Quasilinearization Method for Functional Differential Equations with Delayed Arguments

Agnieszka Dyki

Abstract

We apply the quasilinearization method to boundary value problems for first order functional differential equations with delayed arguments. We formulate sufficient conditions for semi-quadratic or quadratic convergence of corresponding monotone sequences to a unique solution.

1 Introduction

Let us consider the problem

$$
\left\{\begin{align*}
x^{\prime}(t) & =f(t, x(t), x(\alpha(t))), \quad t \in J=[0, T] \tag{1.1}\\
x(0) & =\lambda_{1} x(T)+\lambda_{2}, \lambda_{1} \in[0,1)
\end{align*}\right.
$$

where $f \in C^{2}(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and function $\alpha \in C(J, J)$ is such that $\alpha(t) \leq t$ for $t \in J$. By $C^{2}(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ we mean the space of functions $f=f(t, x, y)$ such that $f, f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y x}, f_{y y} \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$.

A fruitful technique for proving existence results for differential equations is the monotone iterative method (see [2] -[4], [6], [8] -[10]). It gives a constructive procedure for approximation of solutions. However, from the practical point of view it is important to have higher order of convergence of sequences of the approximate solutions. Therefore in this paper we will focus on quasilinearization method (for details see for example [7], see also [1], [5]) for the above boundary value problem for functional differential equation with delayed argument. It is a

[^0]well known method for problems without deviating arguments. According to my knowledge it haven't been applied for boundary value problems with deviated arguments so my results are new.

The plan of this paper is as follows. In Section 2 we formulate Lemma which is needed in succeeding sections. In Section 3 we consider the case when $\lambda_{1}=0$ i.e. the case when we have an initial value problem. Under natural assumptions, we prove quadratic convergence of monotone sequences to a unique solution. In Section 4 we consider the case $\lambda_{1} \in(0,1)$. First we show the semi-quadratic convergence of corresponding monotone sequences to a unique solution. Next, under a little more restricted assumptions, we prove quadratic convergence. Note that the corresponding sequences are defined differently in each case. In the last section we give an example to verify the required assumptions.

2 Preliminaries

Lemma 1. Assume that $\alpha \in C(J, J), \alpha(t) \leq t$ on $J, K \in C(J, \mathbb{R}), p \in C^{1}(J, \mathbb{R})$, and system

$$
\begin{aligned}
& p^{\prime}(t) \leq K(t) p(t)+L(t) p(\alpha(t)), \quad t \in J, \\
& p(0) \leq \lambda p(T), \quad \lambda \in[0,1)
\end{aligned}
$$

is satisfied where nonnegative function L, integrable on J, is such that

$$
\begin{equation*}
\tilde{\lambda}+\int_{0}^{T} L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s<1 \tag{2.1}
\end{equation*}
$$

where $\tilde{\lambda}=\lambda e^{\int_{0}^{T} K(s) d s}$.
Then $p(t) \leq 0$ on J .
Proof. Define

$$
q(t)=e^{-\int_{0}^{t} K(s) d s} p(t)
$$

We have $q(0) \leq \tilde{\lambda} q(T)$ and

$$
q^{\prime}(t)=e^{-\int_{0}^{t} K(s) d s}\left(-K(t) p(t)+p^{\prime}(t)\right) \leq q(\alpha(t)) L(t) e^{-\int_{\alpha(t)}^{t} K(s) d s} .
$$

Hence

$$
q(t) \leq q(0)+\int_{0}^{t} q(\alpha(s)) L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s
$$

so

$$
q(0) \leq \frac{\tilde{\lambda}}{1-\tilde{\lambda}} \int_{0}^{T} q(\alpha(s)) L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s
$$

and finally

$$
q(t) \leq \frac{\tilde{\lambda}}{1-\tilde{\lambda}} \int_{0}^{T} q(\alpha(s)) L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s+\int_{0}^{t} q(\alpha(s)) L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s
$$

Conversely, assume that there exists $t_{0} \in J$ such that $p\left(t_{0}\right)>0$, and consequently $q\left(t_{0}\right)>0$. Put $q\left(t_{1}\right)=\max _{t \in J} q(t)>0$. Then we get

$$
q\left(t_{1}\right) \leq q\left(t_{1}\right) \frac{1}{1-\tilde{\lambda}} \int_{0}^{T} L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s
$$

Thus

$$
q\left(t_{1}\right)\left[1-\frac{1}{1-\tilde{\lambda}} \int_{0}^{T} L(s) e^{-\int_{\alpha(s)}^{s} K(\tau) d \tau} d s\right] \leq 0
$$

which is contrary to the assumption. This proves that $p(t) \leq 0$ on J.
Remark 1. If $K(t) \geq 0, t \in J$ and $\tilde{\lambda}+\int_{0}^{T} L(s) d s<1$ then condition (2.1) holds. Note that this condition does not depend on α.

3 Case 1: $\lambda_{1}=0$

Let us define functions V_{1}, V_{2} by

$$
\begin{aligned}
& V_{1}(t, u, v)=F_{y}(t, u(t), u(\alpha(t)))+G_{y}(t, v(t), v(\alpha(t))), \\
& V_{2}(t, u, v)=F_{z}(t, u(t), u(\alpha(t)))+G_{z}(t, v(t), v(\alpha(t))),
\end{aligned}
$$

for corresponding functions $F_{y}, G_{y}, F_{z}, G z$.
Theorem 1. Let $\lambda_{1}=0$. Assume that

1. $\alpha \in C(J, J), \alpha(t) \leq t, f=F+G$, where $F, G \in C^{2}(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$
2. $y_{0}, z_{0} \in C^{1}(J, \mathbb{R}), y_{0}(t) \leq z_{0}(t), t \in J$ and satisfy the system

$$
\begin{aligned}
& y_{0}^{\prime}(t) \leq f\left(t, y_{0}(t), y_{0}(\alpha(t))\right), \quad y_{0}(0) \leq \lambda_{2} \\
& z_{0}^{\prime}(t) \geq f\left(t, z_{0}(t), z_{0}(\alpha(t))\right), \quad z_{0}(0) \geq \lambda_{2},
\end{aligned}
$$

3. for $y_{0}(t) \leq u \leq z_{0}(t), y_{0}(\alpha(t)) \leq v \leq z_{0}(\alpha(t))$ we have

$$
\begin{aligned}
& F_{y y}(t, u, v) \geq 0, \quad F_{y z}(t, u, v) \geq 0, \quad F_{z z}(t, u, v) \geq 0 \\
& G_{y y}(t, u, v) \leq 0, \quad G_{y z}(t, u, v) \leq 0, \quad G_{z z}(t, u, v) \leq 0,
\end{aligned}
$$

4. $V_{2}\left(t, y_{0}, z_{0}\right) \geq 0$
5. assumption (2.1) is satisfied for $\lambda=\lambda_{1}$ and functions $K \in C(J, \mathbb{R}), L \in C\left(J, \mathbb{R}_{+}\right)$ such that

$$
\begin{aligned}
& V_{1}\left(t, y_{0}, z_{0}\right) \geq K(t) \\
& V_{2}\left(t, z_{0}, y_{0}\right) \leq L(t)
\end{aligned}
$$

on J.
Then there exist sequences $\left\{y_{n}\right\},\left\{z_{n}\right\} \subset C^{1}(J, \mathbb{R})$ converging to a unique solution $x \in C^{1}(J, \mathbb{R})$ of problem (1.1) in the sector $\left[y_{0}, z_{0}\right]_{*}=\left\{w \in C^{1}(J, \mathbb{R}): y_{0}(t) \leq\right.$ $\left.w(t) \leq z_{0}(t), t \in J\right\}$. Moreover the convergence is quadratic i.e. there exist nonnegative constants $c_{1}, c_{2}, \overline{c_{1}}, \overline{c_{2}}$ such that for $n=0,1, \ldots$

$$
\max _{t \in J}\left|x(t)-y_{n+1}(t)\right| \leq c_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+c_{2} \max _{t \in J}\left|z_{n}(t)-x(t)\right|^{2}
$$

and

$$
\max _{t \in J}\left|z_{n+1}(t)-x(t)\right| \leq \bar{c}_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+\bar{c}_{2} \max _{t \in J}\left|z_{n}(t)-x(t)\right|^{2} .
$$

Proof. For $n=0,1, \ldots$, define sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ as follows

$$
\left\{\begin{aligned}
y_{n+1}^{\prime}(t) & =f\left(t, y_{n}(t), y_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-y_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(\alpha(t))-y_{n}(\alpha(t))\right] \\
y_{n+1}(0) & =\lambda_{2}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
z_{n+1}^{\prime}(t) & =f\left(t, z_{n}(t), z_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(t)-z_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(\alpha(t))-z_{n}(\alpha(t))\right] \\
z_{n+1}(0) & =\lambda_{2}
\end{aligned}\right.
$$

Note that sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are well defined as solutions of linear problems with initial conditions (use a Banach fixed point theorem with a corresponding norm).

First, we show that $y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t)$. Put $p=y_{0}-y_{1}$. Then $p(0) \leq 0$ and

$$
\begin{aligned}
p^{\prime}(t) & \leq f\left(t, y_{0}(t), y_{0}(\alpha(t))\right)-f\left(t, y_{0}(t), y_{0}(\alpha(t))\right) \\
& -V_{1}\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right] \\
& -V_{2}\left(t, y_{0}, z_{0}\right)\left[y_{1}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& =V_{1}\left(t, y_{0}, z_{0}\right) p(t)+V_{2}\left(t, y_{0}, z_{0}\right) p(\alpha(t)),
\end{aligned}
$$

by assumption (2). In view of Lemma 1 (with $\lambda=0$), we obtain that $p(t) \leq 0$ on J, which means that $y_{0}(t) \leq y_{1}(t)$. Analogically we can show that $z_{1}(t) \leq z_{0}(t)$, $t \in J$.

Using a mean value theorem and monotonicity of $F_{y}, F_{z}, G_{y}, G_{z}$ (condition (3)), we have

$$
\begin{aligned}
& f\left(t, y_{0}(t), y_{0}(\alpha(t))\right)-f\left(t, z_{0}(t), z_{0}(\alpha(t))\right) \\
& =-\left[F_{y}\left(t, \xi(t), z_{0}(\alpha(t))\right)+G_{y}\left(t, \xi_{1}(t), z_{0}(\alpha(t))\right)\right]\left[z_{0}(t)-y_{0}(t)\right]
\end{aligned}
$$

$$
\begin{align*}
& -\left[F_{z}\left(t, y_{0}(t), \zeta(t)\right)+G_{z}\left(t, y_{0}(t), \zeta_{1}(t)\right)\right]\left[z_{0}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& \leq-V_{1}\left(t, y_{0}, z_{0}\right)\left[z_{0}(t)-y_{0}(t)\right]-V_{2}\left(t, y_{0}, z_{0}\right)\left[z_{0}(\alpha(t))-y_{0}(\alpha(t))\right] \tag{3.1}
\end{align*}
$$

where $y_{0}(t)<\xi(t)<z_{0}(t), y_{0}(t)<\xi_{1}(t)<z_{0}(t), y_{0}(\alpha(t))<\zeta(t)<z_{0}(\alpha(t))$, $y_{0}(\alpha(t))<\zeta_{1}(t)<z_{0}(\alpha(t))$ for $t \in J$.

Put $p=y_{1}-z_{1}$. Then $p(0)=0$. Using the definition of y_{1}, z_{1} and relation (3.1) we see that

$$
p^{\prime}(t) \leq V_{1}\left(t, y_{0}, z_{0}\right) p(t)+V_{2}\left(t, y_{0}, z_{0}\right) p(\alpha(t))
$$

In view of Lemma 1 , we get $p(t) \leq 0$ on J. It proves that

$$
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

Now we are going to show that y is a lower solution of problem (1.1). Using definition of y_{1}, assumption (3) and the relation (3.1) with y_{1} instead of z_{0}, we obtain

$$
\begin{aligned}
y_{1}^{\prime}(t) & \leq-V_{1}\left(t, y_{0}, y_{1}\right)\left[y_{1}(t)-y_{0}(t)\right]-V_{2}\left(t, y_{0}, y_{1}\right)\left[y_{1}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& +V_{1}\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]+V_{2}\left(t, y_{0}, z_{0}\right)\left[y_{1}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& +f\left(t, y_{1}(t), y_{1}(\alpha(t))\right) \leq f\left(t, y_{1}(t), y_{1}(\alpha(t))\right) .
\end{aligned}
$$

It proves that y_{1} is a lower solution of (1.1). Analogically, we can prove that z_{1} is an upper solution of (1.1).

Now, using mathematical induction we can show that

$$
y_{0}(t) \leq y_{1}(t) \leq \ldots \leq y_{n}(t) \leq z_{n}(t) \leq \ldots \leq z_{1}(t) \leq z_{0}(t), \quad n=0,1, \ldots, \quad t \in J
$$

Sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are uniformly bounded and equicontinuous on J. In view of Arzela-Ascoli theorem there exist subsequences $\left\{y_{n_{k}}\right\},\left\{z_{n_{k}}\right\}$ of $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converging uniformly on J to some continuous functions y, z respectively. Functions $y_{n_{k}}, z_{n_{k}}$ satisfy integral equations

$$
\left\{\begin{aligned}
y_{n_{k}+1}(t) & =y_{n_{k}+1}(0)+\int_{0}^{t} f\left(s, y_{n_{k}}(s), y_{n_{k}}(\alpha(s))\right) d s \\
& +\int_{0}^{t} V_{1}\left(s, y_{n_{k}}, z_{n_{k}}\right)\left[y_{n_{k}+1}(s)-y_{n_{k}}(s)\right] d s \\
& +\int_{0}^{t} V_{2}\left(s, y_{n_{k}}, z_{n_{k}}\right)\left[y_{n_{k}+1}(\alpha(s))-y_{n_{k}}(\alpha(s))\right] d s \\
y_{n_{k}+1}(0) & =\lambda_{2}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
z_{n_{k}+1}(t) & =z_{n_{k}+1}(0)+\int_{0}^{t} f\left(s, z_{n_{k}}(s), z_{n_{k}}(\alpha(t))\right) d s \\
& +\int_{0}^{t} V_{1}\left(s, y_{n_{k}}, z_{n_{k}}\right)\left[z_{n_{k}+1}(s)-z_{n_{k}}(s)\right] d s \\
& +\int_{0}^{t} V_{2}\left(s, y_{n_{k}}, z_{n_{k}}\right)\left[z_{n_{k}+1}(\alpha(s))-z_{n_{k}}(\alpha(s))\right] d s \\
z_{n_{k}+1}(0) & =\lambda_{2}
\end{aligned}\right.
$$

If $n_{k} \rightarrow \infty$, we get

$$
\left\{\begin{array}{l}
y(t)=y(0)+\int_{0}^{t} f(s, y(s), y(\alpha(s))) d s \\
y(0)=\lambda_{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
z(t)=z(0)+\int_{0}^{t} f(s, z(s), z(\alpha(s))) d s \\
z(0)=\lambda_{2}
\end{array}\right.
$$

because f is continuous. Hence

$$
\begin{aligned}
& y^{\prime}(t)=f(t, y(t), y(\alpha(t))) \\
& z^{\prime}(t)=f(t, z(t), z(\alpha(t)))
\end{aligned}
$$

so $y, z \in C^{1}(J, \mathbb{R})$ and are solutions of (1.1) in $\left[y_{0}, z_{0}\right]_{*}$.
Now, we show that $y=z$ is a unique solution of (1.1). We have

$$
y_{0}(t) \leq y(t) \leq z(t) \leq z_{0}(t)
$$

Put $p=z-y$. Then $p(t) \geq 0$ on $J, p(0)=0$ and

$$
p^{\prime}(t) \leq V_{1}(t, z, y) p(t)+V_{2}(t, z, y) p(\alpha(t))
$$

in view of a mean value theorem and condition (3). Lemma 1 yields that $p(t) \leq 0$ on J. It proves that $y=z$ on J.

It remains to show that it is a unique solution. Let $x \in\left[y_{0}, z_{0}\right]_{*}$ be any solution of (1.1). By the method of mathematical induction, it is easy to show that

$$
y_{n}(t) \leq x(t) \leq z_{n}(t), \quad t \in J, \quad n=0,1, \ldots
$$

If $n \rightarrow \infty$, then $y=z=x$. It means that $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge to a unique solution x of (1.1).

Finally we show quadratic convergence of $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ to x. Define

$$
p_{n+1}(t)=x(t)-y_{n+1}(t) \geq 0 \quad \text { and } \quad q_{n+1}(t)=z_{n+1}(t)-x(t) \geq 0, \quad t \in J
$$

We have $p_{n+1}(0)=q_{n+1}(0)=0$ and

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & =f(t, x(t), x(\alpha(t)))-f\left(t, y_{n}(t), y_{n}(\alpha(t))\right) \\
& -V_{1}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-y_{n}(t)\right]-V_{2}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(\alpha(t))-y_{n}(\alpha(t))\right] \\
& =\left[F_{y}\left(t, \xi(t), y_{n}(\alpha(t))\right)+G_{y}\left(t, \xi_{1}(t), y_{n}(\alpha(t))\right)\right] p_{n}(t) \\
& +\left[F_{z}(t, x(t), \zeta(t))+G_{z}\left(t, x(t), \zeta_{1}(t)\right)\right] p_{n}(\alpha(t)) \\
& +V_{1}\left(t, y_{n}, z_{n}\right)\left[p_{n+1}(t)-p_{n}(t)\right]+V_{2}\left(t, y_{n}, z_{n}\right)\left[p_{n+1}(\alpha(t))-p_{n}(\alpha(t))\right],
\end{aligned}
$$

where

$$
\begin{array}{cl}
y_{n}(t)<\xi(t)<x(t), \quad y_{n}(t)<\xi_{1}(t)<x(t) \\
y_{n}(\alpha(t))<\zeta(t)<x(\alpha(t)), \quad y_{n}(\alpha(t))<\zeta_{1}(t)<x(\alpha(t))
\end{array}
$$

for $t \in J$. Using again the mean value theorem we obtain

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & \leq V_{1}\left(t, y_{n}, z_{n}\right) p_{n+1}(t)+V_{2}\left(t, y_{n}, z_{n}\right) p_{n+1}(\alpha(t)) \\
& +p_{n}(t) F_{y y}\left(t, \mu_{1}(t), y_{n}(\alpha(t))\right) p_{n}(t) \\
& -p_{n}(t) G_{y z}\left(t, y_{n}(t), \mu_{2}(t)\right)\left[q_{n}(\alpha(t))+p_{n}(\alpha(t))\right] \\
& -p_{n}(t) G_{y y}\left(t, \mu_{3}(t), z_{n}(\alpha(t))\right)\left[q_{n}(t)+p_{n}(t)\right] \\
& +p_{n}(\alpha(t)) F_{z y}\left(t, \mu_{4}(t), x(\alpha(t))\right) p_{n}(t) \\
& +p_{n}(\alpha(t)) F_{z z}\left(t, y_{n}(t), \mu_{5}(t)\right) p_{n}(\alpha(t)) \\
& -p_{n}(\alpha(t)) G_{z y}\left(t, \mu_{6}(t), z_{n}(\alpha(t))\right) q_{n}(t) \\
& -p_{n}(\alpha(t)) G_{z z}\left(t, x(t), \mu_{7}(t)\right)\left[q_{n}(\alpha(t))+p_{n}(\alpha(t))\right],
\end{aligned}
$$

where

$$
\begin{gathered}
y_{n}(t)<\mu_{1}(t)<x(t), \quad y_{n}(\alpha(t))<\mu_{2}(t)<z_{n}(\alpha(t)), \quad y_{n}(t)<\mu_{3}(t)<z_{n}(t) \\
y_{n}(t)<\mu_{4}(t)<x(t), \quad y_{n}(\alpha(t))<\mu_{5}(t)<x(\alpha(t)), \quad x(t)<\mu_{6}(t)<z_{n}(t) \\
y_{n}(\alpha(t))<\mu_{7}(t)<z_{n}(\alpha(t)) \quad t \in J .
\end{gathered}
$$

Hence

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & \leq V_{1}\left(t, y_{n}, z_{n}\right) p_{n+1}(t)+V_{2}\left(t, y_{n}, z_{n}\right) p_{n+1}(\alpha(t)) \\
& +\left(\left|F_{y y}\left(t, \mu_{1}(t), y_{n}(\alpha(t))\right)\right|+\left|G_{y y}\left(t, \mu_{3}(t), z_{n}(\alpha(t))\right)\right|\right) p_{n}^{2}(t) \\
& +\frac{1}{2}\left|G_{y y}\left(t, \mu_{3}(t), z_{n}(\alpha(t))\right)\right|\left[p_{n}^{2}(t)+q_{n}^{2}(t)\right] \\
& +\frac{1}{2}\left(\left|G_{y z}\left(t, y_{n}(t), \mu_{2}(t)\right)+\left|F_{z y}\left(t, \mu_{4}(t), x(\alpha(t))\right)\right|\right)\left[p_{n}^{2}(t)+p_{n}^{2}(\alpha(t))\right]\right. \\
& +\frac{1}{2}\left|G_{y z}\left(t, y_{n}(t), \mu_{2}(t)\right)\right|\left[p_{n}^{2}(t)+q_{n}^{2}(\alpha(t))\right] \\
& +\left(\left|F_{z z}\left(t, y_{n}(t), \mu_{5}(t)\right)\right|+\left|G_{z z}\left(t, x(t), \mu_{7}(t)\right)\right|\right) p_{n}^{2}(\alpha(t)) \\
& +\frac{1}{2}\left|G_{z y}\left(t, \mu_{6}(t), z_{n}(\alpha(t))\right)\right|\left[p_{n}^{2}(\alpha(t))+q_{n}^{2}(t)\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{2}\left|G_{z z}\left(t, x(t), \mu_{7}(t)\right)\right|\left[p_{n}^{2}(\alpha(t))+q_{n}^{2}(\alpha(t))\right] \\
& \leq M_{1} p_{n+1}(t)+M_{2} p_{n+1}(\alpha(s)) \\
& +a_{1} p_{n}^{2}(t)+a_{2} p_{n}^{2}(\alpha(t))+a_{3} q_{n}^{2}(t)+a_{4} q_{n}^{2}(\alpha(t)) \tag{3.2}
\end{align*}
$$

because $F_{y}, F_{z}, G_{y}, G_{z}, F_{y y}, F_{y z}, F_{z y}, F_{z z}, G_{y y}, G_{y z}, G_{z y}, G_{z z}$ are bounded. Put

$$
\left\{\begin{aligned}
w^{\prime}(t) & =M_{1} p_{n+1}(t)+M_{2} p_{n+1}(\alpha(t))+a_{1} p_{n}^{2}(t)+a_{2} p_{n}^{2}(\alpha(t)) \\
& +a_{3} q_{n}^{2}(t)+a_{4} q_{n}^{2}(\alpha(t)) \\
w(0) & =p_{n+1}(0)=0
\end{aligned}\right.
$$

Then we have

$$
w^{\prime}(t) \leq\left(M_{1}+M_{2}\right) w(t)+a_{1} p_{n}^{2}(t)+a_{2} p_{n}^{2}(\alpha(t))+a_{3} q_{n}^{2}(t)+a_{4} q_{n}^{2}(\alpha(t))
$$

because $w^{\prime}(t) \geq 0$ and $p_{n+1}(t) \leq w(t)$ for $t \in J$. Thus

$$
\begin{aligned}
w(t) & \leq e^{\left(M_{1}+M_{2}\right) t} w(0) \\
& +\int_{0}^{t} e^{\left(M_{1}+M_{2}\right)(t-s)}\left[a_{1} p_{n}^{2}(s)+a_{2} p_{n}^{2}(\alpha(s))+a_{3} q_{n}^{2}(s)+a_{4} q_{n}^{2}(\alpha(s))\right] d s \\
& \leq \frac{1}{M_{1}+M_{2}}\left(e^{\left(M_{1}+M_{2}\right) T}-1\right)\left[\left(a_{1}+a_{2}\right) \max _{t \in J} p_{n}^{2}(t)+\left(a_{3}+a_{4}\right) \max _{t \in J} q_{n}^{2}(t)\right]
\end{aligned}
$$

and consequently

$$
\max _{t \in J} p_{n+1}(t) \leq c_{1} \max _{t \in J} p_{n}^{2}(t)+c_{2} \max _{t \in J} q_{n}^{2}(t)
$$

where

$$
c_{1}=\frac{a_{1}+a_{2}}{M_{1}+M_{2}}\left(e^{\left(M_{1}+M_{2}\right) T}-1\right), c_{2}=\frac{a_{3}+a_{4}}{M_{1}+M_{2}}\left(e^{\left(M_{1}+M_{2}\right) T}-1\right)
$$

Analogically we can show that

$$
\max _{t \in J} q_{n+1}(t) \leq c_{3} \max _{t \in J} q_{n}^{2}(t)+c_{4} \max _{t \in J} p_{n}^{2}(t)
$$

4 Case 2: $0<\lambda_{1}<1$
Theorem 2. Let $\lambda_{1} \in(0,1)$. Assume that assumptions (1) and (3)-(5) of Theorem 1 are satisfied. Moreover assume that

1. $y_{0}, z_{0} \in C^{1}(J, \mathbb{R}), y_{0}(t) \leq z_{0}(t), t \in J$ and satisfy the system

$$
\begin{aligned}
& y_{0}^{\prime}(t) \leq f\left(t, y_{0}(t), y_{0}(\alpha(t))\right), \quad y_{0}(0) \leq \lambda_{1} y_{0}(T)+\lambda_{2} \\
& z_{0}^{\prime}(t) \geq f\left(t, z_{0}(t), z_{0}(\alpha(t))\right), \quad z_{0}(0) \geq \lambda_{1} z_{0}(T)+\lambda_{2}
\end{aligned}
$$

Then there exist sequences $\left\{y_{n}\right\},\left\{z_{n}\right\} \subset C^{1}(J, \mathbb{R})$ converging to a unique solution $x \in C^{1}(J, \mathbb{R})$ of problem (1.1) in the sector $\left[y_{0}, z_{0}\right]_{*}$. The convergence is semi-quadratic i. e. there exist nonnegative constants $c_{1}, c_{2}, c_{3}, \overline{c_{1}}, \overline{c_{2}}, \overline{c_{3}}$ such that

$$
\begin{aligned}
& \max _{t \in J}\left|x(t)-y_{n+1}(t)\right| \leq c_{1} \max _{t \in J}\left|x(t)-y_{n}(t)\right|+c_{2} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+ \\
& c_{3} \max _{t \in J}\left|z_{n}(t)-x(t)\right|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\max _{t \in J}\left|z_{n+1}(t)-x(t)\right| \leq \bar{c}_{1} \max _{t \in J}\left|z_{n}(t)-x(t)\right|+\bar{c}_{2} \max _{t \in J}\left|x(t)-y_{n}(t)\right|^{2}+ \\
\bar{c}_{3} \max _{t \in J}\left|z_{n}(t)-x(t)\right|^{2}
\end{aligned}
$$

Proof. Define sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ by

$$
\left\{\begin{aligned}
y_{n+1}^{\prime}(t) & =f\left(t, y_{n}(t), y_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-y_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(\alpha(t))-y_{n}(\alpha(t))\right] \\
y_{n+1}(0) & =\lambda_{1} y_{n}(T)+\lambda_{2}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
z_{n+1}^{\prime}(t) & =f\left(t, z_{n}(t), z_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(t)-z_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(\alpha(t))-z_{n}(\alpha(t))\right] \\
z_{n+1}(0) & =\lambda_{1} z_{n}(T)+\lambda_{2}
\end{aligned}\right.
$$

Note that in this case $y_{n+1}(0)=k_{n} \in \mathbb{R}, z_{n+1}(0)=l_{n} \in \mathbb{R}$, so sequences $\left\{y_{n}\right\}$, $\left\{z_{n}\right\}$ have similar structures as in Theorem 1.

Analogically to the proof of Theorem 1, we can show that there exists a unique solution $x \in C^{1}(J, \mathbb{R})$ of problem (1.1) and that $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge to x.

Now we show the semi-quadratic convergence of $\left\{y_{n}\right\},\left\{z_{n}\right\}$ to x. Put

$$
p_{n+1}(t)=x(t)-y_{n+1}(t) \geq 0 \quad \text { and } \quad q_{n+1}(t)=z_{n+1}(t)-x(t) \geq 0, \quad t \in J
$$

Note that

$$
\begin{aligned}
p_{n+1}(t) & =x(t)-y_{n+1}(t)+y_{n}(t)-y_{n}(t)=p_{n}(t)+y_{n}(t)-y_{n+1}(t) \\
& \leq p_{n}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
q_{n+1}(t) & =z_{n+1}(t)-x(t)+z_{n}(t)-z_{n}(t)=q_{n}(t)+z_{n+1}(t)-z_{n}(t) \\
& \leq q_{n}(t)
\end{aligned}
$$

Using the above and the relation (3.2), we see that

$$
p_{n+1}^{\prime}(t) \leq M_{1} p_{n}(t)+M_{2} p_{n}(\alpha(t))+a_{1} p_{n}^{2}(t)+a_{2} p_{n}^{2}(\alpha(t))+a_{3} q_{n}^{2}(t)+a_{4} q_{n}^{2}(\alpha(t))
$$

Integrating the above relation from 0 to t, we get

$$
p_{n+1}(t) \leq c_{1} \max _{t \in J} p_{n}(t)+c_{2} \max _{t \in J} p_{n}^{2}(t)+c_{3} \max _{t \in J} q_{n}^{2}(t)
$$

where

$$
c_{1}=\lambda_{1}+T\left(M_{1}+M_{2}\right), \quad c_{2}=T\left(a_{1}+a_{2}\right), \quad c_{3}=T\left(a_{3}+a_{4}\right)
$$

It yields

$$
\max _{t \in J} p_{n+1}(t) \leq c_{1} \max _{t \in J} p_{n}(t)+c_{2} \max _{t \in J} p_{n}^{2}(t)+c_{3} \max _{t \in J} q_{n}^{2}(t)
$$

Analogically we can show that

$$
\max _{t \in J} q_{n+1}(t) \leq \bar{c}_{1} \max _{t \in J} q_{n}(t)+\bar{c}_{2} \max _{t \in J} q_{n}^{2}(t)+\bar{c}_{3} \max _{t \in J} p_{n}^{2}(t)
$$

To obtain the next result the following lemma is needed:
Lemma 2. Assume that $g \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and satisfies a Lipschitz condition

$$
|g(t, u, v)-g(t, \bar{u}, \bar{v})| \leq M_{1}|u-\bar{u}|+M_{2}|v-\bar{v}|
$$

with constants $M_{1}, M_{2}>0$ such that

$$
\lambda_{1}+T\left(M_{1}+M_{2}\right)<1
$$

Then problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=g(t, y(t), y(\alpha(t)), \quad t \in J, \tag{4.1}\\
y(0)=\lambda_{1} y(T)+\lambda_{2}, \quad \lambda_{1} \in[0,1)
\end{array}\right.
$$

has exactly one solution.
Proof. First we show that solving (4.1) is equivalent to solving a fixed point problem. Let y be a solution of problem (4.1). Integrating (4.1) from 0 to t and using the boundary condition yields

$$
y(t)=\frac{\lambda_{2}}{1-\lambda_{1}}+\int_{0}^{T} G(t, s) g(s, y(s), y(\alpha(s))) d s \equiv(A y)(t)
$$

where

$$
G(t, s)= \begin{cases}\frac{1}{1-\lambda_{1}} & \text { for } 0 \leq s<t \\ \frac{\lambda_{1}}{1-\lambda_{1}} & \text { for } t \leq s \leq T\end{cases}
$$

Similarly, it is easy to see that if y is any solution of $y=A y$, then y is a solution of problem (4.1).

Put $\|u\|=\max _{t \in J}|u(t)|$. Let $u, v \in C(J, \mathbb{R})$. We have

$$
\|A u-A v\| \leq \max _{t \in J} \int_{0}^{T} \mid G(t, s) \| g(s, u(s), u(\alpha(s)))-g(s, v(s), v(\alpha(s)) \mid d s
$$

$$
\begin{aligned}
& \leq\|u-v\| \max _{t \in J} \int_{0}^{T}\left(M_{1}+M_{2}\right)|G(t, s)| d s \\
& \leq\|u-v\| \max _{t \in J} \int_{0}^{T} \frac{M_{1}+M_{2}}{1-\lambda_{1}} d s \\
& =\frac{T\left(M_{1}+M_{2}\right)}{1-\lambda_{1}}\|u-v\|
\end{aligned}
$$

which proves that A is a contraction. In view of the Banach fixed point theorem, we have the conclusion.

Now we can prove the following main result of this paper.
Theorem 3. Let $\lambda_{1} \in(0,1)$. Assume that

1. assumptions (1), (3)-(5) of Theorem 1 hold
2. $y_{0}, z_{0} \in C^{1}(J, \mathbb{R}), y_{0}(t) \leq z_{0}(t), t \in J$ and satisfy the system

$$
\begin{aligned}
& y_{0}^{\prime}(t) \leq f\left(t, y_{0}(t), y_{0}(\alpha(t))\right), \quad y_{0}(0) \leq \lambda_{1} y_{0}(T)+\lambda_{2} \\
& z_{0}^{\prime}(t) \geq f\left(t, z_{0}(t), z_{0}(\alpha(t))\right), \quad z_{0}(0) \geq \lambda_{1} z_{0}(T)+\lambda_{2}
\end{aligned}
$$

3. $\lambda_{1}+\left(M_{1}+M_{2}\right) T<1$, where $M_{1}, M_{2}>0$ are such that

$$
\left|V_{1}(t, u, v)\right| \leq M_{1}, \quad\left|V_{2}(t, u, v)\right| \leq M_{2}
$$

$$
\text { for } y_{0}(t) \leq u \leq z_{0}(t), y_{0}(\alpha(t)) \leq v \leq z_{0}(\alpha(t)), t \in J .
$$

Then there exist sequences $\left\{y_{n}\right\},\left\{z_{n}\right\} \subset C^{1}(J, \mathbb{R})$ converging to a unique solution $x \in C^{1}(J, \mathbb{R})$ of problem (1.1) in the sector $\left[y_{0}, z_{0}\right]_{*}$. Moreover the convergence is quadratic.

Proof. Define

$$
\left\{\begin{aligned}
y_{n+1}^{\prime}(t) & =f\left(t, y_{n}(t), y_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(t)-y_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[y_{n+1}(\alpha(t))-y_{n}(\alpha(t))\right] \\
y_{n+1}(0) & =\lambda_{1} y_{n+1}(T)+\lambda_{2}
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
z_{n+1}^{\prime}(t) & =f\left(t, z_{n}(t), z_{n}(\alpha(t))\right)+V_{1}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(t)-z_{n}(t)\right] \\
& +V_{2}\left(t, y_{n}, z_{n}\right)\left[z_{n+1}(\alpha(t))-z_{n}(\alpha(t))\right] \\
z_{n+1}(0) & =\lambda_{1} z_{n+1}(T)+\lambda_{2}
\end{aligned}\right.
$$

Lemma 2 yields that sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ are well defined.
First we show that

$$
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t), \quad t \in J
$$

Put $p=y_{0}-y_{1}$. Then $p(0) \leq \lambda_{1} p(T)$ and

$$
p^{\prime}(t) \leq f\left(t, y_{0}(t), y_{0}(\alpha(t))\right)-f\left(t, y_{0}(t), y_{0}(\alpha(t))\right)
$$

$$
\begin{aligned}
& -V_{1}\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]-V_{2}\left(t, y_{0}, z_{0}\right)\left[y_{1}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& =V_{1}\left(t, y_{0}, z_{0}\right) p(t)+V_{2}\left(t, y_{0}, z_{0}\right) p(\alpha(t)) .
\end{aligned}
$$

In view of Lemma 1 we obtain that $p(t) \leq 0$ for $t \in J$, so $y_{0}(t) \leq y_{1}(t), t \in J$.
Analogically we show that $z_{1}(t) \leq z_{0}(t), t \in J$.
Now put $p=y_{1}-z_{1}$. We have $p(0)=\lambda_{1} p(T)$ and

$$
\begin{aligned}
p^{\prime}(t) & \leq-V_{1}\left(t, y_{0}, z_{0}\right)\left[z_{0}(t)-y_{0}(t)\right]-V_{2}\left(t, y_{0}, z_{0}\right)\left[z_{0}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& +V_{1}\left(t, y_{0}, z_{0}\right)\left[y_{1}(t)-y_{0}(t)\right]+V_{2}\left(t, y_{0}, z_{0}\right)\left[y_{1}(\alpha(t))-y_{0}(\alpha(t))\right] \\
& -V_{1}\left(t, y_{0}, z_{0}\right)\left[z_{1}(t)-z_{0}(t)\right]-V_{2}\left(t, y_{0}, z_{0}\right)\left[z_{1}(\alpha(t))-z_{0}(\alpha(t))\right] \\
& =V_{1}\left(t, y_{0}, z_{0}\right) p(t)+V_{2}\left(t, y_{0}, z_{0}\right) p(\alpha(t)) .
\end{aligned}
$$

In view of Lemma 1 we have $y_{1}(t) \leq z_{1}(t), t \in J$.
It is easy to show that

$$
y_{1}^{\prime}(t) \leq f\left(t, y_{1}(t), y_{1}(\alpha(t))\right) \text { and } z_{1}^{\prime}(t) \geq f\left(t, z_{1}(t), z_{1}(\alpha(t))\right), \quad t \in J
$$

By induction we can show that

$$
y_{0}(t) \leq y_{1}(t) \leq \ldots \leq y_{n}(t) \leq z_{n}(t) \leq \ldots \leq z_{1}(t) \leq z_{0}(t), n=0,1, \ldots, t \in J
$$

Analogically as in Theorem 1 we can show that $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge to a unique solution $x \in C^{1}(J, \mathbb{R})$ of problem (1.1).

It remains to show the quadratic convergence. Put

$$
p_{n+1}(t)=x(t)-y_{n+1}(t) \geq 0 \quad \text { and } \quad q_{n+1}(t)=z_{n+1}(t)-x(t) \geq 0, \quad t \in J
$$

By (3.2) we have

$$
\begin{aligned}
p_{n+1}^{\prime}(t) & \leq M_{1} p_{n+1}(t)+M_{2} p_{n+1}(\alpha(t)) \\
& +a_{1} p_{n}^{2}(t)+a_{2} p_{n}^{2}(\alpha(t))+a_{3} q_{n}^{2}(t)+a_{4} q_{n}^{2}(\alpha(t))
\end{aligned}
$$

(see the proof of Theorem 1).
Integrating the above from 0 to t we get

$$
\begin{aligned}
p_{n+1}(t) & \leq \lambda_{1} p_{n+1}(T)+\int_{0}^{t}\left[M_{1} p_{n+1}(s)+M_{2} p_{n+1}(\alpha(s))\right] d s \\
& +\int_{0}^{t}\left[a_{1} p_{n}^{2}(s)+a_{2} p_{n}^{2}(\alpha(s))+a_{3} q_{n}^{2}(s)+a_{4} q_{n}^{2}(\alpha(s))\right] d s \\
& \leq\left[\lambda_{1}+T\left(M_{1}+M_{2}\right)\right] \max _{t \in J} p_{n+1}(t) \\
& +T\left(a_{1}+a_{2}\right) \max _{t \in J}^{2} p_{n}^{2}(t)+T\left(a_{3}+a_{4}\right) \max _{t \in J} q_{n}^{2}(t)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(1-\left[\lambda_{1}+T\left(M_{1}+M_{2}\right)\right]\right) \max _{t \in J} p_{n+1}(t) & \leq T\left(a_{1}+a_{2}\right) \max _{t \in J} p_{n}^{2}(t) \\
& +T\left(a_{3}+a_{4}\right) \max _{t \in J} q_{n}^{2}(t)
\end{aligned}
$$

Thus

$$
\max _{t \in J} p_{n+1}(t) \leq c_{1} \max _{t \in J} p_{n}^{2}(t)+c_{2} \max _{t \in J} q_{n}^{2}(t)
$$

where

$$
c_{1}=\frac{T\left(a_{1}+a_{2}\right)}{1-\left[\lambda_{1}+T\left(M_{1}+M_{2}\right)\right]}, \quad c_{2}=\frac{T\left(a_{3}+a_{4}\right)}{1-\left[\lambda_{1}+T\left(M_{1}+M_{2}\right)\right]} .
$$

Similarly we can show that

$$
\max _{t \in J} q_{n+1}(t) \leq c_{3} \max _{t \in J} q_{n}^{2}(t)+c_{4} \max _{t \in J} p_{n}^{2}(t)
$$

This completes the proof.

5 Example

Example 1. Let us consider the problem

$$
\left\{\begin{align*}
x^{\prime}(t) & =\frac{1}{10} x(t)-\frac{1}{5} e^{-x(t)}-\frac{1}{6} e^{-2 x\left(\frac{1}{2} t\right)}+1, \quad t \in[0,1] \tag{5.1}\\
x(0) & =\frac{1}{10} x(1)+\frac{7}{10}
\end{align*}\right.
$$

Put

$$
F(t, y, z)=\frac{1}{10} y+1, \quad G(t, y, z)=-\frac{1}{5} e^{-y}-\frac{1}{6} e^{-2 z}
$$

Note that here we have $\alpha(t)=\frac{1}{2} t$. Take $y_{0}(t)=\frac{1}{2} t+\frac{1}{2}, z_{0}(t)=2 t+1$. Then we have

$$
\begin{aligned}
f\left(t, y_{0}(t), y_{0}\left(\frac{1}{2} t\right)\right) & =\frac{1}{20} t+\frac{1}{20}-\frac{1}{5} e^{-\frac{1}{2} t-\frac{1}{2}}-\frac{1}{6} e^{-\frac{1}{2} t-1}+1 \\
& \geq \frac{1}{20}-\frac{1}{5} e^{-\frac{1}{2}}-\frac{1}{6} e^{-1}+1 \\
& >\frac{1}{20}-\frac{1}{5}-\frac{1}{6}+1>\frac{1}{2}=y_{0}^{\prime}(t) \\
f\left(t, z_{0}(t), z_{0}\left(\frac{1}{2} t\right)\right) & =\frac{1}{5} t+\frac{1}{10}+1-\frac{1}{5} e^{-2 t-1}-\frac{1}{6} e^{-2 t-2} \\
& <\frac{1}{5} t+\frac{1}{10}+1<2=z_{0}^{\prime}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{\lambda_{1}} y_{0}(1)+\lambda_{2}=10 y_{0}(1)+\frac{7}{10}=\frac{8}{10}>\frac{1}{2}=y_{0}(0) \\
& \lambda_{1} z_{0}(1)+\lambda_{2}=\frac{1}{10} z_{0}(1)+\frac{7}{10}=1=z_{0}(0)
\end{aligned}
$$

Moreover

$$
V_{1}\left(t, y_{0}, z_{0}\right)=\frac{1}{10}+\frac{1}{5} e^{-2 t-1}>\frac{1}{10}
$$

$$
\begin{aligned}
& V_{2}\left(t, z_{0}, y_{0}\right)=\frac{1}{3} e^{-\frac{1}{2} t-1} \leq \frac{1}{3} e^{-1} \\
& V_{2}\left(t, y_{0}, z_{0}\right)=\frac{1}{3} e^{-2 t-2}>0
\end{aligned}
$$

Defining $K(t)=\frac{1}{10}, L(t)=\frac{1}{3} e^{-1}, M_{1}=\frac{3}{10}, M_{2}=\frac{1}{3}$ we get

$$
\begin{align*}
\tilde{\lambda}_{1}+\int_{0}^{1} L(t) e^{-\int_{\alpha(t)}^{t} K(s) d s} d t & =\frac{1}{10} e^{\frac{1}{10}}+\int_{0}^{1} \frac{1}{3} e^{-1} e^{-\int_{\frac{1}{2}}^{t} \frac{1}{10} d s} d t \\
& <\frac{1}{10} e^{\frac{1}{10}}+\frac{1}{3} e^{-1}<1 \tag{5.2}
\end{align*}
$$

and

$$
\lambda+\left(M_{1}+M_{2}\right) T=\frac{22}{30}<1
$$

All assumptions of Theorem 3 are satisfied. Thus there exist monotone sequences $\left\{y_{n}\right\},\left\{z_{n}\right\}$ converging quadratically to a unique solution of problem (5.1) in the sector $\left[y_{0}, z_{0}\right]_{*}$.

References

[1] A. Dąbrowicz-Tlałka, T. Jankowski, Quadratic convergence of monotone iterations of differential - algebraic equations, Math. Slovaca, 52 (2002), No. 3, 315-330.
[2] A. Dyki, T. Jankowski, Boundary value problems for ordinary differential equations with deviated arguments, J. Optim. Theory Appl. (2007) 135: 257-269.
[3] A. Dyki, Boundary problems for differential equations with advanced arguments, Nonlinear Studies Vol. 15, No. 2, pp. 123-135, 2008.
[4] T. Jankowski, On delay differential equations with nonlinear boundary conditions, Boundary Value Problems, 2005:2 (2005), 201-214.
[5] T. Jankowski, Quadratic Approximation of solutions for differential equations with nonlinear boundary conditions, Comp. Math. Appl. 47 (2004) 1619-1626.
[6] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.
[7] V. Lakshmikantham, A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1998.
[8] J.J. Nieto, R. Rodríguez-López, Remarks on periodic boundary value problems for functional differential equations, J. Comput. Appl. Math. 158 (2003) 339-353.
[9] J.J. Nieto, R. Rodríguez-López, Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Comput. Math. Appl. 40 (2000) 433-442.
[10] W. Szatanik, Quasi-solutions for generalized second order differential equations with deviating arguments, J. Comput. App. Math. 216:2 (2008), 425-434.

Gdansk University of Technology
Department of Differential Equations
11/12 G. Narutowicz St.
80-233 Gdańsk
Poland
email:adyki@wp.pl

[^0]: Received by the editors August 2009.
 Communicated by J. Mawhin.
 2000 Mathematics Subject Classification : 34A45, 34B15.
 Key words and phrases : Functional differential equations, quasilinearization, quadratic convergence, semi-quadratic convergence.

