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Abstract

In this paper we give Weierstrass type representation formulas for space-
like surfaces and maximal spacelike surfaces in 3-dimensional lightlike cone
Q3. Then we discuss some properties and structures of spacelike surface and
its associated surface.

1 Introduction.

In General Relativity, null submanifolds usually appear to be some smooth parts
of the achronal boundaries, for example, event horizons of the Kruskal and Kerr
black holes and the compact Cauchy horizons in Taub-NUT spacetime, and their
properties are manifested in the proofs of several theorems concerning black
holes and singularities. Degenerate submanifolds of Lorentzian manifolds may
be useful to study the intrinsic structure of manifolds with degenerate metric and
to have a better understanding of the relation between the existence of the null
submanifolds and the spacetime metric ([4]).

It is well known that there are three kinds of pseudo Riemannian space forms,
namely, the pseudo Euclidean space En

q , the pseudo Riemannian sphere Sn
q (c, r)

and the pseudo Riemannian hyperbolic space Hn
q (c, r). They are nondegenerated

complete pseudo Riemannian hypersurface of pseudo Euclidean space with zero,
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positive, or negative constant sectional curvature, respectively ([13]). However,
for the degenerate hypersurface Qn

q (c) in En+1
q , it should be considered also as

the forth kind of pseudo Riemannian space form, or called degenerate pseudo
Riemannian space form. It is meaningful to study the geometry or the geometry
of submanifolds of degenerate pseudo Riemannian space form ([5]-[11]).

The concept of trapped surfaces plays extremely important role in general rel-
ativity and cosmology. It is considered as a cornerstone for the achievement of
the singularity theorems, the analysis of gravitational collapse, the cosmic cen-
sorship hypothesis, the Penrose inequality, etc. ([2], [3]). Prof. B. Y. Chen proved
that the cone surface of Q3 is marginally trapped in E4

1 if and only if the surface
is flat ([2], Proposition 4.1). From [6] we know that the surface in Q3 is flat if and
only if the surface is maximal ([6], (1.13) and (2.7); or [7]).

In this paper we consider spacelike surfaces and maximal spacelike surfaces
in 3-dimensional lightlike cone Q3 ⊂ E4

1. Using the complex function theory and
differential equation theory we give the representation formulas for the space-
like surfaces and maximal spacelike surfaces in 3-dimensional lightlike cone Q3.
Mainly, we have
Theorem A. (Representation formula of spacelike surface in Q3) Let x = x(u, v) :
M → Q3 ⊂ E4

1 be a spacelike surface in Q3 with the isothermal parameter z = u + iv.
Then x(u, v) = (x1, x2, x3, x4) can be written as































x1(u, v) = ρ(u, v)
{

f (z) + f (z)
}

,

x2(u, v) = −iρ(u, v)
{

f (z)− f (z)
}

,

x3(u, v) = ρ(u, v)
{

1 − f (z) f (z)
}

,

x4(u, v) = ρ(u, v)
{

1 + f (z) f (z)
}

.

(1.1)

For some holomorphic function f (z) and real function ρ(u, v) = ρ(z, z̄).
Theorem B. (Representation formula of maximal spacelike surface in Q3) Let x =
x(u, v) : M → Q3 ⊂ E4

1 be a maximal spacelike surface in Q3 with the isothermal
parameter z = u + iv, Then x(u, v) = (x1, x2, x3, x4) can be written as































x1(u, v) = ρ(z)ρ(z)
{

f (z) + f (z)
}

,

x2(u, v) = −iρ(z)ρ(z)
{

f (z)− f (z)
}

,

x3(u, v) = ρ(z)ρ(z)
{

1 − f (z) f (z)
}

,

x4(u, v) = ρ(z)ρ(z)
{

1 + f (z) f (z)
}

.

(1.2)

For some holomorphic function f (z) and complex function ρ(z).
With these representation formulas we discuss some properties and structures of
the spacelike surface and its associated surface.

2 Surfaces in lightlike cone Q3.

We follow the notations and conceptions as in [6]. Let M be a connected, oriented
2-dimensional differential manifold and x : M → Q3 ⊂ E4

1 be a surface in 3-
dimensional lightlike cone Q3 ⊂ E3

1 with isothermal parameter {u, v}. In this
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case, the surface x is always spacelike ([6], [7]). The induced metric (simply the
metric) of the surface x(u, v) is given by (cf. [6])

G = 〈dx, dx〉 = 2ew(du2 + dv2) = ew(dz ⊗ dz̄ + dz̄ ⊗ dz), (2.1)

where z = u + iv. We use the Cauchy-Riemann operators

∂z =
∂

∂z
=

1

2

(

∂

∂u
− i

∂

∂v

)

, ∂z̄ =
∂

∂z̄
=

1

2

(

∂

∂u
+ i

∂

∂v

)

and denote xz = ∂zx = ∂x/∂z. Then we have

〈x, x〉 = 〈x, xz〉 = 〈x, xz̄〉 = 〈xz, xz〉 = 〈xz̄, xz̄〉 = 0, 〈xz, xz̄〉 = ew. (2.2)

From (2.2) we get
{

〈xz, xzz〉= 〈xz, xzz̄〉 = 〈xz̄, xz̄z̄〉 = 〈xz̄, xzz̄〉 = 〈x, xzz〉 = 〈x, xz̄z̄〉 = 0,
〈xz̄, xzz〉= ewwz, 〈xz, xz̄z̄〉 = ewwz̄, 〈x, xzz̄〉 = −ew.

(2.3)

The Laplacian ∆ of the metric G and the Gaussian curvature κ of the surface
x(u, v) are given by

∆ = 2e−w∂z∂z̄ = 2e−w ∂

∂z

∂

∂z̄
, κ = −e−wwzz̄. (2.4)

We define

y = y(u, v) = −
1

2
∆x −

1

8
〈∆x, ∆x〉x. (2.5)

Then we have

〈y, y〉 = 0, 〈x, y〉 = 1, 〈y, xz〉 = 〈y, xz̄〉 = 0.

We know that the vector fields
{

x, y, (2ew)−1/2xu, (2ew)−1/2xv

}

form an asymp-

totic orthonormal frame on E4
1 along the surface x(u, v). For the surface x(u, v),

we have the following structure equations






xzz = wzxz + ϕx,
xzz̄ = λx − ewy,
yz = −λe−wxz − ϕe−wxz̄.

(2.6)

The integrability conditions of x(u, v) are


















λ= −
1

2
ewκ,

ϕz̄ = −
1

2
ewκz.

(2.7)

From (2.6) and (2.7) we have
{

H = λe−w = −
1

2
κ,

∆x = 2H − 2y.
(2.8)

Here

H =
1

2
〈∆x, y〉

is the mean curvature of the cone surface x(u, v). The surface x(u, v) is called
maximal (or traditionally, minimal or extremal) in Q3 if and only if H ≡ 0 ([6],
[7]).
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3 Weierstrass type formula of surfaces in Q3.

Let x : M → Q3 ⊂ E4
1 be a spacelike surface in Q3 with the isothermal parameter

{u, v}, or z = u + iv. Putting x = (x1, x2, x3, x4) we have

x2
1 + x2

2 + x2
3 − x2

4 = 0.

Then from x2
1 − (ix2)

2 = −(x2
3 − x2

4) we get

x1 + ix2

x3 + x4
= −

x3 − x4

x1 − ix2
, or

x1 + ix2

x3 − x4
= −

x3 + x4

x1 − ix2
. (3.1)

Without loss of generality we may assume that

x1 + ix2

x3 + x4
= −

x3 − x4

x1 − ix2
= f (z, z̄), (3.2)

x1 + ix2

x3 − x4
= −

x3 + x4

x1 − ix2
= −

1

g(z, z̄)
, (3.3)

and

x3 + x4 = 2ρ(z, z̄). (3.4)

Then from (3.2), (3.3) and (3.4) we get















x1 + ix2 = 2ρ f ,
x1 − ix2 = 2ρg,
x3 + x4 = 2ρ,
x3 − x4 = −2ρ f g.

(3.5)

Therefore we obtain














x1 = ρ( f + g),
x2 = −iρ( f − g),
x3 = ρ(1 − f g),
x4 = ρ(1 + f g).

(3.6)

That is, the surface x : M → Q3 ⊂ E4
1 can be written as

x = x(u, v) = x(z, z̄) = (x1, x2, x3, x4) = ρ( f + g,−i( f − g), 1− f g, 1+ f g). (3.7)

From (3.7) we have















xz = ρz( f + g,−i( f − g), 1 − f g, 1 + f g)+
ρ( fz + gz,−i( fz − gz),− fzg − f gz, fzg + f gz),

xz̄ = ρz̄( f + g,−i( f − g), 1 − f g, 1 + f g)+
ρ( fz̄ + gz̄,−i( fz̄ − gz̄),− fz̄g − f gz̄, fz̄g + f gz̄),

and then






〈xz, xz〉= 4ρ2 fzgz,
〈xz̄, xz̄〉= 4ρ2 fz̄gz̄,
〈xz, xz̄〉= 2ρ2( fzgz̄ + fz̄gz).

(3.8)
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Since {u, v} is the isothermal parameter of the surface x(u, v), from (2.1) we get







〈xz, xz〉= 4ρ2 fzgz = 0,
〈xz̄, xz̄〉= 4ρ2 fz̄gz̄ = 0,
〈xz, xz̄〉= 2ρ2( fzgz̄ + fz̄gz) = ew.

(3.9)

Without loss of generality we assume that

{

fz̄ ≡ 0,
gz ≡ 0.

(3.10)

That means






f ≡ f (z),
g≡ g(z̄),

ew = 2ρ2 fzgz̄.
(3.11)

From (3.2) and (3.3) we get

f (z) = g(z̄), g(z̄) = f (z). (3.12)

Theorem 3.1. Let x = x(u, v) : M → Q3 ⊂ E4
1 be a spacelike surface in Q3 with the

isothermal parameter z = u + iv. Then x(u, v) = (x1, x2, x3, x4) can be written as































x1(u, v) = ρ(u, v)
{

f (z) + f (z)
}

,

x2(u, v) = −iρ(u, v)
{

f (z)− f (z)
}

,

x3(u, v) = ρ(u, v)
{

1 − f (z) f (z)
}

,

x4(u, v) = ρ(u, v)
{

1 + f (z) f (z)
}

.

(3.13)

For some holomorphic function f (z) and real function ρ(u, v) = ρ(z, z̄). The metric of
x(u, v) is given by

G(u, v) =
(

2ρ2 fz fz

)

(dz ⊗ dz̄ + dz̄ ⊗ dz) .

The Gaussian curvature of x(u, v) is given by

κ(u, v) = −2(2ρ2 fz fz)
−1(log ρ)zz̄ = −∆(log ρ). (3.14)

Proof. From (3.6)-(3.11) and the expressions (2.1) and (2.4) of the metric and Gaus-
sian curvature.

Definition 1. The holomorphic function f (z) and real function ρ(u, v) = ρ(z, z̄) are
called structure functions of the spacelike surface x = x(u, v) : M → Q3 ⊂ E4

1. The
function ρ(u, v) is called conformal factor of x(u, v) and the holomorphic function f (z)
is called harmonic factor of x(u, v).
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Theorem 3.2. Let x = x(u, v) : M → Q3 ⊂ E4
1 be a maximal spacelike surface in Q3

with the isothermal parameter z = u+ iv, Then x(u, v) = (x1, x2, x3, x4) can be written
as































x1(u, v) = ρ(z)ρ(z)
{

f (z) + f (z)
}

,

x2(u, v) = −iρ(z)ρ(z)
{

f (z)− f (z)
}

,

x3(u, v) = ρ(z)ρ(z)
{

1 − f (z) f (z)
}

,

x4(u, v) = ρ(z)ρ(z)
{

1 + f (z) f (z)
}

.

(3.15)

For some holomorphic function f (z) and complex function ρ(z).

Proof. For the maximal spacelike surface x(u, v), the mean curvature H vanishes
identity. From (2.8) we know that the surface is flat. Using (2.4) and (3.11) we
have

0 = κ = −e−wwzz̄ = −e−w
[

log(2ρ2 fz fz)
]

zz̄
= −2e−w(log ρ)zz̄.

Therefore ρ(z, z̄) can be written as ρ(z, z̄) = ρ1(z)ρ2(z̄) and ρ1(z) = ρ2(z̄). Then
the surface can be given by (3.15).

Remark 1. From Theorem 3.2, using a holomorphic function f (z) and any complex
function ρ(z), we can easy get the maximal spacelike surface in Q3 with formula
(3.15).

4 Structures of spacelike surface and associated surface.

In this section, we consider the properties and structures of the spacelike surfaces
and their associated surfaces in Q3.

Definition 2. For the spacelike surface x : M → Q3 ⊂ E4
1, define

x̃(u, v) = y(u, v) = −
1

2
∆x −

1

8
〈∆x, ∆x〉x. (4.1)

Then x̃(u, v) is also a surface in Q3 and called the associated surface or duality of the
spacelike surface x(u, v).

We define

Φ = ϕ dz2, ϕ = 〈xzz, y〉, (4.2)

Λ = λ dzdz̄, λ = 〈xzz̄, y〉. (4.3)

It is easy to verify that Φ and Λ are independent of the choice of the parameters
and asymptotic orthonormal frames. Therefore they are globally defined.

Define the components hij of the second fundamental form II of the spacelike
surface x(u, v) by

II = ∑ hijduiduj = (2ew)−1 ∑〈xij, y〉duiduj = (2ew)−1 ∑〈xuiuj , y〉duiduj,
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where u = u1, v = u2. Then by a direct calculation we have











ϕ =
1

2
ew(h11 − h22 − 2ih12),

λ =
1

2
ew(h11 + h22).

(4.4)

Proposition 4.1. Let x : M → Q3 ⊂ E4
1 be a spacelike surface in Q3. The associated

surface (or duality) of the surface x(u, v) is nondegenerated if and only if the second
fundamental form of x(u, v) is nondegenerated.

Proof. From (2.6) we have

Gy = 〈dy, dy〉 = 〈yz, yz〉dz2 + 2〈yz, yz̄〉dzdz̄ + 〈yz̄, yz̄〉dz̄2 (4.5)

= 2λϕe−wdz2 + 2(λ2 + |ϕ|2)e−wdzdz̄ + 2λϕ̄e−wdz̄2

= 2e−w(λdz + ϕ̄dz̄)(ϕdz + λdz̄)

= 2e−w(ϕdz + λdz̄)(ϕdz + λdz̄).

Then together with (4.4) we get

|Gy| = −(2λϕe−w)(2λϕ̄e−w) + {(λ2 + |ϕ|2)e−w}2 (4.6)

= e−2w(λ2 − |ϕ|2)2

= e−2w(h11h22 − h2
12)

2.

Therefore, we know that Gy is nondegenerated if and only if the second funda-
mental form II of x(u, v) is nondegenerated.

In the following, we denote fz = f ′ and gz̄ = g′ since (3.10). From (3.7) we
have

xzz̄ = ρzz̄( f + g,−i( f − g), 1 − f g, 1 + f g) + ρzg′(1, i,− f , f ) (4.7)

+ρz̄ f ′(1,−i,−g, g) + ρ f ′g′(0, 0,−1, 1)

= ρ−1ρzz̄x + ρzg′(1, i,− f , f ) + ρz̄ f ′(1,−i,−g, g) + ρ f ′g′(0, 0,−1, 1)

and

∆x = 2e−wxzz̄ = ρ−1(∆ρ)x (4.8)

+2e−w
{

ρzg′(1, i,− f , f ) + ρz̄ f ′(1,−i,−g, g) + ρ f ′g′(0, 0,−1, 1)
}

.

Then

〈∆x, ∆x〉 = 16e−2w f ′g′(ρzρz̄ − ρρzz̄) = −16e−2w f ′g′ρ2(log ρ)zz̄

= −8e−w f ′g′ρ2∆(log ρ) = −4∆(log ρ).
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Therefore

y(u, v) = −
1

2
∆x −

1

8
〈∆x, ∆x〉x = −

1

2
∆x +

1

2
∆(log ρ)x (4.9)

=
1

2

{

∆(log ρ)− ρ−1∆ρ
}

x

−e−w
{

ρzg′(1, i,− f , f ) + ρz̄ f ′(1,−i,−g, g) + ρ f ′g′(0, 0,−1, 1)
}

= −e−w
{

ρ−2ρzρz̄x + ρzg′(1, i,− f , f ) + ρz̄ f ′(1,−i,−g, g)+

ρ f ′g′(0, 0,−1, 1)
}

=
−1

2ρ2

{

ρ−2ρzρz̄ f ′−1g′−1x +
ρz

f ′
(1, i,− f , f ) +

ρz̄

g′
(1,−i,−g, g)+

ρ(0, 0,−1, 1)} .

Then we get the following conclusion.

Proposition 4.2. For any non constant holomorphic function f (z), and real function

ρ(u, v) 6= 0, putting g(z̄) = f (z), the surface

x(u, v) = ρ( f + g,−i( f − g), 1 − f g, 1 + f g) (4.10)

is a spacelike surface in Q3 and (u, v) is the isothermal parameter of x(u, v). Further-
more, the associate surface or duality y = y(u, v) of x(u, v) is given by

y =
−1

2ρ2

{(

ρzρz̄

ρ2 f ′g′

)

x +
ρz

f ′
(1, i,− f , f ) +

ρz̄

g′
(1,−i,−g, g) + ρ(0, 0,−1, 1)

}

(4.11)
and putting y(u, v) = (y1, y2, y3, y4) we have







































































y1(u, v) =
−ρzρz̄

2ρ3 f ′g′

(

f + g +
ρ f ′

ρz
+

ρg′

ρz̄

)

,

y2(u, v) =
−ρzρz̄

2ρ3 f ′g′

(

−i( f − g)− i
ρ f ′

ρz
+ i

ρg′

ρz̄

)

,

y3(u, v) =
−ρzρz̄

2ρ3 f ′g′

(

1 − f g −
ρ f g′

ρz̄
−

ρg f ′

ρz
−

ρ2 f ′g′

ρzρz̄

)

,

y4(u, v) =
−ρzρz̄

2ρ3 f ′g′

(

1 + f g +
ρ f g′

ρz̄
+

ρg f ′

ρz
+

ρ2 f ′g′

ρzρz̄

)

.

(4.12)

Theorem 4.1. Let x = x(u, v) : M → Q3 ⊂ E4
1 be a spacelike surface in Q3 with

the isothermal parameter z = u + iv and the structure functions { f (z), ρ(u, v)} and
y = y(ũ, ṽ) : M → Q3 ⊂ E4

1 be the associate surface (or duality) of x(u, v) with the

isothermal parameter τ = ũ + iṽ and the structure functions { f̃ (τ), ρ̃(ũ, ṽ)}. Then we
have

dτ = ϕdz + λdz̄ or dτ = ϕdz + λdz̄ (4.13)
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and














































f̃ = f +
ρ f ′

ρz
= f +

f ′

(log ρ)z
= f

(

1 +
(log f )′

(log ρ)z

)

,

g̃= g +
ρg′

ρz̄
= g +

g′

(log ρ)z̄
= g

(

1 +
(log g)′

(log ρ)z̄

)

,

ρ̃=
−ρzρz̄

2ρ3 f ′g′
=

−(log ρ)z(log ρ)z̄

2ρ f ′g′
=

−(log ρ)z(log ρ)z̄

2ρ f g(log f )′(log g)′
,

(4.14)

2ρρ̃( f̃ − f )(g̃ − g) = −1. (4.15)

Where g(z̄) = f (z) and g̃(τ̄) = f̃ (τ).

Proof. From (4.5) and (ũ, ṽ) is the isothermal parameter of y we get (4.13). By (3.5)
and (4.12) we obtain (4.14). From (4.14) we have (4.15).

Corollary 4.2. Let x = x(u, v) : M → Q3 ⊂ E4
1 be a maximal spacelike surface in Q3

with the isothermal parameter {u, v}. Then {u, v} is also the isothermal parameter of the
associate surface (or duality) y(u, v) of x(u, v).

Proof. For the maximal spacelike surface x(u, v), from (2.7) we have λ ≡ 0. Then
from (4.13) we know that {u, v} is also the isothermal parameter of y(u, v).

Theorem 4.3. The associate surface (or duality) y(u, v) of a spacelike surface x =
x(u, v) : M → Q3 ⊂ E4

1 is maximal if and only if the spacelike surface x(u, v) is
maximal.

Proof. From (2.4), (2.8), (3.14), (4.14) and Corollary 4.2, by a direct calculation we
can get the conclusion of this theorem.

Proposition 4.3. Let x = x(u, v) : M → Q3 ⊂ E4
1 be a spacelike surface in Q3 with

the isothermal parameter z = u + iv. Then x(u, v) = (x1, x2, x3, x4) can be written as



















x1(u, v) = f (z) + f (z),

x2(u, v) = −i( f (z) − f (z)),

x3(u, v) = 1 − f (z) f (z),

x4(u, v) = 1 + f (z) f (z).

(4.16)

for some holomorphic function f (z), that is, the function ρ(u, v) is constant in (4.10), if
and only if the spacelike surface x(u, v) is totally geodesic in Q3.

Proof. From (4.2), (4.3), (3.7) and (4.9) we have















ϕ = 〈xzz, y〉= ρ−1ρzz − 2ρ−2ρ2
z − ρ−1ρz f ′−1 f ′′

= (log ρ)zz − {(log ρ)z}2 − (log ρ)z f ′−1 f ′′,
ϕ̄ = 〈xz̄z̄, y〉= (log ρ)z̄z̄ − {(log ρ)z̄}2 − (log ρ)z̄g′−1g′′,

λ = 〈xzz̄, y〉= 1
2ew∆ log ρ = ρ2 f ′g′∆ log ρ.

(4.17)
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If ρ(u, v) is constant, by (4.17) we get ϕ = λ ≡ 0. Then from (4.4) we know
that x(u, v) is totally geodesic in Q3. Conversely, if λ ≡ 0 we have (log ρ)zz̄ =
ρρzz̄ − ρzρz̄ ≡ 0. And ϕ ≡ 0 yields

{

ϕ= (log ρ)zz − {(log ρ)z}2 − (log ρ)z f ′−1 f ′′ = 0,
ϕ̄= (log ρ)z̄z̄ − {(log ρ)z̄}2 − (log ρ)z̄g′−1g′′ = 0.

(4.18)

Solving this partial differential equations, we omit the tediously process, and get
the solutions ρz = ρz̄ ≡ 0 or

ρ(u, v) =
1

f (z)g(z̄)
.

Where g(z̄) = f (z).

From (4.13) we may take

dτ = ϕdz + λdz̄ =
∂τ

∂z
dz +

∂τ

∂z̄
dz̄.

Then we have
∂τ

∂z
= ϕ,

∂τ

∂z̄
= λ. (4.19)

Since
∂

∂z
=

∂τ

∂z

∂

∂τ
+

∂τ̄

∂z

∂

∂τ̄

we get


















(λ2 − |ϕ|2)
∂

∂τ
= −ϕ̄

∂

∂z
+ λ

∂

∂z̄
,

(λ2 − |ϕ|2)
∂

∂τ̄
= λ

∂

∂z
− ϕ

∂

∂z̄
.

(4.20)

Therefore

∆̃ = 2e−w̃∂τ∂τ̄ = 2e−w̃ ∂

∂τ

∂

∂τ̄
(4.21)

=

(

2e−w̃

(λ2 − |ϕ|2)2

)(

−ϕ̄
∂

∂z
+ λ

∂

∂z̄

)(

λ
∂

∂z
− ϕ

∂

∂z̄

)

,

where

ew̃ = 2ρ̃2 f̃ ′ g̃′ = 2ρ̃2 ∂ f̃

∂τ

∂g̃

∂τ̄
(4.22)

= 2

(

ρzρz̄

2ρ3 f ′g′

)2 { ∂

∂τ

(

f +
ρ f ′

ρz

)}{

∂

∂τ̄

(

g +
ρg′

ρz̄

)}
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and λ, ϕ are given by (4.17). The Gaussian curvature of the associated surface
y(u, v) of spacelike surface x(u, v) is given by

κ̃(u, v) = −∆̃(log ρ̃) (4.23)

= −

(

2e−w̃

(λ2 − |ϕ|2)2

)(

−ϕ̄
∂

∂z
+ λ

∂

∂z̄

)(

λ
∂

∂z
− ϕ

∂

∂z̄

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

= −

(

2e−w̃

(λ2 − |ϕ|2)2

)(

−λϕ̄
∂2

∂z2
− λϕ

∂2

∂z̄2

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

−

(

2e−w̃(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)(

∂2

∂z∂z̄

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

= λ

(

2e−w̃

(λ2 − |ϕ|2)2

)(

ϕ̄
∂2

∂z2
+ ϕ

∂2

∂z̄2

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

−

(

2e−w̃(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)(

∂2

∂z∂z̄

)

(log (ρzρz̄))

+

(

6e−w̃(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)(

∂2

∂z∂z̄

)

(log (ρ))

= λ

(

2e−w̃

(λ2 − |ϕ|2)2

)(

ϕ̄
∂2

∂z2
+ ϕ

∂2

∂z̄2

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

−

(

2e−w̃(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)(

∂2

∂z∂z̄

)

(log (ρzρz̄))

−

(

6e−w̃ρ2 f ′g′(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)

κ.

Proposition 4.4. The Gaussian curvatures κ and κ̃ of spacelike surface x = x(u, v) :
M → Q3 ⊂ E4

1 with structure functions { f , g, ρ} and its associate surface (or duality)
y(u, v) satisfy

κ̃(u, v) = λ

(

2e−w̃

(λ2 − |ϕ|2)2

)(

ϕ̄
∂2

∂z2
+ ϕ

∂2

∂z̄2

)(

log

(

−ρzρz̄

2ρ3 f ′g′

))

(4.24)

−

(

2e−w̃(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)(

∂2

∂z∂z̄

)

(log (ρzρz̄))

−

(

6e−w̃ρ2 f ′g′(λ2 + |ϕ|2)

(λ2 − |ϕ|2)2

)

κ.

Where λ, ϕ are given by (4.17) and ew̃ is given by (4.22).

Remark 2. With this relation between κ to κ̃ we can also easy get the conclusion of
Theorem 4.3.

Remark 3. Using Theorem 3.1 and Theorem 3.2 we can easily get the examples
of spacelike surfaces and maximal spacelike surfaces in 3-dimensional lightlike
cone Q3 ⊂ E4

1.
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