Sharp Hardy-type inequalities with Lamb's constants

F. G. Avkhadiev*
K.-J. Wirths

Abstract

Let Ω be an n-dimensional convex domain with finite inradius $\delta_{0}=\sup _{x \in \Omega} \delta$, where $\delta=\operatorname{dist}(x, \partial \Omega)$, and let (p, q) be a pair of positive numbers. For functions vanishing at the boundary of the domain and any $v \in[0, p / q]$ we prove the following Hardy-type inequality $$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq h \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{p-q+1}} d x
$$ with two sharp constants $$
h=\frac{p^{2}-v^{2} q^{2}}{4} \geq 0 \quad \text { and } \quad \lambda=\frac{q}{2} \lambda_{v}(2 p / q)>0
$$ where $z=\lambda_{v}(p)$ is the Lamb constant defined as the first positive root of the equation $p J_{v}(z)+2 z J_{v}^{\prime}(z)=0$ for the Bessel function J_{v}. We prove that $z=\lambda_{v}(p)$ as a function in p can be found as the solution of an initial value problem for the differential equation $$
\frac{d z}{d p}=\frac{2 z}{p^{2}-4 v^{2}+4 z^{2}}
$$

For $n=1$ our inequality is an improvement of the original Hardy inequality for finite intervals. For $n \geq 1$ and $p=q / 2=1$ it gives a new sharp

\footnotetext{ *This work was supported by a grant of the Deutsche Forschungsgemeinschaft and by the Russian Foundation for Basic Research (project no. 08-01-00381) for F. G. Avkhadiev.

Received by the editors February 2010. Communicated by J. Mawhin. 2000 Mathematics Subject Classification : Primary 26D15; Secondary 73C02. Key words and phrases : Hardy inequality, convex domain, Bessel function, Lamb constant, first eigenvalue, inradius. }

form of the Hardy-type inequality due to H . Brezis and M . Marcus. The case $h=0, v=1 / 2, p=1$ and $q=2$ coincides with sharp eigenvalue estimates due to J. Hersch for $n=2$, and L. E. Payne and I. Stakgold for $n \geq 3$.

1 Introduction

The aim of this paper is to obtain a new sharp Hardy-type inequality which constructs a bridge between Hardy-type inequalities of the classical form and sharp estimates of the first eigenvalue $\lambda_{1}(\Omega)$ of the Laplacian under the Dirichlet boundary condition for n-dimensional convex domains Ω.

Let Ω be an open set in the Euclidean space \mathbb{R}^{n}. There are two famous results on sharp estimates of the first eigenvalue. The first one is the Rayleigh-FaberKrahn isoperimetric inequality (see, for instance, C. Bandle [5])

$$
\lambda_{1}(\Omega) \geq \frac{\omega_{n}^{2 / n}}{\operatorname{vol}(\Omega))^{2 / n}} j_{n / 2-1}^{2}
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n} and j_{v} is the first positive zero of the Bessel function J_{v} of order v. The second result concerns convex domains of finite inradius δ_{0} defined as

$$
\delta_{0}=\delta_{0}(\Omega)=\sup _{x \in \Omega} \delta,
$$

where

$$
\delta=\operatorname{dist}(x, \partial \Omega)
$$

Namely, for any n-dimensional convex domain there is the sharp inequality

$$
\begin{equation*}
\lambda_{1}(\Omega) \geq \frac{\pi^{2}}{4 \delta_{0}^{2}(\Omega)} \tag{1}
\end{equation*}
$$

For $n=1$ it follows from the Poincaré estimate $\lambda_{1}(\Omega) \geq \pi^{2} /(\operatorname{diam}(\Omega))^{2}$, for $n=2$ the inequality (1) is due to J. Hersch [9], for $n \geq 3$ it is proved by L. E. Payne and I. Stakgold [16]. The inequality (1) means that

$$
\begin{equation*}
\int_{\Omega}|\nabla f|^{2} d x \geq \frac{\pi^{2}}{4 \delta_{0}^{2}(\Omega)} \int_{\Omega}|f|^{2} d x, \quad \forall f \in H_{0}^{1}(\Omega) \tag{2}
\end{equation*}
$$

where Ω is an open and convex set in \mathbb{R}^{n}, the space $H_{0}^{1}(\Omega)$ is the closure of the family $C_{0}^{1}(\Omega)$ of smooth functions $f: \Omega \rightarrow \mathbb{R}$ with finite Dirichlet integral and supported in Ω. On the other hand, for n-dimensional convex domains there are the following Hardy-type inequalities

$$
\begin{equation*}
\int_{\Omega}|\nabla f|^{2} d x \geq \frac{1}{4} \int_{\Omega} \frac{|f|^{2}}{\delta^{2}} d x, \quad \forall f \in H_{0}^{1}(\Omega) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla f|^{2} d x \geq \frac{1}{4} \int_{\Omega} \frac{|f|^{2}}{\delta^{2}} d x+\frac{1}{4(\operatorname{diam}(\Omega))^{2}} \int_{\Omega}|f|^{2} d x, \quad \forall f \in H_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

It is well known that the constant $1 / 4$ in (3) is sharp for any convex subdomain of \mathbb{R}^{n} although there is no function $f \not \equiv 0, f \in H_{0}^{1}(\Omega)$ for which equality in (3) is actually attained. The sharpness of $1 / 4$ is proved by Hardy for $n=1$ (see [8] and [12]) and by T. Matskewich and P. E. Sobolevskii [15] and by M. Marcus, V. J. Mitzel and Y. Pinchover [14] for $n \geq 2$. The inequality (4) is due to H. Brezis and M. Marcus [6] (see also E. B. Davies [7] for inequalities of this type, and M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and A. Laptev [10] for a generalization to convex domains of finite volume).

In [4] we proved a new sharp form of the inequality (4). Namely, for any convex domain Ω of finite inradius δ_{0} it was proved that

$$
\begin{equation*}
\int_{\Omega}|\nabla f|^{2} d x \geq \frac{1}{4} \int_{\Omega} \frac{|f|^{2}}{\delta^{2}} d x+\frac{\lambda_{0}^{2}}{\delta_{0}^{2}} \int_{\Omega}|f|^{2} d x, \quad \forall f \in H_{0}^{1}(\Omega) \tag{5}
\end{equation*}
$$

where $\lambda_{0}=0.940 \ldots$ is a Lamb constant defined as the first zero in $(0,+\infty)$ of the function $J_{0}(x)-2 x J_{1}(x), J_{0}$ and J_{1} being the Bessel functions of order 0 and 1, respectively. The inequality (5) is sharp for all dimensions $n \geq 1$.

Let Ω be an n-dimensional convex domain. Suppose that $p \in(0,+\infty)$ and $q \in(0,+\infty)$. The main aim of this paper is to obtain a new Hardy-type inequality with two sharp constants $h \in[0,+\infty)$ and $\lambda \in[0,+\infty)$ such that

$$
\begin{equation*}
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq h \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{p-q+1}} d x \tag{6}
\end{equation*}
$$

for all differentiable functions $f: \Omega \rightarrow \mathbb{R}$ vanishing at the boundary of the domain. More precisely, we will suppose that f belongs to the space $H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)$ that is the closure of smooth functions supported in Ω and having finite integral $\int_{\Omega}|\nabla f|^{2} \delta^{1-p} d x$.

If $\lambda=0$ in (6) then it is known that the sharp value of h is $p^{2} / 4$ (see [8] for $n=1, p>0$ and $\Omega=(0,+\infty)$, the case $p=1$ and $n \geq 1$ corresponds to the inequality (3), for $p>0$ and $n \geq 2$ it is proved in [2] and [3]). Consequently, in the general case we have to consider h such that

$$
0 \leq h \leq p^{2} / 4
$$

We will use the term "extremal domain Ω_{0} " for an inequality (6) with two sharp constants $h \in[0,+\infty)$ and $\lambda \in[0,+\infty)$ in the usual sense: For any $\varepsilon>0$ there exist functions $f_{\varepsilon} \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)$ and $g_{\varepsilon} \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)$ such that

$$
\int_{\Omega_{0}} \frac{\left|\nabla f_{\varepsilon}\right|^{2}}{\delta^{p-1}} d x<(h+\varepsilon) \int_{\Omega_{0}} \frac{\left|f_{\varepsilon}\right|^{2}}{\delta^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega_{0}} \frac{\left|f_{\varepsilon}\right|^{2}}{\delta^{p-q+1}} d x
$$

and

$$
\int_{\Omega_{0}} \frac{\left|\nabla g_{\varepsilon}\right|^{2}}{\delta^{p-1}} d x<h \int_{\Omega_{0}} \frac{\left|g_{\varepsilon}\right|^{2}}{\delta^{p+1}} d x+\frac{\lambda^{2}+\varepsilon}{\delta_{0}^{q}} \int_{\Omega_{0}} \frac{\left|g_{\varepsilon}\right|^{2}}{\delta^{p-q+1}} d x
$$

2 Main results

We will fix $h \geq 0$ and consider λ as the constant best possible in (6) for the set of all n-dimensional convex domains with fixed inradius δ_{0}. It will be shown that such a constant satisfies the inequalities $0<\lambda \leq j_{p / q-1} q / 2$, where j_{ν} be the first positive zero of the Bessel function J_{v} of order v. The upper estimate for λ is a corollary of our first theorem which deals with the case $h=0$.

Theorem 1. Suppose that $p \in(0,+\infty)$ and $q \in(0,+\infty)$. If Ω is an n-dimensional convex domain of finite inradius δ_{0}, then the sharp inequality

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq \frac{q^{2} j_{p / q-1}^{2}}{4 \delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{p-q+1}} d x, \quad \forall f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)
$$

is valid. Finite intervals $(a, b) \subset \mathbb{R}$ for $n=1$ and domains of the form $(a, b) \times \mathbb{R}^{n-1} \subset$ \mathbb{R}^{n} for $n \geq 2$ are extremal domains.

The known asymptotic formula 9.5.14 in [1] implies that $j_{v-1} / v=1+O\left(v^{-2 / 3}\right)$ as $v \rightarrow+\infty$. Hence, $q j_{p / q-1} \rightarrow p$ as $q \rightarrow 0$. Thus, Theorem 1 presents the mentionned above inequality

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq \frac{p^{2}}{4} \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x, \quad \forall f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)
$$

as a limit case as $q \rightarrow 0$.
Also, taking $p=1$ in Theorem 1 gives an inequality from our paper [4]. Next, as a corollary we give two cases that correspond to the equations

$$
p / q=3 / 2 \quad \text { and } \quad p / q=1 / 2
$$

using the known facts

$$
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi}} \frac{\sin x}{\sqrt{x}}, \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi}} \frac{\cos x}{\sqrt{x}}
$$

and, consequently, $j_{-1 / 2}=\pi^{/} 2$ and $j_{1 / 2}=\pi$ (see, for instance, [11], p. 439).
Corollary 1. For any $p \in(0,+\infty)$ and n-dimensional convex domains Ω of finite inradius δ_{0} there are the following sharp inequalities

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq \frac{(\pi / 3)^{2}}{\delta_{0}^{2 p / 3}} p^{2} \int_{\Omega} \frac{|f|^{2}}{\delta^{p / 3+1}} d x, \quad \forall f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)
$$

and

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq \frac{\pi^{2} p^{2}}{4 \delta_{0}^{2 p}} \int_{\Omega} \frac{|f|^{2}}{\delta^{1-p}} d x, \quad \forall f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)
$$

Since $H_{0}^{1}(\Omega, 1)=H_{0}^{1}(\Omega)$, the latter inequality for $p=1$ gives the Poincaré-Hersch-Payne-Stakgold inequality (2).

To formulate the next theorem we need the Lamb constant $z=\lambda_{\nu}(p)$ defined as the first positive root of the equation

$$
\begin{equation*}
p J_{v}(z)+2 z J_{v}^{\prime}(z)=0 \quad(v \geq 0) \tag{7}
\end{equation*}
$$

The zeros of $2 z J_{v}^{\prime}(z)+p J_{v}(z)$ for $v>0$ have been studied by H. Lamb in [13] (see also G.N. Watson [17], p.502). For this reason we shall call $\lambda_{v}(p)$ Lamb's constant. It is clear that $0<\lambda_{v}(p)<j_{v}$. According to H. Lamb (compare [13], p. 272), for large p one has the approximation

$$
\lambda_{v}(p) \approx(1-2 / p) j_{v}
$$

The main result of this paper is the following theorem on the Hardy-type inequality (6) with two sharp constants h and λ.

Theorem 2. Suppose that $p \in(0,+\infty), q \in(0,+\infty), v \in[0, p / q]$, and $\lambda_{v}(p)$ is the Lamb constant. For any n-dimensional convex domain Ω of finite inradius δ_{0} the sharp inequality

$$
\begin{gathered}
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq \\
\frac{p^{2}-v^{2} q^{2}}{4} \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x+\frac{q^{2} \lambda_{v}^{2}(2 p / q)}{4 \delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{p-q+1}} d x, \quad \forall f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right),
\end{gathered}
$$

is valid. Finite intervals $(a, b) \subset \mathbb{R}$ for $n=1$ and domains of the form $(a, b) \times \mathbb{R}^{n-1} \subset$ \mathbb{R}^{n} for $n \geq 2$ are extremal domains.

Clearly, one can write the inequality of Theorem 2 as follows.
If Ω is an n-dimensional convex domain of finite inradius, p and q are positive numbers, then for any $f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)$ and any $h \in\left[0, p^{2} / 4\right]$

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq h \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x+\frac{q^{2}}{4 \delta_{0}^{q}} \lambda_{v}^{2}(2 p / q) \int_{\Omega} \frac{|f|^{2}}{\delta^{p-q+1}} d x
$$

where

$$
v=\frac{\sqrt{p^{2}-4 h}}{q} .
$$

Since $\lambda_{0}(1)=\lambda_{0}=0.940 \ldots$... Theorem 2 implies our inequality (5) (see [4]).
Letting $v=p / q$ in Theorem 2 gives that the first constant $h=0$. In this case the Lamb equation (7) is equivalent to the equation $J_{v-1}(z)=0$ because of the identity (see, for instance, E. Kamke [11], p. 439)

$$
v J_{v}(x)+x J_{v}^{\prime}(x)=x J_{v-1}(x), \quad x>0, v>0
$$

Hence, one has

$$
\lambda_{p / q}(2 p / q)=j_{p / q-1} .
$$

Thus, Theorem 2 contains Theorem 1 as a particular case and we have to prove Theorem 2, only. The proof will be considered in Section 3.

In Section 4 we will examine properties of the Lamb constant $z=\lambda_{\nu}(p)$ considering it as a function which is defined implicitly by the equation (7) for any $p>0$. It is interesting that $z=\lambda_{v}(p)$ may be found as the solution of the initial value problem :

$$
\begin{equation*}
\frac{d z}{d p}=\frac{2 z}{p^{2}-4 v^{2}+4 z^{2}},\left.\quad z\right|_{p=2 v}:=\lambda_{v}(2 v)=j_{v-1} \tag{8}
\end{equation*}
$$

in the case $v>0$, and

$$
\begin{equation*}
\frac{d z}{d p}=\frac{2 z}{p^{2}+4 z^{2}},\left.\quad z\right|_{p=1}:=\lambda_{0}(1)=\lambda_{0}=0.940 \ldots \tag{9}
\end{equation*}
$$

for $v=0$. Using these differential equations we easily obtain bounds and asymptotic formulas for the monotonic increasing function $z=\lambda_{v}(p)$ of the variable $p \in(0, \infty)$.

3 Proof of Theorem 2

In the sequel we will use the Bessel function

$$
J_{v}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+v}}{2^{2 k+v} k!\Gamma(k+1+v)}
$$

for some $v \geq 0$, and the function

$$
y=F_{v, p, q}(x)=x^{\frac{p}{2}} J_{v}\left(\lambda_{v}(2 p / q) x^{\frac{q}{2}}\right), \quad x \in[0,1] .
$$

One has

$$
4 x^{1-\frac{p}{2}} F_{v, p, q}^{\prime}(x) / q=\frac{2 p}{q} J_{v}\left(\lambda_{v}(2 p / q) x^{\frac{q}{2}}\right)+2 x^{\frac{q}{2}} \lambda_{v}(2 p / q) J_{v}^{\prime}\left(\lambda_{v}(2 p / q) x^{\frac{q}{2}}\right) .
$$

Using this equation and the definition of the Lamb constant and the facts that $F_{v, p, q}(x)>0$ and $F_{v, p, q}^{\prime}(x)>0$ for small positive x, we obtain

$$
\begin{equation*}
F_{v, p, q}^{\prime}(1)=0, \quad F_{v, p, q}(x)>0, x \in(0,1] \text { and } F_{v, p, q}^{\prime}(x)>0, x \in(0,1) \tag{10}
\end{equation*}
$$

We need some preparatory assertions. Namely, in two lemmas we examine our basic one-dimensional inequality that is an improvement of the original Hardy inequality for finite intervals.

Lemma 1. Let $\lambda_{v}(p)$ be the Lamb constant. If $p \in(0,+\infty), q \in(0,+\infty)$ and $v \in$ $[0, p / q]$ and f is an absolutely continuous function in $[0,1]$ such that $f(0)=0$ and $f^{\prime} / t^{p / 2-1 / 2} \in L^{2}[0,1]$, then

$$
\begin{equation*}
\int_{0}^{1} \frac{f^{\prime 2}(t)}{t^{p-1}} d t \geq \frac{p^{2}-v^{2} q^{2}}{4} \int_{0}^{1} \frac{f^{2}(t)}{t^{p+1}} d t+\frac{q^{2} \lambda_{v}^{2}(2 p / q)}{4} \int_{0}^{1} \frac{f^{2}(t)}{t^{p-q+1}} d t \tag{11}
\end{equation*}
$$

If $v=0$, then there is no admissible function $f \not \equiv 0$ for which equality in (11) is actually attained. If $0<v \leq p / q$, then equality in (11) occurs if and only if $f(t)=C F_{v, p, q}(t)$, where C is a constant.

Proof of Lemma 1. If $0<v \leq p / q$, then one may prove the inequality (11) using the classical variational calculus. This is not possible for the case $v=0$, when the Hardy term dominates. We will give an unified proof.

Clearly, we will need some properties of Bessel's functions. As is known (see E. Kamke [11], p. 440), the function $y=F_{v, p, q}(x)$ is a solution of the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-p) x y^{\prime}+\left(\frac{p^{2}-v^{2} q^{2}}{4}+\frac{q^{2} \lambda_{v}^{2}(2 p / q)}{4 x^{-q}}\right) y=0, \quad x \in \mathbb{R} . \tag{12}
\end{equation*}
$$

Using the expansion for the Bessel function it is easy to obtain that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{t F_{v, p, q}^{\prime}(t)}{F_{v, p, q}(t)}=c_{1}, \quad \frac{F_{v, p, q}^{\prime 2}(t)}{t^{p-1}}=\frac{c_{2}}{t^{1-v q}}\left(1+O\left(t^{q}\right)\right) \quad \text { as } t \rightarrow 0^{+} \tag{13}
\end{equation*}
$$

where

$$
c_{1}=\frac{p+v q}{2}>0, \quad c_{2}=\frac{\lambda_{v}^{2 v}(2 p / q)(p+v q)^{2}}{4 q^{2 v} \Gamma^{2}(1+v)}>0
$$

For an absolutely continuous function $f:[0,1] \rightarrow \mathbb{R}$ with properties $f(0)=0$ and $f^{\prime} / t^{p / 2-1 / 2} \in L^{2}[0,1]$ one has that

$$
f^{2}(t) \leq\left(\int_{0}^{t}\left|f^{\prime}(x)\right| d x\right)^{2} \leq \int_{0}^{t} x^{p-1} d x \int_{0}^{t} \frac{f^{\prime 2}(x)}{x^{p-1}} d x \leq \frac{t^{p}}{p} \int_{0}^{t} \frac{f^{\prime 2}(x)}{x^{p-1}} d x
$$

This together with the the first equation from (13) imply that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{f^{2}(t) F_{v, p, q}^{\prime}(t)}{t^{p-1} F_{v, p, q}(t)}=0 . \tag{14}
\end{equation*}
$$

We have

$$
\begin{gathered}
0 \leq P:=\int_{0}^{1} \frac{1}{t^{p-1}}\left(f^{\prime}(t)-\frac{F_{v, p, q}^{\prime}(t)}{F_{v, p, q}(t)} f(t)\right)^{2} d t \\
=\int_{0}^{1} \frac{f^{\prime 2}(t)}{t^{p-1}} d t-\int_{0}^{1} \frac{F_{v, p, q}^{\prime}(t)}{t^{p-1} F_{v, p, q}(t)} d f^{2}(t)+\int_{0}^{1} \frac{F_{v, p, q}^{\prime 2}(t) f^{2}(t)}{t^{p-1} F_{v, p, q}^{2}(t)} d t .
\end{gathered}
$$

Integrating by parts and using the asymptotic behavior (14) and the differential equation (12) one easily obtains

$$
\begin{aligned}
0 \leq & \leq \int_{0}^{1} \frac{f^{\prime 2}(t)}{t^{p-1}} d t+\int_{0}^{1} \frac{t^{2} F_{v, p, q}^{\prime \prime}(t)+(1-p) t F_{v, p, q}^{\prime}(t)}{t^{p+1} F_{v, p, q}(t)} f^{2}(t) d t \\
& =\int_{0}^{1} \frac{f^{\prime 2}(t)}{t^{p-1}} d t-\int_{0}^{1}\left[\frac{p^{2}-v^{2} q^{2}}{4 t^{p+1}}+\frac{q^{2} \lambda_{v}^{2}(2 p / q)}{4 t^{p-q+1}}\right] f^{2}(t) d t,
\end{aligned}
$$

which is the inequality to prove.
Clearly, $P=0$ if and only if $f(t)=C F_{v, p, q}(t)$, where C is a constant, in particular, $C=0$. According to the second formula in (13), the function $F_{v, p, q}^{\prime} / t^{p / 2-1 / 2} \in$ $L^{2}[0,1]$ for $v>0$, only. Hence, for $v=0$ we have to put $C=0$. For $v>0$ any constant C is admissible.

This completes the proof of Lemma 1.
For $v>0$ both constants in (11)

$$
\frac{p^{2}-v^{2} q^{2}}{4} \quad \text { and } \quad \frac{q^{2} \lambda_{v}^{2}(2 p / q)}{4}
$$

are sharp because of the existence of the extremal functions $F_{v, p, q}(t) \not \equiv 0$. In the next lemma we will prove that the constants are sharp in the case $v=0$, too.

Lemma 2. If $p \in(0,+\infty)$ and $q \in(0,+\infty)$ and $\lambda_{0}(2 p / q)$ is the Lamb constant, then for any $\varepsilon>0$ there exist two functions f_{ε} and g_{ε} that satisfy the conditions of Lemma 1 and the following inequalities

$$
\begin{equation*}
\int_{0}^{1} \frac{f_{\varepsilon}^{\prime 2}(t)}{t^{p-1}} d t<\left(\frac{p^{2}}{4}+\varepsilon\right) \int_{0}^{1} \frac{f_{\varepsilon}^{2}(t)}{t^{p+1}} d t+\frac{q^{2} \lambda_{0}^{2}(2 p / q)}{4} \int_{0}^{1} \frac{f_{\varepsilon}^{2}(t)}{t^{p-q+1}} d t \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \frac{g_{\varepsilon}^{\prime 2}(t)}{t^{p-1}} d t<\frac{p^{2}}{4} \int_{0}^{1} \frac{g_{\varepsilon}^{2}(t)}{t^{p+1}} d t+\left(\frac{q^{2} \lambda_{0}^{2}(2 p / q)}{4}+\varepsilon\right) \int_{0}^{1} \frac{g_{\varepsilon}^{2}(t)}{t^{p-q+1}} d t \tag{16}
\end{equation*}
$$

Proof of Lemma 2. Let $\varepsilon>0$. Without loss of generality we suppose that $\varepsilon \leq 1$. We will define functions f_{ε} and g_{ε} explicitly.

Consider first the function $f_{\varepsilon}(t):=t^{(p+\varepsilon /(p+1)) / 2}$. Straightforward computations give that

$$
\int_{0}^{1} \frac{f_{\varepsilon}^{\prime 2}(t)}{t^{p-1}} d t=\left(p+\frac{\varepsilon}{p+1}\right)^{2} \frac{p+1}{4 \varepsilon}<\left(p^{2}+4 \varepsilon\right) \frac{p+1}{4 \varepsilon}=\frac{p^{2}+4 \varepsilon}{4} \int_{0}^{1} \frac{f_{\varepsilon}^{2}(t)}{t^{p+1}} d t
$$

which implies the inequality (15).
Next, we consider the function

$$
g_{\varepsilon}(t)=t^{\alpha / 2} F_{0, p, q}(t)=t^{\frac{p+\alpha}{2}} J_{0}\left(\lambda_{0}(2 p / q) t^{\frac{q}{2}}\right)
$$

for some $\alpha=\alpha(\varepsilon) \in(0, q]$. By computations as in the proof of Lemma 1 one has

$$
\begin{aligned}
P_{\varepsilon}:= & \frac{p^{2}}{4} \int_{0}^{1} \frac{g_{\varepsilon}^{2}(t)}{t^{p+1}} d t+\left(\frac{q^{2} \lambda_{0}^{2}(2 p / q)}{4}+\varepsilon\right) \int_{0}^{1} \frac{g_{\varepsilon}^{2}(t)}{t^{p-q+1}} d t-\int_{0}^{1} \frac{g_{\varepsilon}^{\prime 2}(t)}{t^{p-1}} d t \\
& =\varepsilon \int_{0}^{1} \frac{g_{\varepsilon}^{2}(t)}{t^{p-q+1}} d t-\int_{0}^{1} \frac{1}{t^{p-1}}\left(g_{\varepsilon}^{\prime}(t)-\frac{F_{0, p, q}^{\prime}(t)}{F_{0, p, q}(t)} g_{\varepsilon}(t)\right)^{2} d t
\end{aligned}
$$

Since

$$
g_{\varepsilon}^{\prime}(t)-\frac{F_{0, p, q}^{\prime}(t)}{F_{0, p, q}(t)} g_{\varepsilon}(t)=\frac{\alpha}{2} t^{\frac{p+\alpha}{2}-1} J_{0}\left(\lambda_{0}(2 p / q) t^{\frac{q}{2}}\right)
$$

one easily gets

$$
\begin{gathered}
P_{\varepsilon}=\varepsilon \int_{0}^{1} t^{\alpha+q-1} J_{0}^{2}\left(\lambda_{0}(2 p / q) t^{\frac{q}{2}}\right) d t-\frac{\alpha^{2}}{4} \int_{0}^{1} t^{\alpha-1} J_{0}^{2}\left(\lambda_{0}(2 p / q) t^{\frac{q}{2}}\right) d t \\
\geq \varepsilon \int_{0}^{1} t^{2 q-1} J_{0}^{2}\left(\lambda_{0}(2 p / q) t^{\frac{q}{2}}\right) d t-\frac{\alpha}{4} \max _{0 \leq t \leq j_{0}} J_{0}^{2}(t) .
\end{gathered}
$$

Clearly, $P_{\varepsilon}>0$ for sufficiently small α. This implies the inequality (16).
The proof of Lemma 2 is complete.
Proof of Theorem 2. During this proof we suppose that

$$
\begin{equation*}
h=\frac{p^{2}-v^{2} q^{2}}{4} \quad \text { and } \quad \lambda=\frac{q}{2} \lambda_{\nu}(2 p / q), \tag{17}
\end{equation*}
$$

where $\lambda_{v}(p)$ is the Lamb constant.
Consider first the case $n=1$. If Ω is a finite interval (a, b), then $\delta_{0}=(b-a) / 2$ and $\delta=\delta(x)=\min \{x-a, b-x\}$. We have to prove the inequality

$$
\begin{equation*}
\int_{a}^{b} \frac{\left|f^{\prime}(x)\right|^{2}}{\delta^{p-1}(x)} d x \geq h \int_{a}^{b} \frac{|f(x)|^{2}}{\delta^{p+1}(x)} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{a}^{b} \frac{|f(x)|^{2}}{\delta^{p-q+1}(x)} d x \tag{18}
\end{equation*}
$$

for all functions $f \in H_{0}^{1}\left((a, b), \delta^{1 / 2-p / 2}\right)$.
On the one hand, by the change $\tau=y t$ of variables for any constant $y>0$ the inequality (11) of Lemma 1 implies that

$$
\begin{equation*}
\int_{0}^{y} \frac{\left|f^{\prime}(\tau)\right|^{2}}{\tau^{p-1}} d \tau \geq h \int_{0}^{y} \frac{|f(\tau)|^{2}}{\tau^{p+1}} d \tau+\frac{\lambda^{2}}{y^{q}} \int_{0}^{y} \frac{|f(\tau)|^{2}}{\tau^{p-q+1}} d \tau \tag{19}
\end{equation*}
$$

for all functions $f \in H_{0}^{1}\left((0,2 y), \delta^{1 / 2-p / 2}\right)$.
On the other hand, the inequality (18) is the sum of the inequalities

$$
\int_{a}^{a+\delta_{0}} \frac{\left|f^{\prime}(x)\right|^{2}}{(x-a)^{p-1}} d x \geq h \int_{a}^{a+\delta_{0}} \frac{|f(x)|^{2}}{(x-a)^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{a}^{a+\delta_{0}} \frac{|f(x)|^{2}}{(x-a)^{p-q+1}} d x
$$

and

$$
\int_{b-\delta_{0}}^{b} \frac{\left|f^{\prime}(x)\right|^{2}}{(b-x)^{p-1}} d x \geq h \int_{b-\delta_{0}}^{b} \frac{|f(x)|^{2}}{(b-x)^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{b-\delta_{0}}^{b} \frac{|f(x)|^{2}}{(b-x)^{p-q+1}} d x
$$

each of them is equivalent to the inequality (19) with $y=\delta_{0}$ by the changes $x-a=\tau$ and $b-x=\tau$ of variables.

Clearly, Lemmas 1 and 2 imply that the constants (17) in the inequality (18) are sharp. In particular, for $0<v \leq p / q$ equality in (18) holds if and only if $f(x)=C G(x)$, where C is a constant and the extremal function G is defined by the equations

$$
G\left(a+\delta_{0} t\right)=F_{v, p, q}(t)=G\left(b-\delta_{0} t\right), \quad t \in[0,1] .
$$

This completes the proof of Theorem 2 in the case $n=1$.
Now, let $n \geq 2$. We will use the way from [2] to extend one-dimensional inequalities to convex domains in $\mathbb{R}^{n}, n \geq 2$. More precisely, we will use the following assertion (see [2], Section 6 for a proof):

Let Ω be an open and convex set in \mathbb{R}^{n} with finite inradius $\delta_{0}:=\delta_{0}(\Omega)$, let $\delta=$ $\operatorname{dist}(x, \partial \Omega)$ and let p, q, h and λ be some non-negative constants. If the inequality (19) is valid for any $y \in\left(0, \delta_{0}\right]$ and any $f \in H_{0}^{1}\left((0,2 y), t^{1 / 2-p / 2}\right)$ then

$$
\int_{\Omega} \frac{|\nabla f|^{2}}{\delta^{p-1}} d x \geq h \int_{\Omega} \frac{|f|^{2}}{\delta^{p+1}} d x+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{p+q-1}} d x
$$

for any $f \in H_{0}^{1}\left(\Omega, \delta^{1 / 2-p / 2}\right)$.
Thus, the inequality of Theorem 2 is implied by Lemma 1.
To complete the proof of Theorem 2 one has to prove that the constants are sharp in the case $n \geq 2$, too. Since the constants are invariant under linear transformation of domains it is sufficient to consider the domains

$$
\Omega_{1}=(0,2) \quad \text { and } \quad \Omega_{n}=(0,2) \times \mathbb{R}^{n-1} \quad(n \geq 2)
$$

and to prove the following assertion:
For any $\varepsilon>0$ there exist functions $f_{n, \varepsilon}$ and $g_{n, \varepsilon}$ that belong to $H_{0}^{1}\left(\Omega_{n}, \delta^{1 / 2-p / 2}\right)$ and satisfy the inequalities

$$
A_{n}:=\int_{\Omega_{n}} \frac{\left|\nabla f_{n, \varepsilon}\right|^{2}}{\delta^{p-1}} d x-(h+\varepsilon) \int_{\Omega_{n}} \frac{\left|f_{n, \varepsilon}\right|^{2}}{\delta^{p+1}} d x-\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega_{n}} \frac{\left|f_{n, \varepsilon}\right|^{2}}{\delta^{p+q-1}} d x<0
$$

and

$$
B_{n}:=\int_{\Omega_{n}} \frac{\left|\nabla g_{n, \varepsilon}\right|^{2}}{\delta^{p-1}} d x-h \int_{\Omega_{n}} \frac{\left|g_{n, \varepsilon}\right|^{2}}{\delta^{p+1}} d x-\frac{\lambda^{2}+\varepsilon}{\delta_{0}^{q}} \int_{\Omega_{n}} \frac{\left|g_{n, \varepsilon}\right|^{2}}{\delta^{p+q-1}} d x<0
$$

As in our paper [4] we proceed by mathematical induction on the dimension n. For $n=1$ the assertion follows from Lemmas 1 and 2. Suppose that the inequalities $A_{n}<0$ and $B_{n}<0$ are valid for $n, n \geq 1$. We define functions $f_{n+1, \varepsilon}$ and $g_{n+1, \varepsilon}$ for any $\alpha=\alpha(\varepsilon)>0$ as the products

$$
f_{n+1, \varepsilon}(x)=f_{n, \varepsilon}\left(x^{\prime}\right) \varphi_{\alpha}\left(x_{n+1}\right) \quad \text { and } \quad g_{n+1, \varepsilon}(x)=g_{n, \varepsilon}\left(x^{\prime}\right) \varphi_{\alpha}\left(x_{n+1}\right),
$$

where $x=\left(x^{\prime}, x_{n+1}\right), x^{\prime} \in \Omega_{n}, x_{n+1} \in \mathbb{R}$, and $\varphi_{\alpha}: \mathbb{R} \rightarrow[0,1]$ is the even function, defined in $[0, \infty)$ by equations

$$
\varphi_{\alpha}(t)=1, \quad t \in[0,1 / \alpha] ; \quad \varphi_{\alpha}(t)=0, \quad t \in[1+1 / \alpha,+\infty),
$$

and

$$
\varphi_{\alpha}(t)=\left(1-(t-1 / \alpha)^{2}\right)^{2}, \quad t \in(1 / \alpha, 1+1 / \alpha) .
$$

Using the function $\varphi(t)=\left(1-t^{2}\right)^{2}$ and the equations

$$
\delta=\operatorname{dist}\left(x, \partial \Omega_{n+1}\right) \equiv \operatorname{dist}\left(x^{\prime}, \partial \Omega_{n}\right), \quad \int_{-\infty}^{+\infty} \varphi_{\alpha}^{2}(t) d t=\frac{2}{\alpha}+2 \int_{0}^{1} \varphi^{2}(t) d t
$$

and straightforward computations one gets that

$$
A_{n+1}=\frac{2}{\alpha} A_{n}+A_{n}^{\prime}-A_{n}^{\prime \prime} \quad \text { and } \quad B_{n+1}=\frac{2}{\alpha} B_{n}+B_{n}^{\prime}-B_{n}^{\prime \prime}
$$

where

$$
\begin{gathered}
A_{n}^{\prime}=2 \int_{0}^{1} d t \int_{\Omega_{n}} \frac{\left|\nabla f_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2} \varphi^{2}(t)+f_{n, \varepsilon}^{2}\left(x^{\prime}\right) \varphi^{\prime 2}(t)}{\delta^{p-1}} d x^{\prime}, \\
B_{n}^{\prime}=2 \int_{0}^{1} d t \int_{\Omega_{n}} \frac{\left|\nabla g_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2} \varphi^{2}(t)+g_{n, \varepsilon}^{2}\left(x^{\prime}\right) \varphi^{\prime 2}(t)}{\delta^{p-1}} d x^{\prime} \\
A_{n}^{\prime \prime}=2 \int_{0}^{1} \varphi^{2}(t) d t\left((h+\varepsilon) \int_{\Omega_{n}} \frac{\left|f_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2}}{\delta^{p+1}} d x^{\prime}+\frac{\lambda^{2}}{\delta_{0}^{q}} \int_{\Omega_{n}} \frac{\left|f_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2}}{\delta^{p+q-1}} d x^{\prime}\right)
\end{gathered}
$$

and

$$
B_{n}^{\prime \prime}=2 \int_{0}^{1} \varphi^{2}(t) d t\left(h \int_{\Omega_{n}} \frac{\left|g_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2}}{\delta^{p+1}} d x^{\prime}+\frac{\lambda^{2}+\varepsilon}{\delta_{0}^{q}} \int_{\Omega_{n}} \frac{\left|g_{n, \varepsilon}\left(x^{\prime}\right)\right|^{2}}{\delta^{p+q-1}} d x^{\prime}\right)
$$

The quantities $A_{n}, A_{n}^{\prime}, A_{n}^{\prime \prime}, B_{n}, B_{n}^{\prime}$ and $B_{n}^{\prime \prime}$ are not dependent on α. Since $A_{n}<0$ and $B_{n}<0$, it is clear that $A_{n+1}<0$ and $B_{n+1}<0$ for sufficiently small positive α.

This completes the proof of Theorem 2.

4 Lamb's constant as a function

Let

$$
\Phi(p, z):=p J_{v}(z)+2 z J_{v}^{\prime}(z) .
$$

We consider the Lamb equation (7) with $z \in\left(0, j_{v}\right)$ as the identity

$$
\Phi(p, z)=0 \quad(0<p<\infty)
$$

which implicitly defines the function $z=\lambda_{v}(p), 0<p<\infty$. Using the identity $\Phi(p, z)=0$ and the Bessel differential equation

$$
z^{2} J_{v}^{\prime \prime}(z)+z J_{v}^{\prime}(z)+\left(z^{2}-v^{2}\right) J_{v}(z)=0
$$

one easily derives that

$$
\frac{\partial \Phi}{\partial p} d p+\frac{\partial \Phi}{\partial z} d z=J_{v}(z) d p-\frac{p^{2}-4 v^{2}+4 z^{2}}{2 z} J_{v}(z) d z=0
$$

which implies differential equations (8) and (9).
Case $v=0$. It is obvious from (7) and (9) that z is a positive and monotonic increasing function of the variable $p>0$. Further, the formula (7) implies that $\lambda_{0}(p) J_{0}^{\prime}\left(\lambda_{0}(p)\right) \rightarrow 0$ as $p \rightarrow 0$. As j_{0}^{\prime}, the first positive zero of J_{0}^{\prime}, is bigger than
λ_{0}, we conclude that $\lambda_{0}(p) \rightarrow 0$ as $p \rightarrow 0$. Using the Taylor expansion of J_{0} at the origin and (7) we get

$$
\lambda_{0}(p)=\sqrt{p}\left(1-\frac{1}{16} p+O\left(p^{2}\right)\right) \quad \text { as } \quad p \rightarrow 0 .
$$

For $p \rightarrow \infty$, formula (7) implies that $J_{0}\left(\lambda_{0}(p)\right) \rightarrow 0$ as $p \rightarrow \infty$, therefore $\lambda_{0}(p) \rightarrow$ j_{0} as $p \rightarrow \infty$.

Thus, for any $p \in(0, \infty)$ one has

$$
\begin{equation*}
\lim _{p \rightarrow 0} \lambda_{0}(p)=0<\lambda_{0}(p)<j_{0}=\lim _{p \rightarrow \infty} \lambda_{0}(p) \tag{20}
\end{equation*}
$$

To get an asymptotic expansion of $\lambda_{0}(p)$ near the point at infinity, we may use (9) and get

$$
\frac{1}{2} \frac{d}{d p} \ln z=\frac{1}{p^{2}}-\frac{4 j_{0}^{2}}{p^{4}}\left(1+O\left(\frac{1}{p^{2}}\right)\right) \quad \text { as } \quad p \rightarrow \infty
$$

By integration and exponentiation we conclude that

$$
\lambda_{0}(p)=j_{0}\left(1-\frac{2}{p}+\frac{2}{p^{2}}-\frac{4\left(1-2 j_{0}^{2}\right)}{3 p^{3}}+O\left(\frac{1}{p^{4}}\right)\right) \quad \text { as } \quad p \rightarrow \infty
$$

Case $v>0$. According to the differential equation (8), $d z / d p>0$ whenever $p \geq 2 v$. To prove that the function λ_{v} is monotonic increasing in $(0, \infty)$ we proceed as follows. We get from (7) that

$$
\lim _{p \rightarrow \infty} \lambda_{v}(p)=j_{v}, \quad \text { and } \quad \lim _{p \rightarrow 0} \lambda_{v}(p)=j_{v}^{\prime}
$$

where j_{v}^{\prime} is the first positive zero of J_{v}^{\prime}. To obtain the second lim we have used the Taylor expansion of J_{v} at the origin.

Since $j_{v}>j_{v}^{\prime}>v$ for $v>0$ (see [17], p. 485), we derive from (8) that $d z / d p>0$ for any $p \in(0, \infty)$. Consequently, λ_{ν} is a monotonic increasing function of the variable $p \in(0, \infty)$ and one has the following assertion.

If $v>0$ then for any $p \in[2 v, \infty)$

$$
\begin{equation*}
\lambda_{v}(2 v)=j_{v-1} \leq \lambda_{v}(p)<j_{v}=\lim _{p \rightarrow \infty} \lambda_{v}(p) \tag{21}
\end{equation*}
$$

and for any $p \in(0,2 \nu]$

$$
\begin{equation*}
\lim _{p \rightarrow 0} \lambda_{v}(p)=j_{v}^{\prime}<\lambda_{0}(p) \leq j_{v-1}=\lambda_{v}(2 v) \tag{22}
\end{equation*}
$$

where j_{v}^{\prime} is the first positive zero of the derivative J_{v}^{\prime} of the Bessel function.
It is clear from (8) that

$$
\lim _{p \rightarrow 0} \frac{\lambda_{v}(p)-j_{v}^{\prime}}{p}=\frac{j_{v}^{\prime}}{2\left(\left(j_{v}^{\prime}\right)^{2}-v^{2}\right)}
$$

For $p \rightarrow \infty, v>0$, we may proceed analogously to the case $v=0$ and we can improve Lamb's asymptotic expansion to any desirable extent, for example

$$
\lambda_{v}(p)=j_{v}\left(1-\frac{2}{p}+\frac{2}{p^{2}}-\frac{4\left(2 v^{2}+1-2 j_{v}^{2}\right)}{3 p^{3}}+O\left(\frac{1}{p^{4}}\right)\right) \quad \text { as } \quad p \rightarrow \infty .
$$

Clearly, in addition to estimates (20), (21) and (22) one can derive several new estimates for $\lambda_{v}(p)$ using the differential equations (8) and (9) together with the fact that $\ln z$ is a concave function in both cases $v=0$ and $v>0$ because of the inequality

$$
\frac{d^{2} \ln z}{d p^{2}}=-\frac{4 p+16 z z^{\prime}}{\left(p^{2}-4 v^{2}+4 z^{2}\right)^{2}}<0 .
$$

Finally, we attract reader's attention to some facts on the bounds for the Lamb constants, i.e. on the quantities j_{v} and j_{v}^{\prime} :

$$
j_{0}=2.4048 \ldots \text { and } \sqrt{v(v+2)}<j_{v}^{\prime}<j_{v}<\sqrt{2(v+1)(v+3)}
$$

for any positive v (see G.H. Watson [17], pp. 485-486).

5 A remark

In the proof of the inequality of Theorem 2 we do not use the restriction $4 h=$ $p^{2}-v^{2} q^{2} \geq 0$. Consequently, the inequality holds for any positive v, but $h<0$ in the case $v>p / q$ and this changes the type of the inequality. For instance, letting $p \rightarrow 0^{+}$gives the following inequality for convex domains of finite inradius and all positive numbers q and v : For functions f vanishing at the boundary of the domain

$$
\int_{\Omega} \delta|\nabla f|^{2} d x+\frac{v^{2} q^{2}}{4} \int_{\Omega} \frac{|f|^{2}}{\delta} d x \geq \frac{q^{2} j_{v}^{\prime 2}}{4 \delta_{0}^{q}} \int_{\Omega} \frac{|f|^{2}}{\delta^{1-q}} d x
$$

where j_{v}^{\prime} is the first positive zero of the derivative J_{v}^{\prime} of Bessel's function J_{v}.

References

[1] M. Abramovitz and I. A. Segun, (ed.) Handbook of Mathematical Functions, Dover Publ., New York, 1968.
[2] F. G. Avkhadiev, Hardy Type Inequalities in Higher Dimensions with Explicit Estimate of Constants. Lobachevskii J. Math. 21 (2006), 3-31 (electronic, http://ljm.ksu.ru).
[3] F. G. Avkhadiev, Hardy-type inequalities on planar and spatial open sets. Proceeding of the Steklov Institute of Mathematics 255 (2006), no.1, 2-12 (translated from Trudy Matem. Inst. V.A. Steklova, 2006, v.255, 8-18).
[4] F. G. Avkhadiev and K.-J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM 87 (2007), No. 8-9, 632-642.
[5] C. Bandle, Isoperimetric inequalities and applications. Pitman Adv. Publ. Program, Boston-London-Melbourne, 1980.
[6] H. Brezis and M. Marcus, Hardy's inequalities revisited. Dedicated to Ennio De Giorgi, Ann. Scuola Sup. Pisa Cl. Sci.(4) 25 (1997, 1998), 217-237.
[7] E. B. Davies, The Hardy constant. Quart. J. Math. Oxford (2)46 (1995), 417-431.
[8] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge Univ. Press, Cambridge, 1934.
[9] J. Hersch, Sur la fréquence fondamentale d'une membrane vibrante; évaluation par défaut et principe de maximum. J. Math. Phys. Appl. 11 (1960), 387-412.
[10] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and A. Laptev, A Geometrical Version of Hardy's Inequality. J. Func. Anal. 189 (2002), 539-548.
[11] E. Kamke, Differentialgleichungen.Löungsmethoden und Lösungen. B. G. Teubner, Stuttgart, 1977.
[12] A. Kufner, L. Maligranda, and L. E. Persson, The prehistory of the Hardy Inequality. Amer. Math. Monthly 113 (2006), 715-732.
[13] H. Lamb, Note on the Induction of Electric Currents in a Cylinder placed across the Lines of Magnetic Force. Proc. London Math. Soc. XV (1884), 270-274.
[14] M. Marcus, V. J. Mitzel and Y. Pinchover, On the best constant for Hardy's inequality in \mathbb{R}^{n}. Trans. Amer. Math. Soc. 350 (1998), 3237-3250.
[15] T. Matskewich and P.E. Sobolevskii, The best possible constant in a generalized Hardy's inequality for convex domains in \mathbb{R}^{n}. Nonlinear Anal. 28 (1997), 16011610.
[16] L. E. Payne and I. Stakgold, On the mean value of the fundamental mode in the fixed membrane problem. Applicable Anal. 3 (1973), 295-303.
[17] G. N. Watson, Theory of the Bessel Functions. Second edition, Cambridge Univ. Press, Cambridge, 1962.

Chebotarev Research Institute Kazan Federal University
420008 Kazan, Russia
E-mail: Farit.Avhadiev@ksu.ru
Institut für Analysis und Algebra
TU Braunschweig
38106 Braunschweig, Germany
E-mail: kjwirths@tu-bs.de

