Finite Groups containing Certain Abelian TI-subgroups

M. Reza Salarian

Abstract

We determine the structure of finite groups whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p, p a prime, are TI-subgroups.

1 Introduction

A subgroup *K* of a finite group *G* is called a TI-subgroup of *G* if $K \cap K^g = 1$ or *K* for each $g \in G$. The classification of the finite groups containing certain TI-subgroups are of special interest in group theory. Walls in [4] has described the finite groups all of whose subgroups are TI-subgroups. Recently in [2], finite groups all of whose abelian subgroups are TI-subgroups are classified. In this article we classify all finite groups whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p are TI-subgroups, where p is a prime dividing the order of *G*.

Throughout this article all the groups are finite and *G* is a finite group whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p are TI-subgroups, where p is a prime dividing the order of *G*. We follow [1] for notation in group theory. In this paper we shall prove the following theorems.

Theorem 1.1. Let G be a group of even order and $z \in G$ be an involution, then $C_G(z)$ is nilpotent. Furthermore, if $C_G(t)$ is not a 2-group for some involution $t \in G$, then G is solvable.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 41-45

Received by the editors June 2010.

Communicated by M. Van den Bergh.

²⁰⁰⁰ Mathematics Subject Classification : 20D05.

Key words and phrases : Finite groups, TI groups, solvable groups.

A finite group *H* is called a *CIT-group* if $C_H(t)$ is 2-group for each involution $t \in H$. Theorem 1.1 shows that if *G* is nonsolvable, then *G* is a CIT-group. The next theorem shows that there are few simple groups whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p, p a prime, are TI-subgroups.

Theorem 1.2. Let G be a nonsolvable group, then G is isomorphic to $L_2(4)$, $L_2(7)$ or $L_2(9)$.

In the next theorem we assume that *G* is solvable.

Theorem 1.3. Let G be a solvable group, then one of the following holds.

i) *G is nilpotent*.

ii) $G \cong S_4$ or A_4 .

iii) Either G is of odd order or G has a normal 2-complement and a Sylow 2-subgroup of G is cyclic or is isomorphic to Q_8 .

2 Proofs of theorems 1.1 and 1.3

In this section, we assume that *G* is a finite group of even order all of whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p are TI-subgroups, where *p* is a prime dividing the order of *G*. We refer the reader to [1] for information on coprime action theorem and Frobenius' normal *p*-complement theorem.

Lemma 2.1. Let *K* be a TI-subgroup of a group *G* and Let *T* a non-trivial normal subgroup of *G* contained in *K*. Then *K* is also normal in *G*.

Proof: Since $T \le K^g \cap K$ for all $g \in G$ and K is a TI-subgroup of G we obtain $K^g = K$, for each $g \in G$. This proves the lemma. ■

Let *S* be a Sylow 2-subgroup of the group *G* and $z \in S$ be an involution. Then we put $H = C_G(z)$, the centralizer of *z* in *G*. Using this notation we prove the following lemma.

Lemma 2.2. The subgroup H is nilpotent. Furthermore, if T is any cyclic p-subgroup of H, then $H = N_G(T)$, for an odd prime number p.

Proof: Let *p* be an odd prime number, $Q \in Syl_p(H)$ and $1 \neq x \in Q$ be a *p*-element. Set $T = \langle x \rangle$ and $R = N_G(T)$, then $z \in R$. We have $U = \langle z, T \rangle$ is cyclic and hence it is a TI-subgroup of *G*. Now by Lemma 2.1, we get that *U* is normal in $\langle R, H \rangle$. This gives us that $\langle z \rangle$ is normal in *R* and *T* is normal in *H*. Hence R = H. Let $1 \neq t \in H$ be an involution. Then by Lemma 2.1, we have $Y = \langle z, t \rangle$ is normal in *H*. Therefore $O(H) \leq C_G(t)$. Now let $1 \neq r \in H$ be a 2-element. Then $\langle r \rangle^{O(H)} \cap \langle r \rangle \neq 1$. Therefore $\langle r \rangle$ is normalized by O(H). By this and since each cyclic subgroup of O(H) is normal in *H*, we get that *H* is nilpotent and the lemma is proved.

Lemma 2.3. Assume that $N_G(P)$ has no normal 2-complement, for some 2-subgroup $1 \neq P$ of G. Then $N_G(P)$ is isomorphic to A_4 or S_4 .

Proof: Set $K = N_G(P)$ and let V be a minimal normal 2-subgroup of K. Then *V* is elementary abelian and we may assume that $z \in V$. By Lemma 2.2, and as *K* has no normal 2-complement, we conclude that *V* is not cyclic. Let $1 \neq C \leq V$ be a subgroup of index 2 in V. Then as V is minimal normal in K and C is a TI-group, we get that $C^g \cap C = 1$ for some $1 \neq g \in K$. This tells us that V is of order 4. By Lemma 2.2, we obtain that $C_K(V)$ is nilpotent. Using this and since K has no normal 2-complement, we conclude that $K/C_K(V)$ is of order 3 or isomorphic to S_3 . Assume that $Q \in Syl_{\nu}(C_K(V))$, p an odd prime, and $x \in Z(Q)$ be of order *p*. Then by Lemma 2.1, $\langle V, x \rangle$ is normal in *K*. This gives that $\langle x \rangle$ is normal in K. Now by Lemma 2.1, we get that $\langle x, z \rangle$ is normal in K. But this gives that $K \leq H$ and then Lemma 2.2 implies that K has a normal 2-complement, which is a contradiction. Therefore $O(C_K(V)) = 1$ and hence $C_K(V) = O_2(K)$. We have $V \leq Z(O_2(K))$, as V is a minimal normal subgroup of K. Assume that $O_2(K) \neq V$, ten there is an abelian subgroup $W < O_2(K)$ of order 8 containing V. By Lemma 2.1, *W* is normal in *K*. Let $\langle s \rangle \in Syl_3(K)$, then *W*/*V* is $\langle s \rangle$ -invariant. This tells us that $C_W(s)$ is of order two. Lemma 2.1 implies that $\langle z, C_W(s) \rangle$ is normal in $\langle W, s \rangle$. But this gives that $s \in H$ and then $s \in C_K(V)$, a contradiction. Hence $V = O_2(K)$ and the lemma is proved.

Lemma 2.4. Assume that H is not a 2-group. Then G is solvable and one of the following holds.

i) *G is nilpotent*.

ii) S is cyclic or $S \cong Q_8$, G = [O(G), z]H, (|[O(G), z]|, |H|) = 1, [O(G), z] *is abelian and* $C_{[O(G), z]}(x) = 1$, *for each element* $1 \neq x \in H$.

Proof: By the assumption $O(H) \neq 1$. Let $1 \neq y \in Z(S)$ be an involution. Set $K = C_G(y)$ and assume further that $G \neq K$. By Lemma 2.2, we have O(H) = O(K). Assume that each 2-local subgroup of *G* has a normal 2-complement. Then Frobenius' normal *p*-complement theorem gives us that G = O(G)K. Assume that *S* contains an elementary abelian subgroup of order 4 containing *y*. Then by coprime action theorem and Lemma 2.2, we have O(G) = O(K) and hence G = K, a contradiction. Therefore *y* is the unique involution in *S* and *S* is cyclic or $S \cong Q_8$. Now we have y = z. By coprime action theorem we have G = [O(G), z]Hand since *z* acts fixed point freely on [O(G), z], we get that [O(G), z] is abelian. By Lemma 2.2, we obtain that $C_{[O(G), z]}(x) = 1$, for each element $1 \neq x \in H$ and hence (|[O(G), z]|, |H|) = 1.

Now let $1 \neq P \leq S$ be a subgroup of *S* and assume that $N = N_G(P)$ has no normal 2-complement. Lemma 2.3, implies that *N* is isomorphic to A_4 or S_4 . This gives us that *P* is of order 4 and $C_N(P) = P$. On the other hand, Lemma 2.2 implies that $1 \neq O(H) \leq C_N(P)$, which is a contradiction. This contradiction proves the lemma.

Lemma 2.5. Let G be solvable and a CIT-group, then one of the following holds. i) G = S. ii) $G \cong S_4$ or A_4 . iii) G = O(G)S and S is either cyclic or isomorphic to Q_8 . *Proof*: Assume that O(G) = 1. Assume further that the normalizer of each 2-subgroup of *G* has a normal 2-complement. Then by Frobenius' normal *p*-complement theorem we get that G = O(G)S and hence G = S. Now assume that $1 \neq V$ is a subgroup of *S* such that $K = N_G(V)$ has no normal 2-complement. Then by Lemma 2.3, we get that *V* is an elementary abelian group of order 4 and $K \cong A_4$ or S_4 . Since *G* is solvable, O(G) = 1 and *G* is CIT-group, we obtain $O_2(G) = V$ and hence K = G.

Assume that $O(G) \neq 1$. As *G* is a CIT-group, we conclude that $O_2(G) = 1$. Since *G* is a CIT-group and $O(G) \neq 1$, the coprime action theorem implies that *S* is cyclic or $S \cong Q_8$. This and Lemma 2.2 tell us that the normalizer of each 2-subgroup of *G* has a normal 2-complement in *G* and hence G = O(G)S, by Frobenius normal *p*-complement theorem. Thus the lemma is proved.

Proof of Theorem 1.1. The proof of the theorem follows from Lemmas 2.2 and 2.4.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemmas 2.2, 2.4 and 2.5.

3 Proof of Theorem 1.2

In this section *G* is a finite nonsolvable group whose cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of order at most 4p are TI-subgroups, where *p* is a prime dividing the order of *G*. Since *G* is nonsolvable, it is of even order. We keep the notations *H*, *z* and *S* from Section 2. We make use of the following lemma.

Lemma 3.1. Let A be a simple group and $T \in Syl_2(A)$. Then

i) if $T \cong D_8$ and $C_A(t) \cong T$ for each involution $t \in T$, then $A \cong A_6 \cong L_2(9)$ or $A \cong L_3(2) \cong L_2(7)$;

ii) if T *is elementary abelian of order* 4 *and* $C_A(t) \cong T$ *for each involution* $t \in T$ *, then* $A \cong A_5 \cong L_2(4)$.

Proof: i) this part is an elementary exercise in Character Theory, see for example [3, Theorem 7.10]. ii) It can be proved using a similar method or by counting argument.

Lemma 2.4 implies that $C_G(x)$ is 2-group, for each involution $1 \neq x \in G$ and hence *G* is a CIT-group. By this and coprime action theorem we obtain O(G) = 1. Since *G* is nonsolvable, by Frobenius' normal *p*-complement theorem we get that $N_G(V)$ is not 2-group for some 2-subgroup $1 \neq V$ of *G*. Set $K = N_G(V)$, then lemma 2.3 implies that *V* is an elementary abelian group of order 4 and $K \cong A_4$ or S_4 .

Let $T \in Syl_2(K)$ and we may assume that $T \leq S$. Assume that $V^g \leq T$, for some $g \in G$. As K/V is a subgroup of S_3 and V^g is elementary abelian of order 4, we have $V^g \cap V \neq 1$. Note that V is a TI-subgroup of G and hence $V = V^g$. This shows that we may assume that T = S. Since K/V is a subgroup of S_3 , one obtain that either V = S or $S \cong D_8$. **Lemma 3.2.** *i*) If V = S, then $G \cong A_5$. *ii*) If $S \cong D_8$, then $G \cong A_6$ or $L_2(7)$.

Proof: Assume that S = V. Since O(G) = 1, we may assume that G is simple. Now i) follows from Lemma 3.1 (ii). Assume that $S \cong D_8$. Then ii) follows from Lemma 3.1(i) and hence the lemma holds.

Now Theorem 1.2 follows from Lemma 3.2.

References

- [1] M. Aschbacher; Finite Group Theory. Cambridge University Press, 1986.
- [2] X. Guo, S. Li and P. Flavell; Finite groups whose abelian subgroups are TIsubgroups; J. Algebra (2007) 307, 565-569.
- [3] I. M. Isaacs; Character Theory of finite groups; Dover, 1994.
- [4] G. Walls; Trivial intersection groups; Arch. Math. 32(1979) 1-4.

Faculty of Mathematics and Computer Science Tarbiat Moallem University, Karaj, Tehran, Iran email:salarian@tmu.ac.ir