Quasilinearization Method for Functional
Differential Equations with Delayed Arguments

Agnieszka Dyki

Abstract

We apply the quasilinearization method to boundary value problems for
tirst order functional differential equations with delayed arguments. We for-
mulate sufficient conditions for semi-quadratic or quadratic convergence of
corresponding monotone sequences to a unique solution.

1 Introduction

Let us consider the problem

(200 = [CxO o), el =0T )
x(O) = /\1X(T)—|—/\2, )L1€[0,1). )

where f € C?(] x R x R,R) and function « € C(],]) is such that a(t) < t for
t € J. By C?(] x R x R, R) we mean the space of functions f = f(t, x,y) such that
fr Fxr fyr fxxr fxys fys fyy € C(J X R X R, R).

A fruitful technique for proving existence results for differential equations is
the monotone iterative method (see [2] —[4], [6], [8] —[10]). It gives a constructive
procedure for approximation of solutions. However, from the practical point of
view it is important to have higher order of convergence of sequences of the ap-
proximate solutions. Therefore in this paper we will focus on quasilinearization
method (for details see for example [7], see also [1], [5]) for the above boundary
value problem for functional differential equation with delayed argument. It is a
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well known method for problems without deviating arguments. According to my
knowledge it haven’t been applied for boundary value problems with deviated
arguments so my results are new.

The plan of this paper is as follows. In Section 2 we formulate Lemma which
is needed in succeeding sections. In Section 3 we consider the case when A; = 0
i.e. the case when we have an initial value problem. Under natural assumptions,
we prove quadratic convergence of monotone sequences to a unique solution.
In Section 4 we consider the case A; € (0,1). First we show the semi-quadratic
convergence of corresponding monotone sequences to a unique solution. Next,
under a little more restricted assumptions, we prove quadratic convergence. Note
that the corresponding sequences are defined differently in each case. In the last
section we give an example to verify the required assumptions.

2 Preliminaries

Lemma 1. Assume that « € C(],]), a(t) < ton ], K € C(J,R), p € C(],R), and
system

< K(t)p(t) + L(H)p(a(t), te],
0) < Ap(T), Ae[01)

=

A~
=

N—

is satisfied where nonnegative function L, integrable on |, is such that
T
/ s < 1, @.1)
0

where A = AefoTK(s)ds
Then p(t) <0onJ.

Proof. Define
g(t) = e JoKGMsp(p),

We have q(0) < Ag(T) and

q/(t) = e_fOtK(S)dS(—K(t)p(t) _|_p/(t)) < q(a(t))L(t)e” f;(t)K(s)ds‘

Hence

SO
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and finally

A
1—A

q(t) <

T t
/Q(DC(S))L(s)e_ j:(s)K(T)deS + /q(oc(s))L(S)e_ fj(s)K(T)deS.
0 0

807

Conversely, assume that there exists ¢y € J such that p(to) > 0, and consequently
q(to) > 0. Put g(t;) = maxscj4(t) > 0. Then we get

q(t1) < q(t1)

Thus

q(t1) |1—

which is contrary to the assumption. This proves that p(t) < 0on J.

1

1

>t
O\H

T
1 ~ /L(s)e_ j;(S)K(T)deS
1-A /

L(s)e” Jio KO gl < g

— 4

T
Remark 1. If K(t) > 0,t € Jand A —i—/L(s)ds < 1 then condition (2.1) holds.
0

Note that this condition does not depend on «.

3 Casel: A =0

Let us define functions Vj, V, by

Vi(t,u,v) = Fy(t,u(t), u(a(t))) + Gy(t,v(t), v(a(t))),

Va(t,u,0) = B (£, u(t), u(a(t))) + Gz (£, o(t), v(a(t))),

for corresponding functions F,, Gy, F;, G..

Theorem 1. Let Ay = 0. Assume that

1. a € C(J,]), a(t) <t, f = F+ G, where F,G € C?(] x R x R, R)

2. y0,20 € C(J,R), yo(t) < zo(t),t € | and satisfy the system

yo(t

zg(t

N—

<
>

f(t,yo(t)

f(t

4
4

zo(t)

Yo
,Z

(@(£))), y0(0) <A

o(a(t))), z0(0) = Az,

3. foryo(t) <u < zo(t), yo(a(t)) < v < zo(a(t)) we have

Fyy(t,u,v) >0, Fy(t,u,v) >0, F(t,u0) >0
Gyy(t,u,v) <0, Gy(t,u,v) <0, Gzu(tuv) <0,

4. Vz(t,yo,ZO) 2 0
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5. assumption (2.1) is satisfied for A = Aq and functions K € C(J,R), L € C(J,Ry)
such that

Va(t, yo,z0) = K(t),
Va(t, zo,yo) < L(t)
on J.
Then there exist sequences {yn},{zn} C C(J,R) converging to a unique solution
x € CY(J,R) of problem (1.1) in the sector [yo,z0]s = {w € CY(J,R) : yo(t) <

w(t) < zo(t),t € J}. Moreover the convergence is quadratic i.e. there exist nonnegative
constants cy, ¢, €1, ¢ such that forn =0,1,...

max |x(£) =y ()] < comaxix(t) - Yn() +c2 max |z (t) - x(t)[?

te]
and
max |z, 41(t) — x(t)| < & max|x(t) — (t)]2 + ¢ max |z, (t) — x(t)]z.
te] te] te]

Proof. Forn = 0,1, ..., define sequences {y, }, {z,} as follows

{ 3/;:+1(t) f(tyn(t), yn(a(t))) + Vit yn, zn) [Yns1(t) — yn(t)]
yn+1(0)

Vot Y 2n) s (2(8)) — ya(@(6))],
= Ay,
and
2 (D) = F(zn(8), za(@(t))) + Vi (t Yo 2o) Znsr (£) — 2 (1)
+ Valt, Yy 20) Znar (&(6)) — 2n(a(D))],
Zn+1(0) =

Aj.

Note that sequences {y,}, {z,} are well defined as solutions of linear problems
with initial conditions (use a Banach fixed point theorem with a corresponding
norm).

First, we show that yo(t) < y1(t) < z1(t) < zo(t). Put p = yo — y1. Then
p(0) <0and

p'(t) < fltyo(),yo(a(t)) — f(t yo(t), yola(t)))
— Va(t,yo, z0)[y1(t) — yo(t)]
— Va(t,yo,20) [ya (a(t )) yo(a(t))]
= Vi(t,yo,20)p(t) + Va(t, yo,Zo)P( a(t)),

by assumption (2). In view of Lemma 1 (with A = 0), we obtain that p(t) < 0 on
J, which means that yo(t) < y;1(#). Analogically we can show that z; () < z(t),
te].

Using a mean value theorem and monotonicity of F, F;, Gy, G; (condition (3)),
we have
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—[E(tyo(t), C(+) + Gz(t, yo(t), 1 (F))][z0(a(t)) — y
< —Vi(t, yo, 20) [z0(t) — yo(t)] — Va(t,yo,z0)[z0(a(t)

where yo(t) < &(t) < 20(), yolt) < &1(8) < 2(8), yola(t) < &(t) < zo(a(t)),
yo(a(t)) < C1(t) < zo(a(t)) fort € J.

Put p = y1 — z1. Then p(0) = 0. Using the definition of y;,z; and relation
(3.1) we see that

p'(t) < Vi(tyo,z0)p(t) + Va(t,yo,zo)p(a(t)).

In view of Lemma 1, we get p(t) < 0 on J. It proves that
yo(t) <yi(t) <z(t) <zo(t), te]

Now we are going to show that y is a lower solution of problem (1.1). Using
definition of y;, assumption (3) and the relation (3.1) with y; instead of zj, we
obtain

< —Va(tyo,y)ly1(t) —yo(t)] — Va(t, yo, y1)ly1 (a(t)) — yo(a(t))]
+ Vit yo,20) [y1(t) — yo(t)] + Valt, yo,2z0) [y1 (a(t)) — yo(a(t))]
+ f(tyi(t),ya(a(t))) < f(Eya(t),ya(a(t))).

y1(t)

It proves that y; is a lower solution of (1.1). Analogically, we can prove that z; is
an upper solution of (1.1).

Now, using mathematical induction we can show that
Yo(f) <y1(t) < ... <yn(t) <zu(t) < ... <zy(t) < zo(t), n=0,1,..., te].

Sequences {y,},{zn} are uniformly bounded and equicontinuous on J. In
view of Arzela-Ascoli theorem there exist subsequences {yy, }, {zn, } of {yn}, {zn}
converging uniformly on | to some continuous functions vy, z respectively. Func-
tions yy,,, z,, satisfy integral equations

( t

Vi) = 10 + [ £, (5), v (a(s))ds
0

VA Y 20 1) = Yy ()]s
0

[ Vs 2 1 (2(6)) = v ()]s,
0

\ ynk+1 (0) = /\2’
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and
| Zo1(t) = 2n41(0) + 0/ £(5, 2y (5), 2, () )
T 0/ VA(S, Y Z00) g1 (5) — 2 (5)]ds
T 0/ Vals, Yng 20, 1 (a(5)) — 2 (a(5)) 1,
| 210 = o

If n — oo, we get
v(t) = v(0)+ [ Flsy(s)y(w(s)ds,
yO) = Ao

and

t

2(t) = 20+ [ f(s,2(5), 2(a(3))ds,
Z(O) = )\2 "

y(t) = fLy)y(a(t)),
Z(t) = f(tz(t)z(a(t)),

soy,z € C}(J,R) and are solutions of (1.1) in [yg, Zg]
Now, we show that y = z is a unique solution of (1.1). We have

yolt) <y(t) <z(t) < zo(t).
Putp =z—y. Then p(t) > 0on ], p(0) = 0and

p'(t) < Viltzy)p(t) + Va(t,z,y)p(a(t))

A. Dyki

in view of a mean value theorem and condition (3). Lemma 1 yields that p(t) <0

on J. It proves that y = z on J.

It remains to show that it is a unique solution. Let x € [y, zo]« be any solution

of (1.1). By the method of mathematical induction, it is easy to show that

ya(t) < x(t) <zu(t), te], n=0,1,...

If n — oo, then y = z = x. It means that {y, }, {z,} converge to a unique solution

xof (1.1).
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Finally we show quadratic convergence of {y,} and {z,} to x. Define

puaa(t) = X(8) = yar1(H) > 0 and qur1(t) = zasa () —x(H) > 0, te .

We have p,+1(0) =

Pus1(t) = f(tx(b), ) Y (t), yn(a(t)))
— Vit yn, zn) yn1(t) —yn(t)] = Va(t, yn, z0) [y (a(t)) — yn(a(t))]
= [Fy(t,¢(t), yn(a(t))) + Gy(t, G1(t), yn(a(t)))]pn(t)
+ [E(tx(t), () + Gz(t, x(t), 1 (1)) ] pa (a(t))
+ Vit yn zn) [pns1(t) — pu()] + Vot yn, z0) [Prs1 (a(2)) — pu(a(t))]
where

yn(t) < G(8) < x(£), ynlt) <Gi(t) <x(t)
yn(a(t)) < &(t) < x(a(t)), yala(t)) < Qi) < x(aft))

for t € J. Using again the mean value theorem we obtain

p;z+1(t) < Vit Yn, zn) pura(t) + Valt, Yn, zn) pura (a(t))
+ pu(t)Fyy (8, pa (£), yn(a(t)) ) pu (2)
— Pu(t)Gyz(t, yn(t), u2())[gn (a(t)) + pn(a(t))]
— Pu(t)Gyy(t, us(t), zn(a(t)))[qn (t) + pn(t)]
+ pu(a(t))Fzy (t, pa(t), x(a(t))) pu(t)
+ pu(a(t)Ez (8, yn(t), us(t)) pn(a(t))
— pn(a(t))Gzy(t ue(t), z (“(t) )qn (t)
— pu(a(t))Gaz(t, x(t), p7 (1)) [gn (a(t)) + pu(a(t))],

where

yn(8) < pa(t) <x(t), yn(a(t)) < pa(t) <za(a(t)), yalt) <pa(t) <za(t),
Yn(t) < pa(t) <x(t), yu(a(t)) < ps(t) < x(a(t), x(8) < po(t) < za(t),
Yyn(a(t)) < p7(t) < za(a(t)) te].

Hence

Vit Yn, zn) Pu1 (t) + Va(t, Yn, 2n) P (a(t))
(Fyy (& 1 (8), Y (a(D))] + | Gyy (8, 3 (t), 20 ((£)) ) P75 ()

2 1Guy (b (1), zn(a(0)) | [23(8) + (1)
S (1Gyet 1) 2 () + | Exy (i (8), (@)D (1) + P2 (a(1))]
+ %ycyza,yn(t),m.(t)mp%(t)+qi<zx<t>>1

+ ([Eez (b yn(8), 5 ()| + [Gaz(t, x(8), 7 (1)) i (a(1))

+ ;Gzy(t, e (1), za (@(1)))|[P2 (2(t)) + g2 (1)]

P;z+1(t)

+ 4+ IA

_|_
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2 1Gan(t,x(0) 1 ()] (1)) + 3 (a(1))]

< Mipugi(t) + Mapnia(a(s))
b apR () + aapR(a(t) + e (1) + ag(a(t)), 62)

because Fy, F;, Gy, Gz, Fyy, Fyz, Fzy, Fzz, Gyy, Gyz, Gzy, Gz, are bounded. Put
W (t) = Mipuy1(t) + Mappgr(a(t)) +arpy(t) + aapy(a(t))

+ a3y (t) + aaqy (a(t)),
w(0) = put1(0) =0

Then we have
w'(t) < (My+ Ma)w(t) + arpy (1) + axpy; (a(t)) +asqy (1) + aaqy (a(t))
because w'(t) > 0and p,11(t) < w(t) fort € J. Thus

w(t) e(Mi+Ma)ty, )

IN

t
b [ MMy 2 (s) 4 a2 (a(5)) + asg(s) + aad? (a(5) )]s
0

1

(M +M2)T o 2 2
M, 1My (e 1 1) [(a1 +a2) max py(t) + (a3 + a4) max 7 (1))

and consequently

) < 2(¢ 2(4),
max p,11(t) < C1r?§]><19n( ) +Czrgl€a]><qn( )

te]
where
ai +az ( (My+Mj)T ) as + a4 ( (My+M)T )
cg=—"—|e¢ —1),c0=———(e"17¥2" —1).
1 M + M, 2 M; + M,
Analogically we can show that
t) < At 2(8).
r{léajan+1()_63r?§an()+C4rgléa]xvn() m

4 Case2:0< A <1

Theorem 2. Let Ay € (0,1). Assume that assumptions (1) and (3)—(5) of Theorem 1 are
satisfied. Moreover assume that

1. yo,20 € CY(J,R), yo(t) < zo(t),t € ] and satisfy the system

f(&yo(t),vo(a(t)), yo(0) < Aryo(T) + Az
f(t,zo(t), z0(a(t)), z0(0) = Mizo(T) + Az
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Then there exist sequences {y,},{z,} C CY(J,R) converging to a unique solution
x € CY(J,R) of problem (1.1) in the sector [yo, zo|«. The convergence is semi-quadratic
i. e. there exist nonnegative constants cq, ¢, c3, €1, €2, €3 such that

< _ _ 2
max x(t) = y1(8)] < evmax (6) ()] + camaxc (1) =y () +

c3max |z, () — x(t)]?
te]

and

max |z,41(#) — x(t)| < €1 max |z, (t) — x(t)| + ca max [x(t) — yu(t) |+
te] te] te]

c3max |z, (t) — x(t)|>.
te]

Proof. Define sequences {y,},{zx} by

= f(t,yn(t),yn(a(t))) + Vi(t,Yn, zn) [Yns1(t) — yn(t)]
+ Va(t,yn, zn) [Yn1(a(t)) — yn(a(t))],

Myn(T) + Az,

l/;z+1(t)

Yn+1 (0)

and

= f(t,zn(t), zn(a(t))) + Vit Yn, 2n)[2041(t) — zn(8)]
+ Va(tyn zn)[znr1(a(t)) — zn(a(t))],

Zn+1(0) = /\1271(T) -I—)\z

Zp (1)

Note that in this case v,,11(0) = k, € R, z,41(0) = I, € R, so sequences {y,},
{z,} have similar structures as in Theorem 1.

Analogically to the proof of Theorem 1, we can show that there exists a unique
solution x € C!(J,R) of problem (1.1) and that {y, }, {z,} converge to x.

Now we show the semi-quadratic convergence of {v,}, {zx} to x. Put

pust(t) = x() —yusr(t) 20 and  gua(t) = zoa () — x(5) 2 0, te€ .

Note that

Pura(t) = x(t) = yns1(t) + yn(t) —yu(t) = pu(t) + yn(t) — yui1(t)
< pa(t)
and
Gny1(t) Znt1(t) — x(t) +zn(t) — zu(t) = gu(t) + zn41(F) — za(t)

< ).

Using the above and the relation (3.2), we see that

Pura(t) < Maipa(t) + Mapu(a(t)) + a1py () + a2py (a(t)) + asq () + aaqy (a(t)).
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Integrating the above relation from 0 to t, we get

<
Puri(t) < @ max pu(t) +c2 max pa(t) +c3 max ga (1),

where
=M +T(M;+ M), co=T(a;+4az), c3=T(az+ay).

It yields

<c t C 2 (¢ C 2(4).
rgleajxmﬂ() 1rglgsz?n( ) + zrglg]xvn(H 3r?§]an()

Analogically we can show that

H<e¢ t)+¢ 2() +¢ 2(p). m
r?éajan+1( ) < 1r§1§]an( )+ zr?gjan(H 3r§1§]xm()

To obtain the next result the following lemma is needed:

Lemma 2. Assume that g € C(] x R x R, R) and satisfies a Lipschitz condition
\g(t,u,0) —g(t,i,0)| < Mi|u—i| + Ma|v — 3|,
with constants My, My > 0 such that
M+T(M;+ M) <1

Then problem

{y’(t) = gtyt),y(at), te], (4.1)
y(0) = My(T)+ Ay, A €]0,1) .

has exactly one solution.

Proof. First we show that solving (4.1) is equivalent to solving a fixed point prob-
lem. Let y be a solution of problem (4.1). Integrating (4.1) from 0 to ¢ and using
the boundary condition yields

v = 122+ [ G5, y(s) yw()is = (An) (),

where
1

_J1-)\
G(t,s) = A
1-M\
Similarly, it is easy to see that if y is any solution of y = Ay, then y is a solution of

problem (4.1).
Put |(u|| = max;ey |u(t)|. Letu,v € C(J,R). We have

for0 <s <t

fort <s<T.

T
[Au — Aol < I?eajx/|G(f15)||g(51u(5)zu(0é(5))) —8(s,0(s), v(a(s))l|ds
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T
< u—o] nt1a]x/ (Mi + M>)|G(t,s)|ds
€ 0

TM1+M2
< — — =d
< u vllrglg]X/O s

T(M1 + My)
T e ol

which proves that A is a contraction. In view of the Banach fixed point theorem,
we have the conclusion. n

Now we can prove the following main result of this paper.
Theorem 3. Let A; € (0,1). Assume that

1. assumptions (1), (3)-(5) of Theorem 1 hold

2. y0,20 € C1(J,R), yo(t) < zo(t),t € ] and satisfy the system

yo(t) < fltyo(t),yola(t))), yo(0) < Aryo(T) + Az
zp(t) > f(t,zo(t),z0(a(t))), 20(0) > Mizo(T) + Az

3. M+ (M1 + My)T < 1, where My, My > 0 are such that
Vi(tu,0)| < My, [Valt,u,0)] < M

foryo(t) < u <zo(t), yola(t)) <v <zo(a(t)), te].

Then there exist sequences {y,},{z,} C CY(J,R) converging to a unique solution
x € CYHJ,R) of problem (1.1) in the sector [yo,zo]«. Moreover the convergence is
quadratic.

Proof. Define

Y1) = f(Eyn(t), yn(a(t)) + Vit Y, zn) [Yns1(£) — yn(t)]
+ Va(t,yn, zn) [Yn1(a(t)) — yn(a(t))],
yn+1(0) = Alyn+1(T)+/\2/
and
Zp1(t) = f(tza(t), zn(a(t))) + Vit yn, zn) 2011 () — zn(2)]
+ Va(t,yn zn)[znr1(a(t)) — zn(a(t))],
zu11(0) = Mzug1(T) + Az

Lemma 2 yields that sequences {y, }, {z,} are well defined.
First we show that

yo(t) <y(t) <zi(t) <z(t), te].
Putp = yo — y1. Then p(0) < A1p(T) and
Pt < fltyo(t),yo(w(t)) — F(tyo(t), yo(a(t)))
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— Vi(t,y0,20) [y1(t) —yo(t)] — Va(t, yo, z0) [y («(t)) — yo(a(t))]
= Vi(t,v0,20)p(t) + Va(t, yo,2z0)p(a(t)).

In view of Lemma 1 we obtain that p(t) < 0for t € J, so yo(t) < y1(t), t € J.
Analogically we show that z1(t) < zg(t),t € J.
Now put p = y1 — z1. We have p(0) = Ap(T) and

p'(t) —Vi(t, yo,20)[20(t) — yo(t)] — Va(t,yo,z0) [zo(a(t)) — yo(a(t))]

Vi(t, yo,20)[y1(t) — yo(t)] + Va(t, vo, zo)[y1 (a(t)) — yo(a(t))]
Vi(t, yo,20)[z1(t) — zo(t )] Va(t,yo,z0)[z1 (a(t)) —Zo( (t))]
Vi(t, yo,z0)p(t) + Va(t,yo, z0) p(a(t)).

In view of Lemma 1 we have y; (t) < z1(t), t € J.
It is easy to show that

vi(t) < f(Ly (), y1(a(t))) and 21 (t) = f(t,z1(8), 21 (a(t))), tET.

By induction we can show that

I+ IA

Yo(f) Sy1(t) <o <yu(t) <zu(t) < ... <z(t) < zo(t),n=0,1,...,t€].

Analogically as in Theorem 1 we can show that {y,}, {z.} converge to a
unique solution x € C!(J,R) of problem (1.1).
It remains to show the quadratic convergence. Put

praa(t) = X(t) = yara(H) >0 and gua(t) = zsa () — x(t) 20, t € J.

By (3.2) we have

Pri1(t) < Mipupa(t) + Mopuia(a(t))
+ apn(t) + aopn(a(t) + asqi(t) + asqn(a(t)),

(see the proof of Theorem 1).
Integrating the above from 0 to t we get

t
Prsa(t) < Mpuaa(T)+ [ [Miprsa(s) + Mapaa (w(s))]ds

+ / a1p2(s) + aaph(a(s)) + asgh(s) + asg? (a(s))ds
< [)\1 + T(M;y + My)] max Prsi(t)

+ Ty +a2) maxp(t ) + T(a3 + ay) maxy (1)

Hence

(1= M+ T(My + M)y max pusa(f) < T(ar +a2) max pa(t)
+ T(az+ay) r?ea]x 7> (t).
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Thus

max t) < ¢; max p> (¢ cmaxzt,
nax py-1(1) < e max ] (1) + c2 max ()

where

T(ﬂl + az) T(a3 + 04)
1 = 1-\ T , Cr = — .
A1+ T (M + Mp)] 1—[A+ T(My + Mp)]

Similarly we can show that
max t<cmax2t+cmax2t.
te] Qn—&-l( ) >~ 3 te] qn() 4 te] pn()

This completes the proof. n

5 Example

Example 1. Let us consider the problem

X'(t) = ix(if) _ Lextn _ L2 +1, te[0,1],
10 5 6 5.1)
1 7 )

Put

1 1 1
F(t,y,z) = 1—Oy—|— 1, G(tyz) = _ge—]/ _ 86—22'

Note that here we have a(t) = 3t. Take yo(t) = 3t + 3, zo(t) = 2t + 1. Then we
have

1 1 1 1 1,1 1 1
t t —t = —t - _ _jt_j _ —jt—l 1
f < ,Yo(t), Yo <2 )) 20 + 0 5° ce +

> ——le_%—le +1
- 210 ? 1 6 1
-_ — = — — = /
> 05 6+1>2 yo(t)
1 1 1 1 1
¢ " r — 4249 —2t—1 —2t—2
f(’ZO()’ZO <2)) 5571075 6
1 1
—t+—+1<2=2z(t
and
1 7 8 1
leo(l) + Ay = 10yo(1) + 0= 1o > 5= Y0(0)
1 7
)leo(l) + Ay = EZo(l) + E = 1= Zo(O).
Moreover
1 1 1
Vl(t,yo,ZO) = — + —6_2t_1 > —
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1 1 1
Vo(t = e 2t < 2l
2( /ZO/]/O) 36 = 33
1
Vz(t,yo, z0) = 56_2t_2 > 0.
L 1 I 3 1
Defining K(t) = 10’ L(t) = 3¢ M; = 35, My = 5 we get
1 t , 1 ) [t
~ — T50S
/\1+/L(t)e_ S K& gy — - = ot —i—/—e‘le 2t 10 g
10 3
" 1.1
< Ee% +3et<1 (5.2)
and 22
/\+(M1 +M2)T= % <1

All assumptions of Theorem 3 are satisfied. Thus there exist monotone sequences
{yn}, {zn} converging quadratically to a unique solution of problem (5.1) in the
sector [vo, 2o«
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