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Abstract

We consider the initial boundary value problem for a semi-linear partial
functional differential equation of the first order on a cylindrical domain in
n + 1 dimensions. Projection of the domain onto the n-dimensional hyper-
plane is a connected set with boundary satisfying certain type of cone con-
dition. Using the method of characteristics and the Banach contraction theo-
rem, we prove the global existence, uniqueness and continuous dependence
on data of Carathéodory solutions of the problem. This approach cover equa-
tions with deviating variables as well as differential integral equations.

1 Introduction

Let the symbol B(x, r) denote an open ball in the n-dimensional Euclidean space
R

n, with centre at x ∈ R
n and radius r > 0. For U ⊂ R

1+n and a normed space Y,
equipped with the norm ‖ · ‖Y, we define C(U, Y) to be the set of all continuous
functions w : U → Y; this space is equipped with the usual supremum norm
‖w‖C(U,Y) = supP∈U ‖w(P)‖Y . We write it simply C(U) when no confusion can

arise; following [1], we denote by C(U) the set of all continuous and bounded
functions on U.

Let us formulate the functional differential problem. The sets, considered
here, are:

E0 = [−b0, 0]× Ω, E = [0, a]× Ω, ∂0E = (0, a]× ∂Ω,
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where a > 0, b0 ≥ 0, and Ω is a nonempty, open, connected subset of R
n, satisfy-

ing a (modified) uniform cone condition (its original form may be found in [1]), to
be specified later. Write E∗ = [−b0, a]× Ω and D = [−b0 − a, 0] × (Ω − Ω). For
(t, x) ∈ E define

D [t, x] =
{

(τ, y) ∈ R
1+n : τ ≤ 0 and (t + τ, x + y) ∈ E∗

}

.

Then D [t, x] ⊂ D for (t, x) ∈ E∗. Given z : E∗ → R and (t, x) ∈ E, define
z(t,x) : D [t, x] → R by z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D [t, x]. Then z(t,x) is

the restriction of z to E∗ ∩ ([−b0, t]× R
n), shifted to D [t, x].

Suppose that φ0 : [0, a] → [0, a], 0 ≤ φ0(t) ≤ t and φ = (φ1, . . . , φn) : E → Ω are
given functions. Write ϕ(t, x) = (φ0(t), φ(t, x)) for (t, x) ∈ E. Let f j : E → R, 1 ≤

j ≤ n, F : E × C(D) → R and ψ : E0 ∪ ∂0E → R be given. Put f = ( f1, . . . , fn)
T.

We consider the functional differential equation

∂tz(t, x) + ∂xz(t, x) f (t, x) = F(t, x, zϕ(t,x)), (1)

augmented with the initial boundary condition

z(t, x) = ψ(t, x) (2)

on E0 ∪ ∂0E. A function z̃ ∈ C(E∗) is called a global Carathéodory solution of
(1), (2) if it is absolutely continuous, has partial derivatives almost everywhere,
and satisfies (1) almost everywhere on E and (2) on E0 ∪ ∂0E.

The aim of this paper is to prove a theorem on the existence and continuous
dependence of global Carathéodory solutions to (1), (2). We use the method of
characteristics. The initial-boundary value problem is transformed into a func-
tional integral equation, for which the existence of a solution is proved by means
of the Banach fixed point theorem. Classical solutions of the functional integral
equation lead to Carathéodory solutions to (1), (2).

We give examples of semilinear equations which can be obtained from (1) by
specializing F.

Example 1.1 Suppose that F̃ : E × R → R is a given function. Set F(t, x, w) =
F̃(t, x, w(0, 0)). Then (1) becomes the equation with deviated variables

∂tz(t, x) + ∂xz(t, x) f (t, x) = F̃(t, x, z(ϕ(t, x))).

Example 1.2 Suppose that ϕ(t, x) = (t, x) on E. For the above F̃ we put

F(t, x, w) = F̃(t, x,
∫

D [t,x]
w(τ, y) dτ dy).

Then (1) is equivalent to the integro-differential equation

∂tz(t, x) + ∂xz(t, x) f (t, x) = F̃(t, x,
∫

D [t,x]
z(t,x)(τ, y) dτ dy).



Semilinear hyperbolic functional differential problem 3

It is clear that more complicated examples of differential equations with de-
viating variables and integro-differential equations can be obtained from (1) for
suitable F and ϕ.

Let us give a brief review of existence results concerning initial-boundary
value problems for first order functional differential equations.

Initial boundary value problems for almost linear systems for unknown func-
tions of two independent variables were considered in [16]. A continuous func-
tion is a solution of a mixed problem if it satisfies an integral functional system by
integrating along bicharacteristics. Existence theorems and differential inequal-
ities related to almost linear functional problems can be found in [5]. Distribu-
tional solutions of almost linear problems were investigated in [17]. The method
used in this paper is constructive; the existence result is based on a difference
scheme.

The existence and uniqueness results for quasilinear systems with initial or
initial-boundary conditions in the class of Carathéodory solutions can be found
in [7],[18]. Initial problems for nonlinear equations were considered in [8].

An essential extension of some ideas concerning classical solutions of hy-
perbolic functional differential problems is given in [3],[4], where the Cinquini-
Cibrario solutions are considered. This class of solutions is placed between clas-
sical solutions and solutions in the Carathéodory sense.

The monograph [13] contains an exposition of existence and uniqueness of
generalized and classical solutions to hyperbolic functional differential problems.

Solutions of all these evolutionary problems are shown to exist locally in time.
The only global existence result [18] concerns equations with two independent
variables.

We propose a result on global existence of Carathéodory solutions to a class
of hyperbolic mixed problems in several independent variables. Our result can-
not be obtained from the above mentioned ones. What is more, we consider an
initial boundary value problem in a cylindrical domain of a very general shape.
In particular, it may be [0, a] × Ω, with (bounded or not) Ω having locally Lips-
chitz boundary. If Ω is bounded, then the uniform cone condition, assumed here,
implies the Lipschitz condition, see [11]. All known results on such problems for
first order partial functional differential equations are formulated for Ω being an
interval in R

n.
First order partial differential equations with deviated variables and differen-

tial integral equations find applications in different fields of knowledge. We give
a few examples.

An equation with deviated variables ([10]) describes a density of households
at time t depending on their estates, in the theory of the distribution of wealth.
Hyperbolic integral differential equations perturbed by a dissipative integral
terms of the Volterra type are proposed [2] as simple mathematical models for
the non linear phenomenon of harmonic generation of laser radiation through
piezoelectric crystals for non dispersive materials and of the Maxwell - Hopkin-
son type. There are various problems in nonlinear optic which lead to hyperbolic
integral differential problems [2]. A system of nonlinear functional differential
equations, which model an age dependent epidemic of a disease with vertical
transmission, is investigated in [9]. Almost linear functional differential equa-
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tions may be used ([6]) to describe a model of proliferating cell population. Non-
linear equations may be used to describe the growth of a population of cells which
constantly differentiate (change their properties) in time. A model for erythroid
production based on a continuous maturation - proliferation scheme is developed
in [14]. The paper [12] discusses optimal harvesting policies for age - structured
population harvested with effort independent of age. Hyperbolic functional dif-
ferential equations are considered in the nonlinear theory describing the motion
of viscoelastic media [15].

For further bibliography on applications of functional partial differential equa-
tions see the monographs [13], [19].

The paper is organized as follows. In the next section, we formulate and prove
new results on existence and uniqueness of characteristics. The method of char-
acteristics is used to transform the mixed problem into a system of integral func-
tional equations, described and analyzed in the last section.

2 Properties of characteristics

For a point (t, x) ∈ E, we consider the Cauchy problem

η′(τ) = f (τ, η(τ)), η(t) = x = (x1, . . . , xn)
T, (3)

and denote by g(·, t, x) its Carathéodory solution. This function is the character-
istic of (1). Since the problem (3) is formulated on [0, a]× Ω, we need first to give
our requirements on the domain.

2.1 A modified uniform cone condition and its consequences

To be specific, we cite here the definition from [1].

Let v be a nonzero vector in R
n, and for each x 6= 0 let ∠(x, v) be the angle

between the position vector x and v. For such given v, ρ > 0, and γ satisfying
0 < γ ≤ π, the set

C = {x ∈ R
n : x = 0 or 0 < ‖x‖ ≤ ρ, ∠(x, v) ≤ γ/2}

is called a finite cone of height ρ, axis direction v and aperture angle γ with vertex
at the origin. Note that x + C = {x + y : y ∈ C} is a finite cone with vertex at
x but the same dimensions and axis direction as C and is obtained by parallel
translation of C.

An open cover O of a set S ⊂ R
n is said to be locally finite if any compact

set in R
n can intersect at most finitely many members of O . Such locally finite

collections of sets must be countable, so their elements can be listed in a sequence.
If S is closed, then any open cover of S by sets with a uniform bound on their
diameters possesses a locally finite subcover.

We denote by Ωδ the set of points in Ω within distance δ of the boundary of
Ω:

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} .
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A set Ω satisfies the uniform cone condition if there exists a locally finite open
cover {Uj} of the boundary of Ω and a corresponding sequence {Cj} of finite
cones, each congruent to some fixed finite cone C, such that

(i) There exists M < ∞ such that every Uj has diameter less than M,

(ii) Ωδ ⊂
⋃

∞

j=1 Uj for some δ > 0.

(iii) Qj ≡
⋃

x∈Ω∩Uj
(x + Cj) ⊂ Ω for every j.

(iv) For some finite R, every collection of R + 1 of the sets Qj has empty
intersection.

In the paper, we assume that Ω satisfies the above uniform cone condition,
together with the following:

(v) For every pair of points x, y ∈ Ωδ such that ‖x − y‖ < δ, there exists j
such that

x, y ∈ Vj(δ) =
{

x ∈ Uj : dist(x, ∂Uj) > δ
}

.

(vi) There is a family C of finite cones, each congruent to some fixed finite
cone C∗, such that for every finite set J of indices,

if Ω ∩
⋂

j∈J

Uj 6= ∅ then there is C ∈ C , C ⊂
⋂

j∈J

Cj.

(vii) The domain Ω is Lipschitz path-connected. That is, there exists a con-
stant LΩ such that, for all x, y ∈ Ω, the set Ω contains a path between x
and y whose length does not exceed LΩ‖x − y‖.

(viii) All axis direction vectors vj have unit length.

Remark 2.1 If Ω is bounded, then (v) follows from (ii) by the Lebesgue number lemma.

Remark 2.2 For the points x, y, ‖x − y‖ < δ, in the closure of Ωδ, there is j such that
x, y ∈ Vj(δ/2).

Remark 2.3 It is easy to see that the uniform cone condition implies

x + Cj ⊂ Ω if x ∈ Ω ∩ Uj.

Indeed, if x ∈ ∂Ω ∩ Uj, then there is xn → x, {xn} ⊂ Ω ∩ Uj. Every y ∈ x + Cj

belongs to Ω, because yn := xn + (y − x) ∈ xn + Cj ⊂ Ω tends to y.

Lemma 2.4 (on an outward cone) Let y ∈ ∂Ω and let j be such that B(y, δ/2) ⊂ Uj

(by the Remark 2.2, we may always find such j). Then, for C = Cj ∩ B(0, δ/2),

(y − Int C) ∩ Ω = ∅.
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Figure 1: Outward open cone at the boundary of Ω.
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Proof. We first show that y − Int C misses Ω. Suppose that z ∈ (y − Int C) ∩ Ω.
Then ‖z − y‖ < δ/2 and so z ∈ Uj by our assumption. By the uniform cone
condition, z + Cj ⊂ Ω. Obviously, for any finite cone C,

z ∈ y − C ⇐⇒ y ∈ z + C.

So we obtain

z ∈ y − C ⊂ y − Cj, and thus y ∈ z + Cj ⊂ Ω,

contradicting the fact that y ∈ ∂Ω.
Suppose now that z̄ ∈ (y − Int C) ∩ ∂Ω. But a point from the boundary of Ω

may be approached from its interior, and y − Int C is an open set, hence there is
z ∈ (y − Int C) ∩ Ω, which we have proved impossible.

2.2 Regularity of characteristics

Assumption H [ f ]. Let the function f : E → R
n, in variables (t, x), satisfy Carathéo-

dory conditions on E, with usual integrable functions α̃, β̃ : [0, a] → R+, playing the
roles of a bound and of a generalized Lipschitz constant w.r.t. x, respectively. Denote by
vj the axis direction of cone Cj. We require from f to be well-separated from zero on a
neighbourhood of [0, a] × ∂Ω: there is κ > 0, such that, for almost every t ∈ [0, a] and
for all j,

vj ◦ f (t, x) ≥ κ if x ∈ Ω ∩ Uj. (4)

Moreover, there exists a family of finite cones {C′
j}

∞

j=1, with each C′
j congruent to some

fixed finite cone C′, and having the same axis direction and height as Cj, but a smaller
aperture angle, such that for almost all t ∈ [0, a] and for all j,

f (t, x) ∈
⋃

λ>0

λC′
j, if x ∈ Ω ∩ Uj. (5)
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Let ζ(t, x) be the left end of the maximal interval on which the characteristic
g(·, t, x) is defined.

Fact 2.5 Let f : I → R
n, be an integrable function on some measurable set I ⊂ R, and

let C be an infinite cone, that is, C = {x ∈ R
n : ∠(x, v) ≤ γ/2} for some angle γ and

axis v. If

f (t) ∈ C almost everywhere on I,

then
∫

I
f (t) dt ∈ C.

Proof. Intuitively, the above assertion follows from the property C + C = C,
true for any infinite cone C. Nevertheless, a proof using a basic property of the
Lebesgue integral (integral of a nonnegative-valued function is nonnegative) may
be facilitated by the fact, that an infinite cone C is the intersection of all half-spaces
containing it, C =

⋂

{H : H ⊃ C}, where by a half space H we mean

H = {x ∈ R
n : v ◦ x ≥ 0} for some v ∈ R

n, v 6= 0.

Corollary 2.6 Take x ∈ Ω ∩ Uj and t ∈ [0, a]. Suppose that the characteristic g(·, t, x)
is defined on [t, T] for some T ∈ R, t < T ≤ a. By the condition (5) of the Assumption
H [ f ], if

{g(τ, t, x) : τ ∈ [t, T]} ⊂ Ω ∩ Uj

then
∫ T

t
f (τ, g(τ, t, x)) dτ ∈

⋃

λ>0

λC′
j. (6)

Remark 2.7 Note that, since Ω∩Uj is an open set, we may always find T > t, mentioned
above, if only g(·, t, x) exists on a right-hand neighbourhood of t.

Corollary 2.8 Suppose that x ∈ Ωδ, t ∈ [0, a], and that the characteristic g(·, t, x) exists

on [t, T] such that
∫ T

t α̃(τ) dτ ≤ δ/2. Then, by the Remark 2.2, there is j such that (6)
holds.

Lemma 2.9 Suppose that Assumption H [ f ] is satisfied. Then

ζ(t, x) > 0 implies g(ζ(t, x), t, x) ∈ ∂Ω, (7)

the characteristic g(·, t, x) is defined on [ζ(t, x), a], and there is a constant Lg, uniform
for (s, y), (t, x) ∈ E, such that

‖g(τ, s, y)− g(τ, t, x)‖ ≤ Lg

(

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ ‖y − x‖
)

, (8)

for τ ∈ [max{ζ(s, y), ζ(t, x)}, min{s, t}].

Proof. The existence, up to the boundary of E, and uniqueness of the solution of
(3), follow from classical theorems. Hence (7). To see that g(·, t, x) is defined on



8 W. Czernous

[ζ(t, x), a], let us assume that for some (t, x) ∈ E and for some ã, ζ(t, x) < ã < a,
we have

g(τ, t, x) ∈ Ω for τ ∈ (ζ(t, x), ã) and g(ã, t, x) ∈ ∂Ω.

Set y = g(ã, t, x). Choose j such that y ∈ Uj; there is r > 0 such that B(y, r) ⊂ Uj.
There exists ε ∈ (0, ã − ζ(t, x)) with the property, that the integral of α̃, over any
closed interval I ⊂ [0, a] of length ε, does not exceed 1/2 min{r, h}, where h is the
height of the cone Cj. By the definition of ã,

g(ã − ε, t, x) ∈ Ω;

additionally, we have chosen ε so that

‖g(ã − ε, t, x)− y‖ =

∥

∥

∥

∥

∫ ã

ã−ε
f (τ, g(τ, t, x)) dτ

∥

∥

∥

∥

≤
∫ ã

ã−ε
α̃(τ) dτ ≤ r/2,

implying

g(ã − ε, t, x) ∈ B(y, r) ⊂ Uj.

Hence g(ã − ε, t, x) ∈ Ω ∩ Uj, and similarly

g(τ, t, x) ∈ Ω ∩ Uj for τ ∈ I = (ã − ε, ã). (9)

By the Corollary 2.6,
∫ ã

ã−ε
f (τ, g(τ, t, x)) dτ ∈ C

From the definition of ε, it is clear that the norm of the vector
∫ ã

ã−ε f (τ, g(τ, t, x)) dτ
does not exceed the height h of Cj. All these sum up to

g(ã, t, x) = g(ã − ε, t, x) +
∫ ã

ã−ε
f (τ, g(τ, t, x)) dτ ∈ (Ω ∩ Uj) + Cj ⊂ Ω,

where the last inclusion follows from the uniform cone condition, contradicting
g(ã, t, x) ∈ ∂Ω.

The estimate (8) follows by use of the Gronwall’s lemma for integrable data.

Lemma 2.10 Suppose that Assumption H [ f ] is satisfied. Then there is a constant Lζ ,
uniform for (s, y), (t, x) ∈ E, such that

|ζ(s, y) − ζ(t, x)| ≤ Lζ

(

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ LΩ‖y − x‖
)

, (10)

Proof. The proof goes in several steps.
(i) Suppose that two infinite cones C, C′ have the same axis direction and

different aperture angles: γC′ < γC, so that C′ is more sloppy than C. If we take
some x 6∈ y + C, then x + C′ crosses y + C in a neighbourhood of x with radius
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Figure 2: Two infinite cones with the same axis direction.

x

x + C′

y

y + C

B(x, K‖x − y‖)

depending only on the difference γC − γC′ and on the distance ‖x − y‖ between
the vertices of the cones. More precisely, there is K = K(γC − γC′) such that

(x + C′) \ B(x, K‖x − y‖) ⊂ y + Int C, (11)

as illustrated by Figure 2. This is easy to see for cones in R
2 (one may calculate an

exact formula for K(·)), and for n > 2 may be proved by taking projections onto
the axis direction vector.

Thus, for any δ > 0, we get for ‖x − y‖ < δ′ = δ/(4K)

(x + C′) \ B(x, δ/4) ⊂ Int(y + C). (12)

(ii) We show that there is δ′ > 0 such that for x ∈ Ω
δ′, y ∈ ∂Ω, ‖x − y‖ < δ′,

and for j, such that Remark 2.2 applies to x and y,

g(τ, t, x) ∈ Uj for all τ ∈ [ζ(t, x), t]. (13)

Let K, K > 1, from (i), be chosen so that it fits for

C =
⋃

λ>0

λCj, C′ =
⋃

λ>0

λC′
j,

and let δ′ = δ/(4K) < δ/4. We get, by the relation (12),

B(x, δ/2 − δ′) ∩ (x − C′) \ B(x, δ/4) ⊂ B(y, δ/2) ∩ Int(y − C). (14)

Suppose that for some t̄ < t we have ‖g(t̄, t, x) − x‖ > δ/4. Then, by the
continuity of characteristics and by the Darboux property,

g(τ, t, x) ∈ B(x, δ/2 − δ′) \ B(x, δ/4) (15)

for some τ ∈ [t̄, t). This τ may be even chosen in such a way, that

{g(s, t, x) : s ∈ [τ, t]} ⊂ B(x, δ/2).
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Moreover, recall that j is such that B(x, δ/2) ⊂ Uj. This enables us to use the
Corollary 2.6, and to get (note that x = g(t, t, x))

g(τ, t, x) = x −
∫ t

τ
f (s, g(s, t, x)) ds ∈ x − C′. (16)

From the relations (14)-(16) we get g(τ, t, x) ∈ B(y, δ/2) ∩ Int(y − C). By the
Lemma on an outward cone, this yields g(τ, t, x) 6∈ Ω, which is not possible. This

shows that g(t̄, t, x) ∈ B(x, δ/4) for t̄ < t, and, taking into account B(x, δ/2) ⊂ Uj,
we get (13).

(iii) We show a local version of the generalized Lipschitz condition, with the
uniform constant, implying the global property (10).

Since (10) is obvious in the case ζ(s, y) = ζ(t, x) = 0, let us take 0 ≤ ζ(s, y) <
ζ(t, x), so that g(ζ(t, x), t, x) ∈ ∂Ω. By (8), for (t, x) and (s, y) satisfying

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ ‖y − x‖ ≤ δ′/(2Lg), (17)

we get

‖g(ζ(t, x), s, y) − g(ζ(t, x), t, x)‖ ≤ Lg

(

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ ‖y − x‖
)

≤ δ′/2 < δ′.

As we have proved in (ii), there is j such that

g(τ, s, y) ∈ Uj for τ ∈ [ζ(s, y), ζ(t, x)].

Thus
vj ◦ f (τ, g(τ, s, y)) ≥ κ for τ ∈ (ζ(s, y), ζ(t, x)]

and, recalling that condition (viii) on the page 5 sets all vj to have unit length,

κ
(

ζ(t, x) − ζ(s, y)
)

≤
∫ ζ(t,x)

ζ(s,y)
vj ◦ f (τ, g(τ, s, y)) dτ

= vj ◦
(

g(ζ(t, x), s, y) − g(ζ(s, y), s, y)
)

≤ ‖vj‖ ‖g(ζ(t, x), s, y) − g(ζ(s, y), s, y)‖

≤ ‖g(ζ(t, x), s, y) − g(ζ(t, x), t, x)‖

+ ‖g(ζ(t, x), t, x) − g(ζ(s, y), s, y)‖.

Let us analyse the number ‖g(ζ(t, x), t, x) − g(ζ(s, y), s, y)‖. Since, by the Corol-
lary 2.6,

g(ζ(s, y), s, y) ∈ g(ζ(t, x), s, y) − C′,

and this cone crosses the cone g(ζ(t, x), t, x) − C in a ball of radius
K‖g(ζ(t, x), s, y) − g(ζ(t, x), t, x)‖, the Lemma on an outward cone shows (sim-
ilarly to the proof of (13)) that

g(ζ(s, y), s, y) ∈ B
(

g(ζ(t, x), t, x), r
)

, r = K‖g(ζ(t, x), s, y) − g(ζ(t, x), t, x)‖,
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and

κ
(

ζ(t, x)− ζ(s, y)
)

≤ (1 + K)‖g(ζ(t, x), s, y) − g(ζ(t, x), t, x)‖

≤ (1 + K)Lg

(

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ ‖y − x‖
)

,

yielding

|ζ(s, y) − ζ(t, x)| ≤ Lζ

(

∣

∣

∣

∣

∫ s

t
α̃(τ) dτ

∣

∣

∣

∣

+ ‖y − x‖
)

,

for (t, x), (s, y) satisfying (17). Since the Lipschitz constant, appearing above, is
independent of (t, x), (s, y), the global assertion (10) follows from the convexity
of [0, a] and from the Lipschitz path-connectedness of Ω.

We have proposed above a new type of domains, suitable for formulation
of hyperbolic functional differential problems. Note that our conditions may be
easily reformulated, so to allow for an initial problem instead of initial-boundary.
This is why we have assumed the original Carathéodory conditions on f . Nev-
ertheless, due to the necessity of Lipschitz continuity in x of ψ(S(t, x)) appearing
in the sequel, we need f to be essentially bounded, in the sense that

α̃ ∈ L∞([0, a]) and ess sup α̃ = B f for some B f ∈ R+. (18)

3 Functional integral system

When it does not lead to misunderstanding, we write Ut = U ∩ ([−∞, t] × R
n)

for U ⊂ R
1+n and t ∈ [0, a]. We choose the norm in R

k to be the ∞-norm: ‖y‖ =
‖y‖∞ = max1≤i≤k |yi|. For the last argument w of the function F, we will use the
standard supremum norm in C(D), ‖w‖ = ‖w‖C(D).

Condition 3.1 (V) Suppose that F : E × C(D) → R is a given function of the variables
(t, x, w). We will say that F satisfies condition (V) if for each (t, x) ∈ E and for w,
w̄ ∈ C(D) such that w(τ, y) = w̄(τ, y) for (τ, y) ∈ D [ϕ(t, x)] we have F(t, x, w) =
F(t, x, w̄).

Note that condition (V) means that the value of F at the point (t, x, w) depends
on (t, x) and on the restriction of w to the set D [ϕ(t, x)] only.

Assumption H [ ϕ ]. The deviating function φ is Lipschitz continuous in x with con-
stant Lφ.

Assumption H [ ψ ]. The function ψ is bounded and Lipschitz continuous, with the
bound s0 and the Lipschitz constant s1.

Denote by C0.1[s](E0 ∪ ∂0E) the class of all functions ψ satisfying Assumption
H [ ψ ]. For a such ψ fixed, write Cψ = {z ∈ C(E∗) : z(t, x) = ψ(t, x) on E0 ∪ ∂0E}.

Assumption H [ F ]. The function F : E × C(D) of the variables (t, x, w) is measurable
in t, continuous in x, w,

F( · , x, w) ∈ L([0, a]) for (x, w) ∈ Ω × C(D),
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and one of the following two conditions is satisfied: either
(i) F is bounded by BF and |F(t, x, w)− F(t, x̄, w̄)| ≤ γ(t, p)[‖x − x̄‖+ ‖w − w̄‖]

for ‖w‖, ‖w̄‖ ≤ p, where γ(·, p) is integrable on [0, a] for p ∈ R+,
or
(ii) |F(t, x, 0)| is bounded by BF and |F(t, x, w) − F(t, x, w̄)| ≤ λ(t)‖w − w̄‖ with

λ ∈ L([0, a]) and |F(t, x, w) − F(t, x̄, w)| ≤ γ(t, ‖w‖)‖x − x̄‖ with γ(·, p) integrable
on [0, a] for p ∈ R+.

Put

Q[z](τ, t, x) = (τ, g(τ, t, x), zϕ(τ,g(τ,t,x))), S(t, x) = (ζ(t, x), g(ζ(t, x), t, x))

and

F[z](t, x) =

{

ψ(S(t, x)) +
∫ t

ζ(t,x) F(Q[z](τ, t, x)) dτ on E,

ψ(t, x) on E0 ∪ ∂0E.

We consider the functional integral problem

z = F[z]. (19)

An easy estimate (possibly using Gronwall lemma) of solutions to (19) follows.

Lemma 3.2 Suppose that Assumptions H [ f ], H [ ϕ ], H [ ψ ], H [ F ] are satisfied, the
relation (18) holds, and

1) the data ψ ∈ C0.1[s](E0 ∪ ∂0E),

2) the function z̄ ∈ Cψ satisfies (19),

3) z̄ is bounded and absolutely continuous on E∗.

Then
‖z̄‖C(E∗

t )
≤ µ(t),

where µ(t) = s0 + tBF, in the case (i) of Assumption H [ F ], and

µ(t) = s0 + tBF +
∫ t

0
(s0 + τBF)λ(τ) exp

{

∫ t

τ
λ(s) ds

}

dτ (20)

in the second case.

Denote, for z ∈ C(E∗), α ∈ R+, β ∈ L([0, a]),

|z|α,β = sup
t∈[0,a]
x 6=x̄

{

|z(t, x)− z(t, x̄)|

‖x − x̄‖
exp

(

− α
∫ t

0
β(τ) dτ

)

}

.

Let the class Cψ[d; α, β; µ] ⊂ Cψ of candidates for a solution of our problem be
the space of all continuous extensions of ψ, satisfying |z|α,β ≤ d, and such that
‖z‖C(E∗

t )
≤ µ(t), t ∈ [0, a].
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Corollary 3.3 Suppose that Assumptions H [ f ], H [ ϕ ], H [ ψ ], H [ F ] are satisfied, the
relation (18) holds, and the data ψ ∈ C0.1[s](E0 ∪ ∂0E). Then for z, z̄ ∈ Cψ[d; α, β; µ],

|F(t, x, zϕ(t,x))| ≤ B(t), (21)

|F(t, x, zϕ(t,x))− F(t, x̄, zϕ(t,x̄))| ≤ L(t)‖x − x̄‖, (22)

|F(t, x, zϕ(t,x))− F(t, x, z̄ϕ(t,x))| ≤ Z(t)‖z − z̄‖C(E∗
t )

if ‖z̄‖C(E∗) ≤ µ(a), (23)

where, in the case (i) of Assumption H [ F ],

B(t) = BF, Z(t) = γ(t, µ(a))

or, in the second case of that Assumption,

B(t) = BF + λ(t)µ(a), Z(t) = λ(t),

and

L(t) = γ(t, µ(a)) + Z(t) exp{α
∫ t

0 β(τ) dτ}|z|α,β Lφ.

Proof. The relations (21), (23) are clear; functional arguments in (22) have different
domains, so we have to treat it more carefully. There is a continuous extension
z̃ : ϕ(E) + D → R of z, Lipschitz continuous in x with the same constant. Define
w, w̄ : D → R by

w(s, y) = z̃ϕ(t,x)(s, y) = z̃(ϕ(t, x) + (s, y)),

w̄(s, y) = z̃ϕ(t,x̄)(s, y) = z̃(ϕ(t, x̄) + (s, y)).

Note that zϕ(t,x) and z̃ϕ(t,x) are equivalent after the restriction to D [ϕ(t, x)]. Hence,
by Condition (V),

|F(t, x, zϕ(t,x))− F(t, x̄, zϕ(t,x̄))| = |F(t, x, z̃ϕ(t,x))− F(t, x̄, z̃ϕ(t,x̄))|

≤ γ(t, µ(a))‖x − x̄‖+ Z(t)‖w − w̄‖

≤ γ(t, µ(a))‖x − x̄‖+ Z(t) exp{α
∫ t

0 β(τ) dτ}|z|α,β Lφ‖x − x̄‖.

Lemma 3.4 Suppose that Assumptions H [ f ], H [ ϕ ], H [ ψ ], H [ F ] are satisfied, the
relation (18) holds, and the data ψ ∈ C0.1[s](E0 ∪ ∂0E). Then

F : Cψ[d; α, β; µ] → Cψ[d; α, β; µ].

with α = 2LgLφ, β = Z and some d ∈ R+.

Proof. In the case (i) of the Assumption H [ F ], relation |F[z](t, x)| ≤ µ(t) is clear.
Consider the case (ii). Note that the function µ, given by (20), fulfils the integral
inequality

µ(t) ≥ s0 +
∫ t

ζ(t,x)

(

BF + λ(τ)µ(τ)
)

dτ,

for any (t, x) ∈ E, whence the asserted boundedness of F[z](t, x).
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Let us prove the Lipschitz continuity of F[z](t, ·). We have

|ψ(S(t, x)) − ψ(S(t, x̄))|

= |ψ(ζ(t, x), g(ζ(t, x), t, x)) − ψ(ζ(t, x̄), g(ζ(t, x̄), t, x̄))| ≤ A1‖x − x̄‖

with A1 = s1((1 + B f )Lζ LΩ + Lg), and, by (22),

|F(Q[z](τ, t, x)) − F(Q[z](τ, t, x̄))| ≤ L(τ)Lg‖x − x̄‖.

Using (21) and (22), we thus get

|F[z](t, x) − F[z](t, x̄)|

≤ A1‖x − x̄‖+

∣

∣

∣

∣

∫ ζ(t,x̄)

ζ(t,x)
F(Q[z](τ, t, x̄)) dτ

∣

∣

∣

∣

+ Lg‖x − x̄‖
∫ t

ζ(t,x)
L(τ) dτ

≤
(

A1 + BLζ LΩ + Lg

∫ t

0
L(τ)dτ

)

‖x − x̄‖

≤
(

A1 + BLζ LΩ + Lg

∫ t

0
γ(τ, µ(a))dτ

+ Lg

∫ t

0
β(τ) exp{α

∫ τ
0 β(s)ds}|z|α,β Lφdτ

)

‖x − x̄‖.

Let A = A1 + BLζ LΩ + Lg

∫ a
0 γ(τ, µ(a))dτ. Then, for x 6= x̄, quotient

|F[z](t,x)−F[z](t,x̄)|
‖x−x̄‖

is uniformly bounded by

A exp{α
∫ t

0β(τ)dτ} + LgLφ|z|α,β

∫ t

0
β(τ) exp{α

∫ τ
0 β(s)ds}dτ

= A exp{α
∫ t

0β(τ)dτ} +
LgLφ

α
|z|α,β

(

exp{α
∫ t

0β(τ)dτ} − 1
)

≤ A exp{α
∫ t

0β(τ)dτ} +
LgLφ

α
|z|α,β exp{α

∫ t
0β(τ)dτ}

and hence, taking α = 2LgLφ and d = 2A,

∣

∣F[z]
∣

∣

α,β
≤ A +

1

2
|z|α,β ≤ 2A.

Finally, it is easy to see that F[z] is continuous in t.

Theorem 3.5 Under the assumptions of Lemma 3.2, there is exactly one solution of
(1), (2) in the space Cψ[d; α, β; µ] with α, β and d taken from the preceding Lemma.

Moreover, taken any other ψ̄, satisfying Assumption H [ ψ ] with the same constants
as ψ, and the respective solution z̄ ∈ Cψ̄[d; α, β; µ], we have

‖z − z̄‖C(E∗
t )
≤ L

∫ t

0
‖ψ − ψ̄‖C(E0∪∂0Et)

dτ, t ∈ [0, a], (24)

with the constant L independent of ψ, ψ̄.
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Proof. Define a norm in C(E∗), equivalent to the supremum norm, by

[|u|] = max

{

‖u‖C(E∗
t )

exp
{

− 2
∫ t

0
Z(τ)dτ

}

: t ∈ [0, a]

}

.

Thanks to (23), it is easy to see that

|(F[z] − F[z̄])(t, x)| ≤
∫ t

0
Z(τ)‖z − z̄‖C(E∗

τ)
dτ

≤ [|z − z̄|]
∫ t

0
Z(τ) exp

{

2
∫ τ

0
Z(s)ds

}

dτ

=
1

2
[|z − z̄|]

[

exp
{

2
∫ t

0
Z(τ) dτ

}

− 1

]

<
1

2
[|z − z̄|] exp

{

2
∫ t

0
Z(τ) dτ

}

,

whence [|F[z] − F[z̄]|] ≤ 1
2 [|z − z̄|]. The space Cψ[d; α, β; µ] is a Banach space as

a closed subset of (C(E∗), [| · |]), so the Banach theorem yields exactly one fixed
point z̃ of F in Cψ[d; α, β; µ].

Note that, by (18) and by Lemmata 2.9, 2.10, ζ is Lipschitz continuous in t, and
so is the function (t, x) 7→ ψ(S(t, x)). Consequently, F[z̃] is absolutely continuous
in t. This allows the application of the chain rule to z̃(t, g(t, s, y)) in what follows.

It is easily seen that the relation

z̃(t, x) = F[z̃](t, x) on E

is equivalent to

z̃(t, g(t, s, y)) = ψ(s, y) +
∫ t

s
F(τ, g(τ, s, y), z̃ϕ(τ,g(τ,s,y))) dτ,

(s, y) ∈ E ∩ (E0 ∪ ∂0E), t ∈ [s, a].

By differentiating the above equality with respect to t and by putting x = g(t, s, y)
we obtain that z̃ is a Carathéodory solution to (1), (2).

We prove the Lipschitz dependence (24). In a way analogous to that leading
to (23), we get

|(z − z̄)(t, x)| ≤ ‖ψ − ψ̄‖C(E0∪∂0Et)
+

∫ t

0
Z(τ)‖z − z̄‖C(E∗

τ)
dτ,

Taking maximum over Et and applying the Gronwall inequality, we obtain the
assertion with L = 1 + MeM, M =

∫ a
0 Z(τ) dτ. This completes the proof.
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