2.4]) Let f and F be harmonic in \mathbb{D}. If $f \prec F$, that is $f(z)=F(\varphi(z))$ for some Schwarz function φ, then $M_{s}(r, f) \leq M_{s}(r, F)$ for $s \geq 1$ and $0 \leq r<1$, where $M_{s}(r, f)$ is the integral mean $\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}}$. Equality occurs for $0<r<1$ only when F is constant or when φ is a rotation, i.e., $\varphi(z)=e^{i \theta} z$.

In the proof of Theorem A , the fact that the harmonicity of f implies the subharmonicity of $|f|$ plays an important role in the corresponding discussions. But this useful property does not always hold for p-harmonic mappings when $p \geq 2$, which can be seen from the following example. Let $F(z)=|z|^{2}-\bar{z}^{2}$. Then $|F|$ is not subharmonic in \mathbb{D}. In Section 4 , by using a different method, we consider the relation of the integral means of subordinate p-harmonic mappings. Our main results are Theorems 4.1 and 4.2, where Theorem 4.1 is a generalization of Theorem A for p-harmonic mappings and Theorem 4.2 is a generalization of [19, Theorem 1].

Extreme points of analytic functions and harmonic mappings play an important role in solving extremal problems. Many references have been in literature, see $[4,5,13,14,18]$ etc. As the third aim of this paper, we study the sufficient conditions for the extreme points of the closed convex hulls of subordination families of p-harmonic mappings. Two results are obtained, which are Theorems 5.1 and 5.2.

Several useful lemmas will be proved in Section 2.

2 Several lemmas

In this section, we will prove several lemmas which are useful for the following discussions.

Lemma 2.1. Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ with $p \geq 2$ be a p-harmonic mapping. If there is some $0<p_{1} \leq p-1$ such that

$$
\Delta^{p_{1}} F(z)=0,
$$

then for each $k \in\left\{p_{1}+1, \cdots, p\right\}, G_{p-k+1} \equiv 0$.
Proof. First we consider the case $p=2$. Then $p_{1}=1$.
For any biharmonic mapping F, assume $F(z)=|z|^{2} G_{1}(z)+G_{2}(z)$. If $\Delta F(z)=$ 0 , then

$$
G_{1}(z)+z\left(G_{1}\right)_{z}(z)+\bar{z}\left(G_{1}\right)_{\bar{z}}(z)=0 .
$$

Thus $G_{1} \equiv 0$. The proof for this case is complete.
In the following we come to consider the case $p>2$. For any p-harmonic mapping F, let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ with $G_{p-k+1}=h_{1, p-k+1}+\bar{h}_{2, p-k+1}$. Assume there exists some $0<p_{1} \leq p-1$ such that $\Delta^{p_{1}} F(z)=0$. Then it follows that

$$
\Delta^{p_{1}}\left(\sum_{k=p_{1}+1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)\right)=0 .
$$

By straight computations,

$$
\begin{aligned}
& \Delta^{p_{1}}\left(\sum_{k=p_{1}+1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)\right) \\
= & 4^{p_{1}}\left(\sum_{k=p_{1}+1}^{p} \frac{\partial^{2 p_{1}}\left(|z|^{2(k-1)} h_{1, p-k+1}(z)\right)}{\partial z^{p_{1}} \partial \bar{z}^{p_{1}}}+\sum_{k=p_{1}+1}^{p} \frac{\partial^{2 p_{1}}\left(|z|^{2(k-1)} \bar{h}_{2, p-k+1}(z)\right)}{\partial z^{p_{1}} \partial \bar{z}^{p_{1}}}\right) \\
= & 4^{p_{1}}\left(\sum_{k=p_{1}+1}^{p}(k-1) \cdots\left(k-p_{1}\right) \bar{z}^{k-p_{1}-1} \frac{\partial^{p_{1}}\left(z^{k-1} h_{1, p-k+1}(z)\right)}{\partial z^{p_{1}}}\right. \\
& \left.+\sum_{k=p_{1}+1}^{p}(k-1) \cdots\left(k-p_{1}\right) z^{k-p_{1}-1} \frac{\partial^{p_{1}}\left(\bar{z}^{k-1} \bar{h}_{2, p-k+1}(z)\right)}{\partial \bar{z}^{p_{1}}}\right) \\
= & 4^{p_{1}} \sum_{k=1}^{p-p_{1}}|z|^{2(k-1)}\left(h_{1, p-p_{1}-k+1}^{*}(z)+\bar{h}_{2, p-p_{1}-k+1}^{*}(z)\right),
\end{aligned}
$$

where for each $k \in\left\{1, \cdots, p-p_{1}\right\}$,
$h_{1, p-p_{1}-k+1}^{*}(z)= \begin{cases}\left(k+p_{1}-1\right) \cdots k\left(\frac{\partial^{p_{1}}\left(z^{k+p_{1}-1} h_{1, p-p_{1}-k+1}(z)\right)}{\partial z^{p_{1}}}\right) / z^{k-1} & \text { if } z \neq 0 \\ \left(k+p_{1}-1\right) \cdots k h_{1, p-p_{1}-k+1}(0) & \text { if } z=0\end{cases}$
and
$h_{2, p-p_{1}-k+1}^{*}(z)=\left\{\begin{array}{ll}\left(k+p_{1}-1\right) \cdots k\left(\frac{\partial^{p_{1}}\left(z^{k+p_{1}-1} h_{2, p-p_{1}-k+1}(z)\right)}{\partial z^{p_{1}}}\right) / z^{k-1} & \text { if } z \neq 0 \\ \left(k+p_{1}-1\right) \cdots k h_{2, p-p_{1}-k+1}(0) & \text { if } z=0\end{array}\right.$.
Let

$$
\begin{gathered}
F^{*}(z)=\sum_{k=1}^{p_{2}}|z|^{2(k-1)}\left(h_{1, p_{2}-k+1}^{*}(z)+\bar{h}_{2, p_{2}-k+1}^{*}(z)\right) \\
H_{p_{2}}(z)=|z|^{2\left(p_{2}-1\right)}\left(h_{1,1}^{*}(z)+\bar{h}_{2,1}^{*}(z)\right)
\end{gathered}
$$

and

$$
H_{p_{2}-1}(z)=H_{p_{2}}(z)-F^{*}(z)=-\sum_{k=1}^{p_{2}-1}|z|^{2(k-1)}\left(h_{1, p_{2}-k+1}^{*}(z)+\bar{h}_{2, p_{2}-k+1}^{*}(z)\right)
$$

where $p_{2}=p-p_{1}$. Then $F^{*} \equiv 0$. It follows that

$$
H_{p_{2}}=H_{p_{2}-1}
$$

and $H_{p_{2}}$ is $\left(p_{2}-1\right)$-harmonic. Thus

$$
\begin{aligned}
\Delta^{p_{2}-1} H_{p_{2}}(z) & =4^{p_{2}-1}\left(\frac{\partial^{2\left(p_{2}-1\right)}\left(|z|^{2 p_{2}} h_{1,1}^{*}(z)\right)}{\partial z^{p_{2}-1} \partial \bar{z}^{p_{2}-1}}+\frac{\partial^{2\left(p_{2}-1\right)}\left(|z|^{2 p_{2}} \bar{h}_{2,1}^{*}(z)\right)}{\partial z^{p_{2}-1} \partial \bar{z}^{p_{2}-1}}\right) \\
& =4^{p_{2}-1} p_{2}!\left(\bar{z} \frac{\partial^{p_{2}-1}\left(z^{p_{2}} h_{1,1}^{*}(z)\right)}{\partial z^{p_{2}-1}}+z \frac{\partial^{p_{2}-1}\left(\bar{z}^{p_{2}} \bar{h}_{2,1}^{*}(z)\right)}{\partial \bar{z}^{p_{2}-1}}\right) \\
& =0 .
\end{aligned}
$$

Hence $h_{1,1}^{*} \equiv 0, h_{2,1}^{*} \equiv 0$ and $F^{*}(z)=\sum_{k=1}^{p_{2}-1}|z|^{2(k-1)}\left(h_{1, p_{2}-k+1}^{*}(z)+\bar{h}_{2, p_{2}-k+1}^{*}(z)\right) \equiv$ 0 . Similarly, we have $h_{1, p_{2}-k+1}^{*} \equiv 0$ and $h_{2, p_{2}-k+1}^{*} \equiv 0$ for each $k \in\left\{1, \cdots, p_{2}-1\right\}$. Equations (2.1) and (2.2) show that $h_{1, p-p_{1}-k+1} \equiv 0$ and $h_{2, p-p_{1}-k+1} \equiv 0$ for all $k \in\left\{1, \cdots, p-p_{1}\right\}$. Hence $G_{p-k+1} \equiv 0$ for each $k \in\left\{p_{1}+1, \cdots, p\right\}$.

By using the similar proof method as in Lemma 2.1, we have the following uniqueness of p-harmonic mappings.

Lemma 2.2. Let

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)
$$

and

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be two p-harmonic mappings. Then $f=F$ if and only if $g_{p-k+1}=G_{p-k+1}$ for all $k \in\{1, \cdots, p\}$.

By Lemma 2.2, the following useful result easily follows.
Lemma 2.3. Let

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)
$$

and

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be two p-harmonic mappings. Then $f \prec F$ if and only if there exists some Schwarz function φ such that $g_{p-k+1}(z)=G_{p-k+1}(\varphi(z))$ for each $k \in\{1, \cdots, p\}$.

3 Characterization for subordination

In this section, using the decomposition of harmonic mappings and the relation of regions for subordinate harmonic mappings, we give a characterization of subordination for p-harmonic mappings.

In [12], authors considered the decomposition of harmonic mappings and the main tool in the proofs was the theory about the existence and uniqueness of solutions to Beltrami equation with a given dilatation. In the theory of quasiconformal mappings, it is known that for any measurable function μ with $\|\mu\|_{\infty}<1$,
the Beltrami equation $f_{\bar{z}}=\mu f_{z}$ admits a homeomorphic solution F, and every solution has the form $f=\psi \circ F$ for some analytic function ψ (cf. [16]). A complexvalued harmonic mapping with positive Jacobian in \mathbb{D} is known to satisfy the Beltrami equation of second kind $\overline{f_{\bar{z}}}=a f_{z}$, where a is an analytic function with the property $|a(z)|<1$ in \mathbb{D}. On the other hand, every solution of such an equation is harmonic. Moreover, if $\|a\|_{\infty}<1$, then the equation admits homeomorphic solutions (cf. [15]).

We assume that all harmonic mappings mentioned in this section are sensepreserving, i.e. have a positive Jacobian.

In [12], authors proved
Theorem B. Let f be a complex-valued nonconstant harmonic mapping defined on a domain $D \subset \mathbb{C}$ and let a be its dilatation function. Then in order that f have a decomposition $f=F \circ \varphi$ for some function φ analytic in D and some univalent harmonic mapping F defined on $\varphi(D)$, it is necessary and sufficient that $|a(z)| \neq 1$ on D and $a\left(z_{1}\right)=a\left(z_{2}\right)$ wherever $f\left(z_{1}\right)=f\left(z_{2}\right)$. Under these conditions the representation is unique up to conformal mappings; any other representation $f=\tilde{F} \circ \tilde{\varphi}$ has the form $\tilde{F}=F \circ \psi^{-1}$ and $\tilde{\varphi}=\psi \circ \varphi$ for some conformal mapping ψ defined on $\varphi(D)$.

Using Theorem B, we obtain the following lemma.
Lemma 3.1. Let f and g be two harmonic mappings of \mathbb{D}, where $f(0)=g(0)$ and g is univalent. Then $f \prec g$ if and only if $f(\mathbb{D}) \subset g(\mathbb{D}),\left|a_{f}(z)\right| \neq 1, a_{f}\left(z_{1}\right)=a_{f}\left(z_{2}\right)$ wherever $f\left(z_{1}\right)=f\left(z_{2}\right)$ and $\left(g^{-1}\right)_{\bar{w}}=\mu\left(g^{-1}\right)_{w}$, where a_{f} is the dilatation of f and $\mu=-\overline{a_{f} \circ f^{-1}}$.
Proof. Assume $f \prec g$. Then there is some Schwarz function φ such that $f=g \circ \varphi$. The necessity follows from Theorem B.

Now, we come to prove the sufficiency. By the assumptions and Theorem B, we see that there is an univalent harmonic mapping f_{1} and an analytic function φ_{1} such that $f=f_{1} \circ \varphi_{1}$. Since $\left(g^{-1}\right)_{\bar{w}}=\mu\left(g^{-1}\right)_{w}$, by the uniqueness of quasiconformal mappings with a prescribed complex dilatation, we conclude that $f_{1}=g \circ \psi$ for some conformal mapping ψ (cf. [16]). Thus

$$
f=f_{1} \circ \varphi_{1}=(g \circ \psi) \circ \varphi_{1}=g \circ \varphi,
$$

where $\varphi=\psi \circ \varphi_{1}$. From $f(\mathbb{D}) \subset g(\mathbb{D})$, we deduce that φ is a Schwarz function and then $f \prec g$.

Now, we are ready to state our main result of this section.

Theorem 3.1. Let

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)
$$

and

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be two p-harmonic mappings with $g_{p-k+1}(0)=G_{p-k+1}(0)$ for $k \in\{1, \cdots, p\}$. If all $G_{p-k+1}(k \in\{1, \cdots, p\})$ are univalent harmonic mappings, then $f \prec F$ if and only if
for each $k \in\{1, \cdots, p\}, g_{p-k+1}(\mathbb{D}) \subset G_{p-k+1}(\mathbb{D}),\left|a_{p-k+1}(z)\right| \neq 1, a_{p-k+1}\left(z_{1}\right)=$ $a_{p-k+1}\left(z_{2}\right)$ wherever $g_{p-k+1}\left(z_{1}\right)=g_{p-k+1}\left(z_{2}\right),\left(G_{p-k+1}^{-1}\right)_{\bar{w}}=\mu_{p-k+1}\left(G_{p-k+1}^{-1}\right)_{w}$, where a_{p-k+1} is the dilatation of $g_{p-k+1}, \mu_{p-k+1}=-\bar{a}_{p-k+1} \circ \bar{g}_{p-k+1}^{-1}$ and $G_{1}^{-1} \circ g_{1}=$ $\cdots=G_{p}^{-1} \circ g_{p}$.

The proof easily follows from Lemmas 2.3 and 3.1.

4 Integral means

In [21], Schaubroeck studied the relation of the integral means for subordinate harmonic mappings. By using a different method, we generalize one of the main results in [21], i.e., Theorem A, to the case of p-harmonic mappings. Our result is as follows.

Theorem 4.1. Let

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z) \text { and } F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be two p-harmonic mappings of \mathbb{D}. Suppose $f \prec F$. Then for any $s \geq 1$ and $0 \leq r<$ $1, M_{s}(r, f) \leq M_{s}(r, F)$, where $M_{s}(r, f)$ is the integral mean $\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}}$. Equality occurs for $0<r<1$ only when G_{p-k+1} is constant for each $k \in\{1, \cdots, p\}$ or when φ is a rotation $\varphi(z)=e^{i \theta} z$ for some $\theta \in[0,2 \pi]$.

Proof. Since $f \prec F$, it follows that $f(0)=F(0)$, and then $|f(0)|^{s}=|F(0)|^{s}$.
Fix $r \in(0,1)$ and let

$$
f_{r}(z)=\sum_{k=1}^{p} r^{2(k-1)} g_{p-k+1}(z) \text { and } F_{r}(z)=\sum_{k=1}^{p} r^{2(k-1)} G_{p-k+1}(z) .
$$

It is obvious that f_{r} and F_{r} are harmonic mappings. Since $f \prec F$, Lemma 2.3 implies that there exists some Schwarz function φ such that $g_{p-k+1}(z)=G_{p-k+1}(\varphi(z))$ for each $k \in\{1, \cdots, p\}$. It follows that $f_{r} \prec F_{r}$. By Theorem A, we have $M_{s}\left(r_{1}, f_{r}\right) \leq M_{s}\left(r_{1}, F_{r}\right)$ for any $r_{1} \in(0,1)$. Hence

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|f_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta & =\int_{0}^{2 \pi}\left|\sum_{k=1}^{p} r^{2(k-1)} g_{p-k+1}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta \\
& \leq \int_{0}^{2 \pi}\left|F_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta \\
& =\int_{0}^{2 \pi}\left|\sum_{k=1}^{p} r^{2(k-1)} G_{p-k+1}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta
\end{aligned}
$$

Let $r_{1}=r$. Then

$$
\int_{0}^{2 \pi}\left|\sum_{k=1}^{p} r^{2(k-1)} g_{p-k+1}\left(r e^{i \theta}\right)\right|^{s} d \theta \leq \int_{0}^{2 \pi}\left|\sum_{k=1}^{p} r^{2(k-1)} G_{p-k+1}\left(r e^{i \theta}\right)\right|^{s} d \theta
$$

so

$$
M_{s}(r, f) \leq M_{s}(r, F)
$$

Assume that

$$
M_{s}(r, f)=M_{s}(r, F),
$$

that is,

$$
M_{s}\left(r, f_{r}\right)=M_{s}\left(r, F_{r}\right) .
$$

A similar argument as in the proof of Theorem A shows that F_{r} is constant or φ is a rotation $\varphi(z)=e^{i \theta} z$ for some $\theta \in[0,2 \pi]$. It is easy to show that $F_{r} \equiv c_{r}$ for each $r \in(0,1)$ if and only if $G_{p-k+1}=c_{p-k+1}$ for $k \in\{1, \cdots, p\}$, where c_{r} and c_{p-k+1} are constants depending only on r and k, respectively. The proof is complete.

In [19], Nunokawa, Saitoh, Owa and Takahashi discussed the relation of subordination and integral means of real harmonic mappings. Their main result is [19, Theorem 1]. In the following, we find an analogue of [19, Theorem 1] for p-harmonic mappings.

Theorem 4.2. Suppose that

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z) \text { and } F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

are two p-harmonic mappings of \mathbb{D}. If $f \prec F$, then for any r with $0 \leq r<1$ and any s with $s \geq 1$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{s} d \theta \leq \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i \theta}\right)\right|^{s} d \theta \tag{4.1}
\end{equation*}
$$

Proof. It follows from $f \prec F$ that $\operatorname{Re} f(0)=\operatorname{Re} F(0)$, and then $|\operatorname{Re} f(0)|^{s}=|\operatorname{Re} F(0)|^{s}$.
Fix $r \in(0,1)$ and let

$$
f_{r}(z)=\sum_{k=1}^{p} r^{2(k-1)} g_{p-k+1}(z) \text { and } F_{r}(z)=\sum_{k=1}^{p} r^{2(k-1)} G_{p-k+1}(z) .
$$

Then both f_{r} and F_{r} are harmonic mappings. By Lemma 2.3, $f_{r} \prec F_{r}$ and then $f_{r}(0)=F_{r}(0)$.

Let $u_{r}(z)=\operatorname{Re} f_{r}(z)$ and $U_{r}(z)=\operatorname{Re} F_{r}(z)$. Since $f_{r} \prec F_{r}$, we know $u_{r}(z)=$ $U_{r}(\varphi(z))$ for some Schwarz function φ. Let q_{r}, Q_{r} be analytic functions whose real parts are u_{r} and U_{r}, respectively, and $q_{r}(0)=Q_{r}(0)$. Then

$$
u_{r}(z)=\frac{q_{r}(z)+\bar{q}_{r}(z)}{2} \text { and } U_{r}(z)=\frac{Q_{r}(z)+\bar{Q}_{r}(z)}{2}
$$

Obviously, $u_{r}(z)=U_{r}(\varphi(z))$ if and only if $q_{r}(z)+\bar{q}_{r}(z)=Q_{r}(\varphi(z))+\bar{Q}_{r}(\varphi(z))$. Thus $q_{r}(z)=Q_{r}(\varphi(z))$ which implies that $q_{r} \prec Q_{r}$. By [19, Theorem 1], for any $r_{1} \in(0,1)$ and $s \geq 1$,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} q_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta \leq \int_{0}^{2 \pi}\left|\operatorname{Re} Q_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta
$$

That is,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} f_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta \leq \int_{0}^{2 \pi}\left|\operatorname{Re} F_{r}\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta
$$

and, thus for $r_{1}=r$ and $s \geq 1$,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} \sum_{k=1}^{p} r^{2(k-1)} g_{p-k+1}\left(r e^{i \theta}\right)\right|^{s} d \theta \leq \int_{0}^{2 \pi}\left|\operatorname{Re} \sum_{k=1}^{p} r^{2(k-1)} G_{p-k+1}\left(r e^{i \theta}\right)\right|^{s} d \theta .
$$

The proof is complete.

We remark that the inequality (4.1) does not hold in general for p-harmonic mappings f and F when $0<s<1$. This can be seen from the following result.

Theorem 4.3. Let $f(z)=|z|^{2(p-1)} g(z)$ and $F(z)=|z|^{2(p-1)} G(z)$, where g and G are analytic functions such that $\operatorname{Re} G(z)>0$ for any $z \in \mathbb{D}$. Suppose $f \prec F$. Then for any r with $0 \leq r<1$ and any s with $0<s<1$,

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{s} d \theta \geq \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i \theta}\right)\right|^{s} d \theta
$$

Proof. It follows from $f(0)=F(0)=0$ that $|\operatorname{Re} f(0)|^{s}=|\operatorname{Re} F(0)|^{s}$.
Since $\operatorname{Re} G(z)>0$ and $f \prec F$, for any r_{1} and r with $0<r_{1}<r<1$, we have for some Schwarz function φ,

$$
\begin{aligned}
\operatorname{Re} f\left(r_{1} e^{i \theta}\right) & =\left|\operatorname{Re} f\left(r_{1} e^{i \theta}\right)\right| \\
& =r_{1}^{2(p-1)} \operatorname{Re} G\left(\varphi\left(r_{1} e^{i \theta}\right)\right) \\
& =\frac{r_{1}^{2(p-1)}}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} G\left(r e^{i v}\right) \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v \\
& =\frac{r_{1}^{2(p-1)}}{2 \pi r^{2(p-1)}} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right| \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v .
\end{aligned}
$$

By Hölder's inequality, we obtain for any s with $0<s<1$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right|^{s} \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right|^{s}\left(\operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)}\right)^{s}\left(\operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)}\right)^{1-s} d v \\
\leq & \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right| \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v\right)^{s} \times\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v\right)^{1-s} \\
= & \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right| \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v\right)^{s},
\end{aligned}
$$

and then

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r_{1} e^{i \theta}\right)\right|^{s} d \theta & =\frac{r_{1}^{2 s(p-1)}}{r^{2 s(p-1)}} \int_{0}^{2 \pi}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right| \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d v\right)^{s} d \theta \\
& \geq \frac{r_{1}^{2 s(p-1)}}{r^{2 s(p-1)}} \int_{0}^{2 \pi}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right|^{s} \operatorname{Re} \frac{r e^{i v}+\varphi\left(r_{1} e^{i \theta}\right)}{r e^{i v}-\varphi\left(r_{1} e^{i \theta}\right)} d \theta\right) d v \\
& =\frac{r_{1}^{2 s(p-1)}}{r^{2 s(p-1)}} \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right|^{s} d v .
\end{aligned}
$$

Letting $r_{1} \rightarrow r$ implies

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{s} d \theta \geq \int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i v}\right)\right|^{s} d v=\int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i \theta}\right)\right|^{s} d \theta
$$

Remark 4.1. Let $f(z)=|z|^{2(p-1)}(1-z)$ and $F(z)=|z|^{2(p-1)}\left(1-z^{n}\right)$ for large enough n in Theorem 4.3. Then both f and F are p-harmonic and

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{s} d \theta>\int_{0}^{2 \pi}\left|\operatorname{Re} F\left(r e^{i \theta}\right)\right|^{s} d \theta
$$

for $0<s<1$, which shows that the requirement " $s \geq 1$ " in Theorem 4.2 is necessary.

5 Extreme points of closed convex hulls of subordination families

Before the statement of the main results, we first introduce the following concept.
Definition 5.1. Let X be a topological vector space over the field of complex numbers and D a set of X. A point $x \in D$ is called an extreme point of D if it has no representation of the form $x=t y+(1-t) z(0<t<1)$ as a proper convex combination of two distinct points y and z in D.

We denote by $E D$ the set of all extreme points of D and by $H D$ the closed convex hull of D, that is, the smallest closed convex set containing D (cf. [10, $\left.\mathrm{P}_{281}\right]$).

In [14], the authors proved two results on the extreme points of the family of functions subordinate to a fixed analytic function. The main aim of this section is to generalize these results to the case of p-harmonic mappings.

Theorem 5.1. Let $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be p-harmonic in \mathbb{D} with

$$
G_{p-k+1}(z)=G_{p-k+1}^{(1)}(z)+\bar{G}_{p-k+1}^{(2)}(z)
$$

such that $G_{p-k+1}^{(1)}(0)=0$ and $G_{p-k+1}^{(2)}(0)=0$, and $s(F)$ be the family of p-harmonic mappings subordinate to F. Then each mapping $f(z)=F(x z)$ with $|x|=1$ belongs to EHs (F).

Proof. Suppose, on the contrary, that $f(z)=F(x z)$ doesn't belong to $E H s(F)$ for some x with $|x|=1$. Then there exist f_{1} and $f_{2} \in H s(F)$ such that $f_{1} \neq f_{2}$ and

$$
f(z)=F(x z)=t f_{1}(z)+(1-t) f_{2}(z),
$$

where $0<t<1$,

$$
f_{1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{1, p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)}\left(G_{1, p-k+1}^{(1)}(z)+\bar{G}_{1, p-k+1}^{(2)}(z)\right)
$$

and

$$
f_{2}(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{2, p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)}\left(G_{2, p-k+1}^{(1)}(z)+\bar{G}_{2, p-k+1}^{(2)}(z)\right) .
$$

Obviously, $G_{1, p-k+1}^{(1)}(0)=G_{1, p-k+1}^{(2)}(0)=G_{2, p-k+1}^{(1)}(0)=G_{2, p-k+1}^{(2)}(0)=0$ for each $k \in\{1, \cdots, p\}$.

By Lemma 2.2, we get

$$
G_{p-k+1}(x z)=t G_{1, p-k+1}(z)+(1-t) G_{2, p-k+1}(z)
$$

for each $k \in\{1, \cdots, p\}$. And then, using $G_{1, p-k+1}^{(1)}(0)=G_{1, p-k+1}^{(2)}(0)=$ $G_{2, p-k+1}^{(1)}(0)=G_{2, p-k+1}^{(2)}(0)=0$, we have

$$
G_{p-k+1}^{(1)}(x z)=t G_{1, p-k+1}^{(1)}(z)+(1-t) G_{2, p-k+1}^{(1)}(z)
$$

and

$$
G_{p-k+1}^{(2)}(x z)=t G_{1, p-k+1}^{(2)}(z)+(1-t) G_{2, p-k+1}^{(2)}(z)
$$

for each $k \in\{1, \cdots, p\}$. Hence either $G_{p-k+1}^{(1)}(x z)$ does not belong to $E H s\left(G_{p-k+1}^{(1)}\right)$ or $G_{p-k+1}^{(2)}(x z)$ does not belong to $E H s\left(G_{p-k+1}^{(2)}\right)$ for each $1 \leq k \leq p$, which contradicts [14, Theorem 6]. Hence each $f(z)=F(x z)(|x|=1)$ belongs to $E H s(F)$.

Denotes by $\mathcal{H}^{s}(0<s \leq \infty)$ the class of p-harmonic mappings in \mathbb{D} subject to the condition:

$$
\mathcal{M}_{s}(r, F)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{s} d \theta\right)^{\frac{1}{s}}
$$

remains bounded as $r=|z| \rightarrow 1$. The norm is defined as

$$
\|F\|_{s}=\lim _{r \rightarrow 1} \mathcal{M}_{s}(r, F)
$$

It is evident that $\mathcal{H}^{s_{1}} \supset \mathcal{H}^{s_{2}}$ if $0<s_{1}<s_{2} \leq \infty$. Obviously, if

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)}\left(G_{p-k+1}^{(1)}(z)+\bar{G}_{p-k+1}^{(2)}(z)\right),
$$

then

$$
\|F\|_{2}^{2}=\left\|\sum_{k=1}^{p} G_{p-k+1}^{(1)}\right\|_{2}^{2}+\left\|\sum_{k=1}^{p} G_{p-k+1}^{(2)}\right\|_{2}^{2}
$$

that is, $\sum_{k=1}^{p} G_{p-k+1}^{(1)}$ and $\sum_{k=1}^{p} G_{p-k+1}^{(2)}$ belong to the space H^{2} for analytic functions, see [9].

In order to state the next result, we introduce a concept.
Definition 5.2. An inner function is an analytic function φ in \mathbb{D} with $|\varphi(z)| \leq 1$ and $\left|\varphi\left(e^{i \theta}\right)\right|=1$ for almost all θ (cf. [9]).

Theorem 5.2. Let

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)
$$

be p-harmonic in \mathbb{D} and $s(F)$ be the family of mappings subordinate to F. Suppose that $F \in \mathcal{H}^{s}$, where $2 \leq s<\infty$. If φ is an inner function with $\varphi(0)=0$, then $f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(\varphi(z)) \in E H s(F)$.

Proof. The proof of Theorem 5.2 easily follows from the similar reasoning as in the proof of [14, Theorem 7] and the following lemma.

Lemma 5.1. Let $f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)$ and $F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)$ be two p-harmonic mappings. Suppose $f \prec F$ and $F \in \mathcal{H}^{2}$. Then $\|f\|_{2}=\|F\|_{2}$ if and only if there is some inner function φ with $\varphi(0)=0$ such that

$$
\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(\varphi(z))
$$

Proof. Suppose

$$
f(z)=\sum_{k=1}^{p}|z|^{2(k-1)} g_{p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)}\left(g_{p-k+1}^{(1)}(z)+\bar{g}_{p-k+1}^{(2)}(z)\right)
$$

and

$$
F(z)=\sum_{k=1}^{p}|z|^{2(k-1)} G_{p-k+1}(z)=\sum_{k=1}^{p}|z|^{2(k-1)}\left(G_{p-k+1}^{(1)}(z)+\bar{G}_{p-k+1}^{(2)}(z)\right) .
$$

Since

$$
\|f\|_{2}^{2}=\left\|\sum_{k=1}^{p} g_{p-k+1}^{(1)}\right\|_{2}^{2}+\left\|\sum_{k=1}^{p} g_{p-k+1}^{(2)}\right\|_{2}^{2}
$$

and

$$
\|F\|_{2}^{2}=\left\|\sum_{k=1}^{p} G_{p-k+1}^{(1)}\right\|_{2}^{2}+\left\|\sum_{k=1}^{p} G_{p-k+1}^{(2)}\right\|_{2}^{2}
$$

we know that $\|f\|_{2}=\|F\|_{2}$ if and only if

$$
\left\|\sum_{k=1}^{p} g_{p-k+1}^{(1)}\right\|_{2}^{2}+\left\|\sum_{k=1}^{p} g_{p-k+1}^{(2)}\right\|_{2}^{2}=\left\|\sum_{k=1}^{p} G_{p-k+1}^{(1)}\right\|_{2}^{2}+\left\|\sum_{k=1}^{p} G_{p-k+1}^{(2)}\right\|_{2}^{2}
$$

It follows from $f \prec F$ and Lemma 2.3 that $\sum_{k=1}^{p} g_{p-k+1}^{(1)} \prec \sum_{k=1}^{p} G_{p-k+1}^{(1)}$ and $\sum_{k=1}^{p} g_{p-k+1}^{(2)} \prec \sum_{k=1}^{p} G_{p-k+1}^{(2)}$. By [10, Theorem 6.3], we have

$$
\left\|\sum_{k=1}^{p} g_{p-k+1}^{(1)}\right\|_{2} \leq\left\|\sum_{k=1}^{p} G_{p-k+1}^{(1)}\right\|_{2}
$$

and

$$
\left\|\sum_{k=1}^{p} g_{p-k+1}^{(2)}\right\|_{2} \leq\left\|\sum_{k=1}^{p} G_{p-k+1}^{(2)}\right\|_{2} .
$$

Hence

$$
\left\|\sum_{k=1}^{p} g_{p-k+1}^{(1)}\right\|_{2}=\left\|\sum_{k=1}^{p} G_{p-k+1}^{(1)}\right\|_{2}
$$

and

$$
\left\|\sum_{k=1}^{p} g_{p-k+1}^{(2)}\right\|_{2}=\left\|\sum_{k=1}^{p} G_{p-k+1}^{(2)}\right\|_{2} .
$$

From [20, Theorem 3] the proof follows.

References

[1] Z. Abdulhadi and Y. Abu-Muhanna, Landau's theorem for biharmonic mappings. J. Math. Anal. Appl. 338 (2008), 705-709.
[2] Z. Abdulhadi, Y. Abu-Muhanna and S. Khuri, On univalent solutions of the biharmonic equation. J. Inequal. Appl. 2005 (2005), 469-478.
[3] Z. Abdulhadi, Y. Abu-Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation. Appl. Math. Comput. 177 (2006), 346-351.
[4] Y. Abu-Muhanna, On extreme points of subordination families. Proc. Amer. Math. Soc. 87 (1983), 439-443.
[5] Y. Abu-Muhanna and D. J. Hallenbeck, Subordination families and extreme points. Trans. Amer. Math. Soc. 308 (1988), 83-89.
[6] H. A. Al-Kharsani, An application of subordination on harmonic function. J. Inequal. Pure Appl. Math. 8 (2007), 109, 1-8.
[7] Sh. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings. J. Math. Anal. Appl. 373 (2011), 102-110.
[8] J. G. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[9] P. Duren, Theory of H^{p} spaces. New York, Academic Press, 1970.
[10] P. Duren, Univalent Functions. New York, Springer-Verlag, 1983.
[11] P. Duren, Harmonic mappings in the plane. New York, Cambridge Univ. Press, 2004.
[12] P. Duren and W. Hengartner, A decomposition theorem for planar harmonic mappings. Proc. Amer. Math. Soc. 124 (1996), 1191-1195.
[13] D. J. Hallenbeck and K. T. Hallenbeck, Classes of analytic functions subordinate to convex functions and extreme points. J. Math. Anal. Appl. 282 (2003), 792-800.
[14] D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme point theory. Pacific J. Math. 50 (1974), 455-468.
[15] W. Hengartner and G. Schober, Harmonic mappings with given dilatation. J. London Math. Soc. 33 (1986), 473-483.
[16] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane. Berlin, 2nd ed., Springer-Verlag, 1973.
[17] J. E. Littlewood, On inequalities in the theory of functions. Proc. London Math. Soc. 23 (1925), 481-519.
[18] T. H. MacGregor, Applications of extreme point theory to univalent functions. Michigan Math. J. 19 (1972), 361-376.
[19] M. Nunokawa, H. Saitoh, Sh. Owa and N. Takahashi, Majorization of subordinate harmonic functions. RIMS Kokyuroku 1276 (2002), 57-60.
[20] J. V. Ryff, Subordinate H^{p} functions. Duke Math. J. 33 (1966), 347-354.
[21] L. E. Schaubroeck, Subordination of planar harmonic functions. Complex Variables 41 (2000), 163-178.

Department of Mathematics, Hebei University, Baoding, Hebei 071002,
Peoples Republic of China.
and
Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081,
Peoples Republic of China.
Email: qiaojinjing1982@yahoo.com.cn
Department of Mathematics, Hunan Normal University,
Changsha, Hunan 410081,
Peoples Republic of China.
Email: xtwang@hunnu.edu.cn"

[^0]: *The research was partly supported by NSFs of China (No. 11071063)
 ${ }^{\dagger}$ Corresponding author
 Received by the editors November 2010 - In revised form in March 2011.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : Primary: 30C65, 30C45; Secondary: 30C20.
 Key words and phrases : p-harmonic mapping, subordination, integral mean, extreme point.

