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Abstract

We determine the structure of finite groups whose cyclic subgroups, ele-
mentary abelian 2-subgroups and abelian subgroups of order at most 4p, p a
prime, are TI-subgroups.

1 Introduction

A subgroup K of a finite group G is called a TI-subgroup of G if K ∩ Kg = 1
or K for each g ∈ G. The classification of the finite groups containing certain
TI-subgroups are of special interest in group theory. Walls in [4] has described
the finite groups all of whose subgroups are TI-subgroups. Recently in [2], finite
groups all of whose abelian subgroups are TI-subgroups are classified. In this
article we classify all finite groups whose cyclic subgroups, elementary abelian
2-subgroups and abelian subgroups of order at most 4p are TI-subgroups, where
p is a prime dividing the order of G.

Throughout this article all the groups are finite and G is a finite group whose
cyclic subgroups, elementary abelian 2-subgroups and abelian subgroups of or-
der at most 4p are TI-subgroups, where p is a prime dividing the order of G. We
follow [1] for notation in group theory. In this paper we shall prove the following
theorems.

Theorem 1.1. Let G be a group of even order and z ∈ G be an involution, then CG(z)
is nilpotent. Furthermore, if CG(t) is not a 2-group for some involution t ∈ G, then G is
solvable.
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A finite group H is called a CIT-group if CH(t) is 2-group for each involution
t ∈ H. Theorem 1.1 shows that if G is nonsolvable, then G is a CIT-group. The
next theorem shows that there are few simple groups whose cyclic subgroups,
elementary abelian 2-subgroups and abelian subgroups of order at most 4p, p a
prime, are TI-subgroups.

Theorem 1.2. Let G be a nonsolvable group, then G is isomorphic to L2(4), L2(7) or
L2(9).

In the next theorem we assume that G is solvable.

Theorem 1.3. Let G be a solvable group , then one of the following holds.
i) G is nilpotent.
ii) G ∼= S4 or A4.
iii) Either G is of odd order or G has a normal 2-complement and a Sylow 2-subgroup

of G is cyclic or is isomorphic to Q8.

2 Proofs of theorems 1.1 and 1.3

In this section, we assume that G is a finite group of even order all of whose cyclic
subgroups, elementary abelian 2-subgroups and abelian subgroups of order at
most 4p are TI-subgroups, where p is a prime dividing the order of G. We refer the
reader to [1] for information on coprime action theorem and Frobenius’ normal
p-complement theorem.

Lemma 2.1. Let K be a TI-subgroup of a group G and Let T a non-trivial normal sub-
group of G contained in K. Then K is also normal in G.

Proof : Since T ≤ Kg ∩ K for all g ∈ G and K is a TI-subgroup of G we obtain
Kg = K, for each g ∈ G. This proves the lemma.

Let S be a Sylow 2-subgroup of the group G and z ∈ S be an involution. Then
we put H = CG(z), the centralizer of z in G. Using this notation we prove the
following lemma.

Lemma 2.2. The subgroup H is nilpotent. Furthermore, if T is any cyclic p-subgroup of
H, then H = NG(T), for an odd prime number p.

Proof : Let p be an odd prime number, Q ∈ Sylp(H) and 1 6= x ∈ Q be a p-
element. Set T = 〈x〉 and R = NG(T), then z ∈ R. We have U = 〈z, T〉 is cyclic
and hence it is a TI-subgroup of G. Now by Lemma 2.1, we get that U is normal
in 〈R, H〉. This gives us that 〈z〉 is normal in R and T is normal in H. Hence
R = H. Let 1 6= t ∈ H be an involution. Then by Lemma 2.1, we have Y = 〈z, t〉
is normal in H. Therefore O(H) ≤ CG(t). Now let 1 6= r ∈ H be a 2-element.

Then 〈r〉O(H) ∩ 〈r〉 6= 1. Therefore 〈r〉 is normalized by O(H). By this and since
each cyclic subgroup of O(H) is normal in H, we get that H is nilpotent and the
lemma is proved.
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Lemma 2.3. Assume that NG(P) has no normal 2-complement, for some 2-subgroup
1 6= P of G. Then NG(P) is isomorphic to A4 or S4.

Proof : Set K = NG(P) and let V be a minimal normal 2-subgroup of K. Then
V is elementary abelian and we may assume that z ∈ V. By Lemma 2.2, and as
K has no normal 2-complement, we conclude that V is not cyclic. Let 1 6= C ≤ V
be a subgroup of index 2 in V. Then as V is minimal normal in K and C is a
TI-group, we get that Cg ∩ C = 1 for some 1 6= g ∈ K. This tells us that V is
of order 4. By Lemma 2.2, we obtain that CK(V) is nilpotent. Using this and
since K has no normal 2-complement, we conclude that K/CK(V) is of order 3 or
isomorphic to S3. Assume that Q ∈ Sylp(CK(V)), p an odd prime, and x ∈ Z(Q)
be of order p. Then by Lemma 2.1, 〈V, x〉 is normal in K. This gives that 〈x〉 is
normal in K. Now by Lemma 2.1, we get that 〈x, z〉 is normal in K. But this gives
that K ≤ H and then Lemma 2.2 implies that K has a normal 2-complement,
which is a contradiction. Therefore O(CK(V)) = 1 and hence CK(V) = O2(K).
We have V ≤ Z(O2(K)), as V is a minimal normal subgroup of K. Assume that
O2(K) 6= V, ten there is an abelian subgroup W ≤ O2(K) of order 8 containing V.
By Lemma 2.1, W is normal in K. Let 〈s〉 ∈ Syl3(K), then W/V is 〈s〉-invariant.
This tells us that CW(s) is of order two. Lemma 2.1 implies that 〈z, CW(s)〉 is
normal in 〈W, s〉. But this gives that s ∈ H and then s ∈ CK(V), a contradiction.
Hence V = O2(K) and the lemma is proved.

Lemma 2.4. Assume that H is not a 2-group. Then G is solvable and one of the following
holds.

i) G is nilpotent.
ii) S is cyclic or S ∼= Q8, G = [O(G), z]H, (|[O(G), z]|, |H|) = 1, [O(G), z] is

abelian and C[O(G),z](x) = 1, for each element 1 6= x ∈ H.

Proof : By the assumption O(H) 6= 1. Let 1 6= y ∈ Z(S) be an involution.
Set K = CG(y) and assume further that G 6= K. By Lemma 2.2, we have O(H) =
O(K). Assume that each 2-local subgroup of G has a normal 2-complement. Then
Frobenius’ normal p-complement theorem gives us that G = O(G)K. Assume
that S contains an elementary abelian subgroup of order 4 containing y. Then by
coprime action theorem and Lemma 2.2, we have O(G) = O(K) and hence G =
K, a contradiction. Therefore y is the unique involution in S and S is cyclic or S ∼=
Q8. Now we have y = z. By coprime action theorem we have G = [O(G), z]H
and since z acts fixed point freely on [O(G), z], we get that [O(G), z] is abelian.
By Lemma 2.2, we obtain that C[O(G),z](x) = 1, for each element 1 6= x ∈ H and

hence (|[O(G), z]|, |H|) = 1.
Now let 1 6= P ≤ S be a subgroup of S and assume that N = NG(P) has

no normal 2-complement. Lemma 2.3, implies that N is isomorphic to A4 or S4.
This gives us that P is of order 4 and CN(P) = P. On the other hand, Lemma
2.2 implies that 1 6= O(H) ≤ CN(P), which is a contradiction. This contradiction
proves the lemma.

Lemma 2.5. Let G be solvable and a CIT-group, then one of the following holds.
i) G = S.
ii) G ∼= S4 or A4.
iii) G = O(G)S and S is either cyclic or isomorphic to Q8.
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Proof : Assume that O(G) = 1. Assume further that the normalizer of each
2-subgroup of G has a normal 2-complement. Then by Frobenius’ normal p-
complement theorem we get that G = O(G)S and hence G = S. Now assume
that 1 6= V is a subgroup of S such that K = NG(V) has no normal 2-complement.
Then by Lemma 2.3, we get that V is an elementary abelian group of order 4 and
K ∼= A4 or S4. Since G is solvable, O(G) = 1 and G is CIT-group, we obtain
O2(G) = V and hence K = G.

Assume that O(G) 6= 1. As G is a CIT-group, we conclude that O2(G) = 1.
Since G is a CIT-group and O(G) 6= 1, the coprime action theorem implies that
S is cyclic or S ∼= Q8. This and Lemma 2.2 tell us that the normalizer of each
2-subgroup of G has a normal 2-complement in G and hence G = O(G)S, by
Frobenius normal p-complement theorem. Thus the lemma is proved.

Proof of Theorem 1.1. The proof of the theorem follows from Lemmas 2.2 and
2.4.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemmas 2.2, 2.4 and 2.5.

3 Proof of Theorem 1.2

In this section G is a finite nonsolvable group whose cyclic subgroups, elementary
abelian 2-subgroups and abelian subgroups of order at most 4p are TI-subgroups,
where p is a prime dividing the order of G. Since G is nonsolvable, it is of even
order. We keep the notations H, z and S from Section 2. We make use of the
following lemma.

Lemma 3.1. Let A be a simple group and T ∈ Syl2(A). Then
i) if T ∼= D8 and CA(t) ∼= T for each involution t ∈ T, then A ∼= A6

∼= L2(9) or
A ∼= L3(2) ∼= L2(7);

ii) if T is elementary abelian of order 4 and CA(t) ∼= T for each involution t ∈ T,
then A ∼= A5

∼= L2(4).

Proof : i) this part is an elementary exercise in Character Theory, see for exam-
ple [3, Theorem 7.10]. ii) It can be proved using a similar method or by counting
argument.

Lemma 2.4 implies that CG(x) is 2-group, for each involution 1 6= x ∈ G and
hence G is a CIT-group. By this and coprime action theorem we obtain O(G) = 1.
Since G is nonsolvable, by Frobenius’ normal p-complement theorem we get that
NG(V) is not 2-group for some 2-subgroup 1 6= V of G. Set K = NG(V), then
lemma 2.3 implies that V is an elementary abelian group of order 4 and K ∼= A4

or S4.
Let T ∈ Syl2(K) and we may assume that T ≤ S. Assume that Vg ≤ T, for

some g ∈ G. As K/V is a subgroup of S3 and Vg is elementary abelian of order
4, we have Vg ∩ V 6= 1. Note that V is a TI-subgroup of G and hence V = Vg.
This shows that we may assume that T = S. Since K/V is a subgroup of S3, one
obtain that either V = S or S ∼= D8.
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Lemma 3.2. i) If V = S, then G ∼= A5.
ii) If S ∼= D8, then G ∼= A6 or L2(7).

Proof : Assume that S = V. Since O(G) = 1, we may assume that G is simple.
Now i) follows from Lemma 3.1 (ii). Assume that S ∼= D8. Then ii) follows from
Lemma 3.1(i) and hence the lemma holds.

Now Theorem 1.2 follows from Lemma 3.2.
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