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Abstract

We apply the quasilinearization method to boundary value problems for
first order functional differential equations with delayed arguments. We for-
mulate sufficient conditions for semi-quadratic or quadratic convergence of
corresponding monotone sequences to a unique solution.

1 Introduction

Let us consider the problem

{

x′(t) = f (t, x(t), x(α(t))), t ∈ J = [0, T],
x(0) = λ1x(T) + λ2, λ1 ∈ [0, 1).

(1.1)

where f ∈ C2(J × R × R, R) and function α ∈ C(J, J) is such that α(t) ≤ t for
t ∈ J. By C2(J ×R ×R, R) we mean the space of functions f = f (t, x, y) such that
f , fx, fy, fxx, fxy, fyx, fyy ∈ C(J × R × R, R).

A fruitful technique for proving existence results for differential equations is
the monotone iterative method (see [2] –[4], [6], [8] –[10]). It gives a constructive
procedure for approximation of solutions. However, from the practical point of
view it is important to have higher order of convergence of sequences of the ap-
proximate solutions. Therefore in this paper we will focus on quasilinearization
method (for details see for example [7], see also [1], [5]) for the above boundary
value problem for functional differential equation with delayed argument. It is a
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well known method for problems without deviating arguments. According to my
knowledge it haven’t been applied for boundary value problems with deviated
arguments so my results are new.

The plan of this paper is as follows. In Section 2 we formulate Lemma which
is needed in succeeding sections. In Section 3 we consider the case when λ1 = 0
i.e. the case when we have an initial value problem. Under natural assumptions,
we prove quadratic convergence of monotone sequences to a unique solution.
In Section 4 we consider the case λ1 ∈ (0, 1). First we show the semi-quadratic
convergence of corresponding monotone sequences to a unique solution. Next,
under a little more restricted assumptions, we prove quadratic convergence. Note
that the corresponding sequences are defined differently in each case. In the last
section we give an example to verify the required assumptions.

2 Preliminaries

Lemma 1. Assume that α ∈ C(J, J), α(t) ≤ t on J, K ∈ C(J, R), p ∈ C1(J, R), and
system

p′(t) ≤ K(t)p(t) + L(t)p(α(t)), t ∈ J,
p(0) ≤ λp(T), λ ∈ [0, 1)

is satisfied where nonnegative function L, integrable on J, is such that

λ̃ +

T
∫

0

L(s)e
−
∫ s

α(s) K(τ)dτ
ds < 1, (2.1)

where λ̃ = λe
∫ T

0 K(s)ds.
Then p(t) ≤ 0 on J.

Proof. Define

q(t) = e−
∫ t

0 K(s)dsp(t).

We have q(0) ≤ λ̃q(T) and

q′(t) = e−
∫ t

0 K(s)ds(−K(t)p(t) + p′(t)) ≤ q(α(t))L(t)e
−

∫ t
α(t) K(s)ds

.

Hence

q(t) ≤ q(0) +

t
∫

0

q(α(s))L(s)e
−

∫ s
α(s) K(τ)dτ

ds,

so

q(0) ≤
λ̃

1 − λ̃

T
∫

0

q(α(s))L(s)e
−

∫ s
α(s) K(τ)dτ

ds
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and finally

q(t) ≤
λ̃

1 − λ̃

T
∫

0

q(α(s))L(s)e
−

∫ s
α(s) K(τ)dτ

ds +

t
∫

0

q(α(s))L(s)e
−

∫ s
α(s) K(τ)dτ

ds.

Conversely, assume that there exists t0 ∈ J such that p(t0) > 0, and consequently
q(t0) > 0. Put q(t1) = maxt∈J q(t) > 0. Then we get

q(t1) ≤ q(t1)
1

1 − λ̃

T
∫

0

L(s)e
−

∫ s
α(s) K(τ)dτ

ds

Thus

q(t1)



1 −
1

1 − λ̃

T
∫

0

L(s)e
−
∫ s

α(s) K(τ)dτ
ds



 ≤ 0,

which is contrary to the assumption. This proves that p(t) ≤ 0 on J.

Remark 1. If K(t) ≥ 0, t ∈ J and λ̃ +

T
∫

0

L(s)ds < 1 then condition (2.1) holds.

Note that this condition does not depend on α.

3 Case 1: λ1 = 0

Let us define functions V1, V2 by

V1(t, u, v) = Fy(t, u(t), u(α(t))) + Gy(t, v(t), v(α(t))),

V2(t, u, v) = Fz(t, u(t), u(α(t))) + Gz(t, v(t), v(α(t))),

for corresponding functions Fy, Gy, Fz, Gz.

Theorem 1. Let λ1 = 0. Assume that

1. α ∈ C(J, J), α(t) ≤ t, f = F + G, where F, G ∈ C2(J × R × R, R)

2. y0, z0 ∈ C1(J, R), y0(t) ≤ z0(t), t ∈ J and satisfy the system

y′0(t) ≤ f (t, y0(t), y0(α(t))), y0(0) ≤ λ2

z′0(t) ≥ f (t, z0(t), z0(α(t))), z0(0) ≥ λ2,

3. for y0(t) ≤ u ≤ z0(t), y0(α(t)) ≤ v ≤ z0(α(t)) we have

Fyy(t, u, v) ≥ 0, Fyz(t, u, v) ≥ 0, Fzz(t, u, v) ≥ 0
Gyy(t, u, v) ≤ 0, Gyz(t, u, v) ≤ 0, Gzz(t, u, v) ≤ 0,

4. V2(t, y0, z0) ≥ 0
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5. assumption (2.1) is satisfied for λ = λ1 and functions K ∈ C(J, R), L ∈ C(J, R+)
such that

V1(t, y0, z0) ≥ K(t),

V2(t, z0, y0) ≤ L(t)

on J.

Then there exist sequences {yn}, {zn} ⊂ C1(J, R) converging to a unique solution
x ∈ C1(J, R) of problem (1.1) in the sector [y0, z0]∗ = {w ∈ C1(J, R) : y0(t) ≤
w(t) ≤ z0(t), t ∈ J}. Moreover the convergence is quadratic i.e. there exist nonnegative
constants c1, c2, c̄1, c̄2 such that for n = 0, 1, . . .

max
t∈J

|x(t)− yn+1(t)| ≤ c1 max
t∈J

|x(t)− yn(t)|
2 + c2 max

t∈J
|zn(t)− x(t)|2

and

max
t∈J

|zn+1(t)− x(t)| ≤ c̄1 max
t∈J

|x(t)− yn(t)|
2 + c̄2 max

t∈J
|zn(t)− x(t)|2.

Proof. For n = 0, 1, . . ., define sequences {yn}, {zn} as follows







y′n+1(t) = f (t, yn(t), yn(α(t))) + V1(t, yn, zn)[yn+1(t)− yn(t)]
+ V2(t, yn, zn)[yn+1(α(t)) − yn(α(t))],

yn+1(0) = λ2,

and






z′n+1(t) = f (t, zn(t), zn(α(t))) + V1(t, yn, zn)[zn+1(t)− zn(t)]
+ V2(t, yn, zn)[zn+1(α(t)) − zn(α(t))],

zn+1(0) = λ2.

Note that sequences {yn}, {zn} are well defined as solutions of linear problems
with initial conditions (use a Banach fixed point theorem with a corresponding
norm).

First, we show that y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t). Put p = y0 − y1. Then
p(0) ≤ 0 and

p′(t) ≤ f (t, y0(t), y0(α(t))) − f (t, y0(t), y0(α(t)))
− V1(t, y0, z0)[y1(t)− y0(t)]
− V2(t, y0, z0)[y1(α(t)) − y0(α(t))]
= V1(t, y0, z0)p(t) + V2(t, y0, z0)p(α(t)),

by assumption (2). In view of Lemma 1 (with λ = 0), we obtain that p(t) ≤ 0 on
J, which means that y0(t) ≤ y1(t). Analogically we can show that z1(t) ≤ z0(t),
t ∈ J.

Using a mean value theorem and monotonicity of Fy, Fz, Gy, Gz (condition (3)),
we have

f (t, y0(t), y0(α(t))) − f (t, z0(t), z0(α(t)))
= −[Fy(t, ξ(t), z0(α(t))) + Gy(t, ξ1(t), z0(α(t)))][z0(t)− y0(t)]
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−[Fz(t, y0(t), ζ(t)) + Gz(t, y0(t), ζ1(t))][z0(α(t)) − y0(α(t))]
≤ −V1(t, y0, z0)[z0(t)− y0(t)] − V2(t, y0, z0)[z0(α(t)) − y0(α(t))], (3.1)

where y0(t) < ξ(t) < z0(t), y0(t) < ξ1(t) < z0(t), y0(α(t)) < ζ(t) < z0(α(t)),
y0(α(t)) < ζ1(t) < z0(α(t)) for t ∈ J.

Put p = y1 − z1. Then p(0) = 0. Using the definition of y1, z1 and relation
(3.1) we see that

p′(t) ≤ V1(t, y0, z0)p(t) + V2(t, y0, z0)p(α(t)).

In view of Lemma 1, we get p(t) ≤ 0 on J. It proves that

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Now we are going to show that y is a lower solution of problem (1.1). Using
definition of y1, assumption (3) and the relation (3.1) with y1 instead of z0, we
obtain

y′1(t) ≤ −V1(t, y0, y1)[y1(t)− y0(t)] − V2(t, y0, y1)[y1(α(t)) − y0(α(t))]
+ V1(t, y0, z0)[y1(t)− y0(t)] + V2(t, y0, z0)[y1(α(t)) − y0(α(t))]
+ f (t, y1(t), y1(α(t))) ≤ f (t, y1(t), y1(α(t))).

It proves that y1 is a lower solution of (1.1). Analogically, we can prove that z1 is
an upper solution of (1.1).

Now, using mathematical induction we can show that

y0(t) ≤ y1(t) ≤ . . . ≤ yn(t) ≤ zn(t) ≤ . . . ≤ z1(t) ≤ z0(t), n = 0, 1, . . . , t ∈ J.

Sequences {yn}, {zn} are uniformly bounded and equicontinuous on J. In
view of Arzela-Ascoli theorem there exist subsequences {ynk

}, {znk
} of {yn}, {zn}

converging uniformly on J to some continuous functions y, z respectively. Func-
tions ynk

, znk
satisfy integral equations































































ynk+1(t) = ynk+1(0) +

t
∫

0

f (s, ynk
(s), ynk

(α(s)))ds

+

t
∫

0

V1(s, ynk
, znk

)[ynk+1(s)− ynk
(s)]ds

+

t
∫

0

V2(s, ynk
, znk

)[ynk+1(α(s)) − ynk
(α(s))]ds,

ynk+1(0) = λ2,



810 A. Dyki

and






























































znk+1(t) = znk+1(0) +

t
∫

0

f (s, znk
(s), znk

(α(t)))ds

+

t
∫

0

V1(s, ynk
, znk

)[znk+1(s)− znk
(s)]ds

+

t
∫

0

V2(s, ynk
, znk

)[znk+1(α(s))− znk
(α(s))]ds,

znk+1(0) = λ2.

If nk → ∞, we get















y(t) = y(0) +

t
∫

0

f (s, y(s), y(α(s)))ds,

y(0) = λ2,

and














z(t) = z(0) +

t
∫

0

f (s, z(s), z(α(s)))ds,

z(0) = λ2

because f is continuous. Hence

y′(t) = f (t, y(t), y(α(t))),
z′(t) = f (t, z(t), z(α(t))),

so y, z ∈ C1(J, R) and are solutions of (1.1) in [y0, z0]∗.
Now, we show that y = z is a unique solution of (1.1). We have

y0(t) ≤ y(t) ≤ z(t) ≤ z0(t).

Put p = z − y. Then p(t) ≥ 0 on J, p(0) = 0 and

p′(t) ≤ V1(t, z, y)p(t) + V2(t, z, y)p(α(t))

in view of a mean value theorem and condition (3). Lemma 1 yields that p(t) ≤ 0
on J. It proves that y = z on J.

It remains to show that it is a unique solution. Let x ∈ [y0, z0]∗ be any solution
of (1.1). By the method of mathematical induction, it is easy to show that

yn(t) ≤ x(t) ≤ zn(t), t ∈ J, n = 0, 1, . . .

If n → ∞, then y = z = x. It means that {yn}, {zn} converge to a unique solution
x of (1.1).



Quasilinearization method... 811

Finally we show quadratic convergence of {yn} and {zn} to x. Define

pn+1(t) = x(t)− yn+1(t) ≥ 0 and qn+1(t) = zn+1(t)− x(t) ≥ 0, t ∈ J.

We have pn+1(0) = qn+1(0) = 0 and

p′n+1(t) = f (t, x(t), x(α(t))) − f (t, yn(t), yn(α(t)))
− V1(t, yn, zn)[yn+1(t)− yn(t)] − V2(t, yn, zn)[yn+1(α(t)) − yn(α(t))],
= [Fy(t, ξ(t), yn(α(t))) + Gy(t, ξ1(t), yn(α(t)))]pn(t)
+ [Fz(t, x(t), ζ(t)) + Gz(t, x(t), ζ1(t))]pn(α(t))
+ V1(t, yn, zn)[pn+1(t)− pn(t)] + V2(t, yn, zn)[pn+1(α(t)) − pn(α(t))],

where
yn(t) < ξ(t) < x(t), yn(t) < ξ1(t) < x(t)

yn(α(t)) < ζ(t) < x(α(t)), yn(α(t)) < ζ1(t) < x(α(t))

for t ∈ J. Using again the mean value theorem we obtain

p′n+1(t) ≤ V1(t, yn, zn)pn+1(t) + V2(t, yn, zn)pn+1(α(t))
+ pn(t)Fyy(t, µ1(t), yn(α(t)))pn(t)
− pn(t)Gyz(t, yn(t), µ2(t))[qn(α(t)) + pn(α(t))]
− pn(t)Gyy(t, µ3(t), zn(α(t)))[qn(t) + pn(t)]
+ pn(α(t))Fzy(t, µ4(t), x(α(t)))pn(t)
+ pn(α(t))Fzz(t, yn(t), µ5(t))pn(α(t))
− pn(α(t))Gzy(t, µ6(t), zn(α(t)))qn(t)
− pn(α(t))Gzz(t, x(t), µ7(t))[qn(α(t)) + pn(α(t))],

where

yn(t) < µ1(t) < x(t), yn(α(t)) < µ2(t) < zn(α(t)), yn(t) < µ3(t) < zn(t),

yn(t) < µ4(t) < x(t), yn(α(t)) < µ5(t) < x(α(t)), x(t) < µ6(t) < zn(t),

yn(α(t)) < µ7(t) < zn(α(t)) t ∈ J.

Hence

p′n+1(t) ≤ V1(t, yn, zn)pn+1(t) + V2(t, yn, zn)pn+1(α(t))

+ (|Fyy(t, µ1(t), yn(α(t)))| + |Gyy(t, µ3(t), zn(α(t)))|)p2
n(t)

+
1

2
|Gyy(t, µ3(t), zn(α(t)))|[p

2
n(t) + q2

n(t)]

+
1

2
(|Gyz(t, yn(t), µ2(t)) + |Fzy(t, µ4(t), x(α(t)))|)[p2

n (t) + p2
n(α(t))]

+
1

2
|Gyz(t, yn(t), µ2(t))|[p

2
n(t) + q2

n(α(t))]

+ (|Fzz(t, yn(t), µ5(t))| + |Gzz(t, x(t), µ7(t))|)p2
n(α(t))

+
1

2
|Gzy(t, µ6(t), zn(α(t)))|[p

2
n(α(t)) + q2

n(t)]
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+
1

2
|Gzz(t, x(t), µ7(t))|[p

2
n(α(t)) + q2

n(α(t))]

≤ M1pn+1(t) + M2pn+1(α(s))

+ a1 p2
n(t) + a2 p2

n(α(t)) + a3q2
n(t) + a4q2

n(α(t)), (3.2)

because Fy, Fz, Gy, Gz, Fyy, Fyz, Fzy, Fzz, Gyy, Gyz, Gzy, Gzz are bounded. Put















w′(t) = M1pn+1(t) + M2pn+1(α(t)) + a1p2
n(t) + a2 p2

n(α(t))

+ a3q2
n(t) + a4q2

n(α(t)),

w(0) = pn+1(0) = 0

Then we have

w′(t) ≤ (M1 + M2)w(t) + a1p2
n(t) + a2p2

n(α(t)) + a3q2
n(t) + a4q2

n(α(t))

because w′(t) ≥ 0 and pn+1(t) ≤ w(t) for t ∈ J. Thus

w(t) ≤ e(M1+M2)tw(0)

+

t
∫

0

e(M1+M2)(t−s)[a1 p2
n(s) + a2 p2

n(α(s)) + a3q2
n(s) + a4q2

n(α(s))]ds

≤
1

M1 + M2

(

e(M1+M2)T − 1
)

[(a1 + a2)max
t∈J

p2
n(t) + (a3 + a4)max

t∈J
q2

n(t)]

and consequently

max
t∈J

pn+1(t) ≤ c1 max
t∈J

p2
n(t) + c2 max

t∈J
q2

n(t),

where

c1 =
a1 + a2

M1 + M2

(

e(M1+M2)T − 1
)

, c2 =
a3 + a4

M1 + M2

(

e(M1+M2)T − 1
)

.

Analogically we can show that

max
t∈J

qn+1(t) ≤ c3 max
t∈J

q2
n(t) + c4 max

t∈J
p2

n(t).

4 Case 2: 0 < λ1 < 1

Theorem 2. Let λ1 ∈ (0, 1). Assume that assumptions (1) and (3)–(5) of Theorem 1 are
satisfied. Moreover assume that

1. y0, z0 ∈ C1(J, R), y0(t) ≤ z0(t), t ∈ J and satisfy the system

y′0(t) ≤ f (t, y0(t), y0(α(t))), y0(0) ≤ λ1y0(T) + λ2

z′0(t) ≥ f (t, z0(t), z0(α(t))), z0(0) ≥ λ1z0(T) + λ2
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Then there exist sequences {yn}, {zn} ⊂ C1(J, R) converging to a unique solution
x ∈ C1(J, R) of problem (1.1) in the sector [y0, z0]∗. The convergence is semi-quadratic
i. e. there exist nonnegative constants c1, c2, c3, c̄1, c̄2, c̄3 such that

max
t∈J

|x(t)− yn+1(t)| ≤ c1 max
t∈J

|x(t)− yn(t)| + c2 max
t∈J

|x(t)− yn(t)|
2+

c3 max
t∈J

|zn(t)− x(t)|2

and

max
t∈J

|zn+1(t)− x(t)| ≤ c̄1 max
t∈J

|zn(t)− x(t)| + c̄2 max
t∈J

|x(t)− yn(t)|
2+

c̄3 max
t∈J

|zn(t)− x(t)|2.

Proof. Define sequences {yn}, {zn} by











y′n+1(t) = f (t, yn(t), yn(α(t))) + V1(t, yn, zn)[yn+1(t)− yn(t)]
+ V2(t, yn, zn)[yn+1(α(t)) − yn(α(t))],

yn+1(0) = λ1yn(T) + λ2,

and










z′n+1(t) = f (t, zn(t), zn(α(t))) + V1(t, yn, zn)[zn+1(t)− zn(t)]
+ V2(t, yn, zn)[zn+1(α(t)) − zn(α(t))],

zn+1(0) = λ1zn(T) + λ2.

Note that in this case yn+1(0) = kn ∈ R, zn+1(0) = ln ∈ R, so sequences {yn},
{zn} have similar structures as in Theorem 1.

Analogically to the proof of Theorem 1, we can show that there exists a unique
solution x ∈ C1(J, R) of problem (1.1) and that {yn}, {zn} converge to x.

Now we show the semi-quadratic convergence of {yn}, {zn} to x. Put

pn+1(t) = x(t)− yn+1(t) ≥ 0 and qn+1(t) = zn+1(t)− x(t) ≥ 0, t ∈ J.

Note that

pn+1(t) = x(t)− yn+1(t) + yn(t)− yn(t) = pn(t) + yn(t)− yn+1(t)
≤ pn(t)

and

qn+1(t) = zn+1(t)− x(t) + zn(t)− zn(t) = qn(t) + zn+1(t)− zn(t)
≤ qn(t).

Using the above and the relation (3.2), we see that

p′n+1(t) ≤ M1pn(t) + M2pn(α(t)) + a1p2
n(t) + a2 p2

n(α(t)) + a3q2
n(t) + a4q2

n(α(t)).
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Integrating the above relation from 0 to t, we get

pn+1(t) ≤ c1 max
t∈J

pn(t) + c2 max
t∈J

p2
n(t) + c3 max

t∈J
q2

n(t),

where
c1 = λ1 + T(M1 + M2), c2 = T(a1 + a2), c3 = T(a3 + a4).

It yields

max
t∈J

pn+1(t) ≤ c1 max
t∈J

pn(t) + c2 max
t∈J

p2
n(t) + c3 max

t∈J
q2

n(t).

Analogically we can show that

max
t∈J

qn+1(t) ≤ c̄1 max
t∈J

qn(t) + c̄2 max
t∈J

q2
n(t) + c̄3 max

t∈J
p2

n(t).

To obtain the next result the following lemma is needed:

Lemma 2. Assume that g ∈ C(J × R × R, R) and satisfies a Lipschitz condition

|g(t, u, v)− g(t, ū, v̄)| ≤ M1|u − ū|+ M2|v − v̄|,

with constants M1, M2 > 0 such that

λ1 + T(M1 + M2) < 1.

Then problem

{

y′(t) = g(t, y(t), y(α(t)), t ∈ J,
y(0) = λ1y(T) + λ2, λ1 ∈ [0, 1)

(4.1)

has exactly one solution.

Proof. First we show that solving (4.1) is equivalent to solving a fixed point prob-
lem. Let y be a solution of problem (4.1). Integrating (4.1) from 0 to t and using
the boundary condition yields

y(t) =
λ2

1 − λ1
+

∫ T

0
G(t, s)g(s, y(s), y(α(s)))ds ≡ (Ay)(t),

where

G(t, s) =











1

1 − λ1
for 0 ≤ s < t,

λ1

1 − λ1
for t ≤ s ≤ T.

Similarly, it is easy to see that if y is any solution of y = Ay, then y is a solution of
problem (4.1).

Put ‖u‖ = maxt∈J |u(t)|. Let u, v ∈ C(J, R). We have

‖Au − Av‖ ≤ max
t∈J

T
∫

0

|G(t, s)||g(s, u(s), u(α(s))) − g(s, v(s), v(α(s))|ds
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≤ ‖u − v‖max
t∈J

∫ T

0
(M1 + M2)|G(t, s)|ds

≤ ‖u − v‖max
t∈J

∫ T

0

M1 + M2

1 − λ1
ds

=
T(M1 + M2)

1 − λ1
‖u − v‖,

which proves that A is a contraction. In view of the Banach fixed point theorem,
we have the conclusion.

Now we can prove the following main result of this paper.

Theorem 3. Let λ1 ∈ (0, 1). Assume that

1. assumptions (1), (3)-(5) of Theorem 1 hold

2. y0, z0 ∈ C1(J, R), y0(t) ≤ z0(t), t ∈ J and satisfy the system

y′0(t) ≤ f (t, y0(t), y0(α(t))), y0(0) ≤ λ1y0(T) + λ2

z′0(t) ≥ f (t, z0(t), z0(α(t))), z0(0) ≥ λ1z0(T) + λ2

3. λ1 + (M1 + M2)T < 1, where M1, M2 > 0 are such that

|V1(t, u, v)| ≤ M1, |V2(t, u, v)| ≤ M2

for y0(t) ≤ u ≤ z0(t), y0(α(t)) ≤ v ≤ z0(α(t)), t ∈ J.

Then there exist sequences {yn}, {zn} ⊂ C1(J, R) converging to a unique solution
x ∈ C1(J, R) of problem (1.1) in the sector [y0, z0]∗. Moreover the convergence is
quadratic.

Proof. Define











y′n+1(t) = f (t, yn(t), yn(α(t))) + V1(t, yn, zn)[yn+1(t)− yn(t)]
+ V2(t, yn, zn)[yn+1(α(t)) − yn(α(t))],

yn+1(0) = λ1yn+1(T) + λ2,

and










z′n+1(t) = f (t, zn(t), zn(α(t))) + V1(t, yn, zn)[zn+1(t)− zn(t)]
+ V2(t, yn, zn)[zn+1(α(t)) − zn(α(t))],

zn+1(0) = λ1zn+1(T) + λ2.

Lemma 2 yields that sequences {yn}, {zn} are well defined.
First we show that

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Put p = y0 − y1. Then p(0) ≤ λ1 p(T) and

p′(t) ≤ f (t, y0(t), y0(α(t))) − f (t, y0(t), y0(α(t)))
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− V1(t, y0, z0)[y1(t)− y0(t)] − V2(t, y0, z0)[y1(α(t)) − y0(α(t))]
= V1(t, y0, z0)p(t) + V2(t, y0, z0)p(α(t)).

In view of Lemma 1 we obtain that p(t) ≤ 0 for t ∈ J, so y0(t) ≤ y1(t), t ∈ J.
Analogically we show that z1(t) ≤ z0(t), t ∈ J.

Now put p = y1 − z1. We have p(0) = λ1p(T) and

p′(t) ≤ −V1(t, y0, z0)[z0(t)− y0(t)] − V2(t, y0, z0)[z0(α(t)) − y0(α(t))]
+ V1(t, y0, z0)[y1(t)− y0(t)] + V2(t, y0, z0)[y1(α(t)) − y0(α(t))]
− V1(t, y0, z0)[z1(t)− z0(t)] − V2(t, y0, z0)[z1(α(t)) − z0(α(t))]
= V1(t, y0, z0)p(t) + V2(t, y0, z0)p(α(t)).

In view of Lemma 1 we have y1(t) ≤ z1(t), t ∈ J.
It is easy to show that

y′1(t) ≤ f (t, y1(t), y1(α(t))) and z′1(t) ≥ f (t, z1(t), z1(α(t))), t ∈ J.

By induction we can show that

y0(t) ≤ y1(t) ≤ . . . ≤ yn(t) ≤ zn(t) ≤ . . . ≤ z1(t) ≤ z0(t), n = 0, 1, . . . , t ∈ J.

Analogically as in Theorem 1 we can show that {yn}, {zn} converge to a
unique solution x ∈ C1(J, R) of problem (1.1).

It remains to show the quadratic convergence. Put

pn+1(t) = x(t)− yn+1(t) ≥ 0 and qn+1(t) = zn+1(t)− x(t) ≥ 0, t ∈ J.

By (3.2) we have

p′n+1(t) ≤ M1pn+1(t) + M2pn+1(α(t))

+ a1p2
n(t) + a2p2

n(α(t)) + a3q2
n(t) + a4q2

n(α(t)),

(see the proof of Theorem 1).
Integrating the above from 0 to t we get

pn+1(t) ≤ λ1pn+1(T) +
∫ t

0
[M1pn+1(s) + M2pn+1(α(s))]ds

+

t
∫

0

[a1 p2
n(s) + a2 p2

n(α(s)) + a3q2
n(s) + a4q2

n(α(s))]ds

≤ [λ1 + T(M1 + M2)]max
t∈J

pn+1(t)

+ T(a1 + a2)max
t∈J

p2
n(t) + T(a3 + a4)max

t∈J
q2

n(t).

Hence

(1 − [λ1 + T(M1 + M2)])max
t∈J

pn+1(t) ≤ T(a1 + a2)max
t∈J

p2
n(t)

+ T(a3 + a4)max
t∈J

q2
n(t).
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Thus
max

t∈J
pn+1(t) ≤ c1 max

t∈J
p2

n(t) + c2 max
t∈J

q2
n(t),

where

c1 =
T(a1 + a2)

1 − [λ1 + T(M1 + M2)]
, c2 =

T(a3 + a4)

1 − [λ1 + T(M1 + M2)]
.

Similarly we can show that

max
t∈J

qn+1(t) ≤ c3 max
t∈J

q2
n(t) + c4 max

t∈J
p2

n(t).

This completes the proof.

5 Example

Example 1. Let us consider the problem














x′(t) =
1

10
x(t)−

1

5
e−x(t) −

1

6
e−2x( 1

2 t) + 1, t ∈ [0, 1],

x(0) =
1

10
x(1) +

7

10
.

(5.1)

Put

F(t, y, z) =
1

10
y + 1, G(t, y, z) = −

1

5
e−y −

1

6
e−2z.

Note that here we have α(t) = 1
2 t. Take y0(t) = 1

2 t + 1
2 , z0(t) = 2t + 1. Then we

have

f

(

t, y0(t), y0

(

1

2
t

))

=
1

20
t +

1

20
−

1

5
e−

1
2 t− 1

2 −
1

6
e−

1
2 t−1 + 1

≥
1

20
−

1

5
e−

1
2 −

1

6
e−1 + 1

>
1

20
−

1

5
−

1

6
+ 1 >

1

2
= y′0(t)

f

(

t, z0(t), z0

(

1

2
t

))

=
1

5
t +

1

10
+ 1 −

1

5
e−2t−1 −

1

6
e−2t−2

<
1

5
t +

1

10
+ 1 < 2 = z′0(t)

and

1

λ 1
y0(1) + λ2 = 10y0(1) +

7

10
=

8

10
>

1

2
= y0(0)

λ1z0(1) + λ2 =
1

10
z0(1) +

7

10
= 1 = z0(0).

Moreover

V1(t, y0, z0) =
1

10
+

1

5
e−2t−1

>
1

10
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V2(t, z0, y0) =
1

3
e−

1
2 t−1 ≤

1

3
e−1

V2(t, y0, z0) =
1

3
e−2t−2

> 0.

Defining K(t) =
1

10
, L(t) =

1

3
e−1, M1 = 3

10 , M2 = 1
3 we get

λ̃1 +

1
∫

0

L(t)e
−

∫ t
α(t) K(s)ds

dt =
1

10
e

1
10 +

1
∫

0

1

3
e−1e

−
∫ t

1
2 t

1
10 ds

dt

<
1

10
e

1
10 +

1

3
e−1

< 1 (5.2)

and

λ + (M1 + M2)T =
22

30
< 1.

All assumptions of Theorem 3 are satisfied. Thus there exist monotone sequences
{yn}, {zn} converging quadratically to a unique solution of problem (5.1) in the
sector [y0, z0]∗.
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