
Topologically Q-algebras, more

Rodia I. Hadjigeorgiou∗

Abstract

Topologically Q-algebras, a very convenient generalization of (topolog-
ical) Q-algebras, have been recently considered by A. Najmi and indepen-
dently by H. Arizmendi et al.. Here we extend certain basic results of A. Najmi
Within the same vein of ideas, we introduce a new class of topological alge-
bras, the “Cauchy topologically Q-algebras” (Cauchy tQ-algebras), that yields
a new characterization of the standard advertibly complete algebras, as de-
fined by S. Warner.

0 Introduction

Q-algebras possess an important place in Topological Algebras Theory, sharing
several significant properties of Banach algebras. Thus, just to mention a few
of them, they have equicontinuous Gel’fand space, every character is contin-
uous, every maximal regular ideal is closed, every element has compact spec-
trum, while they are also advertibly complete. Many researchers have dealt with
Q-algebras. A. Mallios proved in 1986 that a Q-algebra is characterized by a zero
neighbourhood consisting of elements normalized by means of the spectral radius
[11, p. 59, Lemma 4.2], a result known previously by E. A. Michael for locally
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convex (topological) algebras [12, p. 58, Proposition 13.5]. Y. Tsertos discovered
in 1994 that a Q-algebra is characterized by the fact that its spectral radius is bounded
by the gauge function ( : “Minkowski functional”) of a zero neighbourhood [14, p. 550,
Theorem 4.1]. In 1999 H. Arizmendi and V. Valov gave some characterizations of
Q-algebras, intimating a relation of great importance possessed by commutative
locally m-convex advertibly complete ones, let alone by Q-algebras. See also A.
Mallios [11, p. 75, Theorem 7.2 and p. 104, Theorem 6.2 or Corollary 6.4]. More
precisely, the aforesaid condition reads as follows for a topological algebra E,

(s) SpE(x) = x̂(M(E)), x ∈ E.

The same property characterizes the topologically spectral algebras, see R. I. Had-
jigeorgiou [8] and/or [9]. The previous relation implies what we may call (A-V)
condition [2, p. 12, Theorem 1]; that is, one has

(A-V) rE(x) = sup
f∈M(E)

| f (x)|, x ∈ E.

Based on the condition (s), the same authors consider some generalizations of
Q-algebras; namely the notions of QM and QM♯-algebras [2, p. 17, §4] and/or
[3]. In fact, the previous notions are related with the openness of two sorts of
invertible elements, depending on the topological M(E) ≡ M(E) or algebraic
M(E) ≡M♯(E) spectrum of E, respectively. Namely, an element x of a topolog-
ical algebra E satisfying (s) is called M-invertible (resp. M♯(E)-invertible, when
E satisfies (s), for M(E) ≡ M♯(E), instead of M(E)) if 0 /∈ x̂(M)(E) (resp.
0 /∈ x̂(M♯(E))). The present author considered in 1995 the same sort of invertible
elements [8], calling then the topological algebra at issue, inverse closed, as well as
the condition (s), calling the respective algebra topologically spectral. In fact, it was
proved that the previous two types of algebras coincide [8] and/or [9]. Research
around the (A-V) condition providing further characterizations of Q-algebras has
been still continued in [9].

On the other hand, in 2002 H. Arizmendi, A. Carrillo and L. Palacios determined
the class of Qt-algebras by assuming the group of topologically invertible elements to be
open and established relations between Qt-algebras and Q, QM, QM♯-algebras
[4]. Independently of the aforesaid authors, A. Najmi distinguished the above
class of Qt-algebras, calling them tQ-algebras and proving that they possess
most of the important properties of Q-algebras [13], along with the aforemen-
tioned two characterizations given by A. Mallios and Y. Tsertos. Furthermore, he
presented a more general context than of A. Mallios, where condition (s), therefore
condition (A-V) too, as above, defined for topologically quasi-invertible elements, is ful-
filled; namely, in a simplicial t-acceptable Gel’fand-Mazur topological algebra
[13, Proposition 2.21]. It should still be noted here that the set of topologically
quasi-invertible elements had also been considered by Mati Abel [1] in 2001, how-
ever from another point of view. Specifically, the latter author distinguishes by
the coincidence of the set of topologically quasi-invertible elements with that one of quasi-
invertible elements, the class of advertive algebras, which contains Q-algebras and is
contained in the class of advertibly complete algebras (ibid., p. 16, Proposition
2 and Corollary 1). He also gave a characterization of advertive algebras (ibid.,
p. 16, Proposition 1).
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Now, motivated by the paper of A. Najmi [13] and following the point of view
adopted in [9], we isolate the following class of algebras satisfying the condition

(Ns) Spt
E(x) = x̂(M(E)), x ∈ E.

More generally, we also consider those topological algebras obeying the next con-
dition

(Nr) rt
E(x) = sup

f∈M(E)

| f (x)|, x ∈ E.

The above two classes of algebras extend the class of algebras previously intro-
duced by A. Najmi (ibid.), so that we get in each particular case his results.

The question whether a tQ-algebra is advertibly complete, led us to an in-
termediate class of topological algebras between Q and tQ-algebras, namely, the
Cauchy tQ-algebras, by employing the notion of topologically quasi-invertible el-
ements for Cauchy nets; so one looks at the group of Cauchy topologically quasi-
invertible elements. The same notion brought in light a more general class of ad-
vertive algebras, that of Cauchy advertive algebras, giving also a new characterization
of advertibly complete algebras (Theorems 3.4, 3.5).

1 Preliminaries

In all that follows by a topological algebra E we mean a topological C-vector space,
which is also an algebra with separately continuous ring multiplication, having a
non-empty spectrum or Gel’fand space M(E) endowed with the Gel’fand topology.
The respective Gel’fand map of E is given by

G : E −→ C(M(E)) : x 7−→ G(x) ≡ x̂ : M(E) −→ C

: f 7−→ x̂( f ) := f (x).

The image of G, denoted by E∧, is called the Gel’fand transform algebra of E and
is topologized as a locally m-convex algebra by the inclusion

E∧ ⊆ Cc(M(E)),

where the algebra C(M(E)) carries the topology “c” of compact convergence in
M(E) [11, p. 19, Example 3.1]. Given an algebra E, an element x ∈ E is called
quasi-invertible, if there exists y ∈ E such that

x ◦ y = 0 = y ◦ x, where x ◦ y = x + y− xy. (1.1)

The above last relation defines the so-called “circle operation” or else “q-operation”.
Then y is called the quasi-inverse of x and is unique, while the group of all quasi-
invertible elements of E is denoted by E◦. An element x of a topological al-
gebra E is called topologically quasi-invertible (cf. [13] or [5]), if there exists a net
(xδ)δ∈∆ ⊆ E, such that

x ◦ xδ −→ 0←− xδ ◦ x, (1.2)
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and the set of topologically quasi-invertible elements is denoted by (E◦)t. In
the case of a unital topological algebra E, the ◦ operation is replaced by the
ring multiplication and 0 by 1, obtaining thus the topologically invertible elements
denoted by (E

.
)t; namely we have

x · xδ −→ 1←− xδ · x. (1.3)

If the net in relations (1.2) and (1.3) is Cauchy, then we speak about Cauchy topolo-
gically quasi-invertible and Cauchy topologically invertible elements, respectively,
while the corresponding sets are denoted by (E◦)ct and (E

.
)ct, respectively. We

say that a topological algebra E is advertive (resp. invertive) if (E◦)t = E◦ (resp.
(E

.
)t = E

.
) (cf. [1]); if (E◦)ct = E◦ (resp. (E

.
)ct = E

.
), then E is called Cauchy

advertive (resp. Cauchy invertive).
A topological algebra E is a Q-algebra if E◦ is open. E is named a topologically

Q-algebra, in brief tQ-algebra, if (E◦)t is open. Now, based on the preceding, we
are led to the following.

Definition 1.1. A topological algebra E is called a Cauchy topologically Q-algebra,
in brief, a Cauchy tQ-algebra, if (E◦)ct is open.

Therefore, one has
E◦ ⊆ (E◦)ct ⊆ (E◦)t, (1.4)

that is, equivalently,

Q− algebra =⇒ Cauchy tQ− algebra =⇒ tQ− algebra. (1.5)

Moreover, E is an advertibly complete algebra, whenever every advertibly null Cauchy
net (xδ)δ∈∆ in E, in the sense that

xδ ◦ x −→ 0←− x ◦ xδ, f or some x ∈ E, (1.6)

converges in E; its limit is obviously the quasi-inverse of x [11, p. 45, Definition
6.4]. The above more convenient terminology is still due to A. Mallios. The conver-
gence of any net (not necessarily Cauchy) satisfying (1.6) characterizes the algebra E
as an advertive topological algebra, according to Mati Abel [1, p. 16, Proposition 1].
He also proved (ibid., p. 16, Proposition 2 and Corollary 1) that

Q− algebra =⇒ advertive algebra =⇒ advertibly complete algebra. (1.7)

E is called simplicial [1] or normal [12], if any proper closed regular (left, right,
2-sided) ideal is contained in a closed maximal regular (left, right, 2-sided) ideal,
and t-acceptable [13], if any regular closed maximal one-sided ideal is 2-sided. If
E/M ∼= C, for every (2-sided) closed maximal regular ideal M of E, then E is
said to be a Gel’fand-Mazur algebra. We say that E is a quasi-inverse closed algebra
if its spectrum M(E) is a quasi-inverting set, in the sense that

x ∈ E◦ i f 1 6∈ x̂(M(E)) (1.8)

[8, p. 13, Definition 2.2] and/or [9]. The converse statement is always valid, in
fact, quite algebraically [11, p. 74, Lemma 7.4]. If (1.8) holds true for (E◦)t instead
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of E◦, we speak for a topologically quasi-inverse closed algebra [13], and for a Cauchy
topologically quasi-inverse closed algebra if (1.8) is fulfilled for (E◦)ct. On the basis
of (1.4), one actually has that

quasi−inverse closed =⇒ Cauchy topologically quasi−inverse closed (1.9)

=⇒ topologically quasi−inverse closed

Now, given an algebra E and an element x ∈ E, we denote the spectrum,
topological spectrum and Cauchy topological spectrum of x, by

SpE(x) = {λ ∈ C \ {0} : λ
−1x /∈ E◦} ∪ {0}, (1.10)

Spt
E(x) = {λ ∈ C \ {0} : λ

−1x /∈ (E◦)t} ∪ {0}, (1.11)

see [13], and

Spct
E (x) = {λ ∈ C \ {0} : λ

−1x /∈ (E◦)ct} ∪ {0}, (1.12)

respectively. Thus, based on (1.4), one gets

Spt
E(x) ⊆ Spct

E (x) ⊆ SpE(x). (1.13)

Now, the spectral radius, topological spectral radius and Cauchy topological spectral
radius of x is defined by

rE(x) = sup
λ∈SpE(x)

|λ|, (1.14)

respectively ([13])
rt

E(x) = sup
λ∈Spt

E(x)

|λ|, (1.15)

and
rct

E (x) = sup
λ∈Spct

E (x)

|λ|, (1.16)

getting, in view of (1.13), the relation

rt
E(x) ≤ rct

E (x) ≤ rE(x). (1.17)

When every x ∈ E has rt
E(x) < +∞, E is called topologically spectrally bounded,

while if rct
E (x) < +∞, E is said to be Cauchy topologically spectrally bounded. Based

on (1.17), one obtains

spectrally bounded =⇒ Cauchy topologically spectrally bounded (1.18)

=⇒ topologically spectrally bounded.

2 On Najmi’s results

In this Section following the point of view in [9], we isolate algebras with (Ns)
or (Nr) condition, obtaining thus generalizations of relevant results by A. Najmi
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[13]. The latter author extended to tQ-algebras the characterizations given by A.
Mallios and Y. Tsertos for Q-algebras; that is one has:

A topological algebra E is tQ

(2.1)




⇐⇒ (i) (E◦)tis a neighbourhood of zero
(A. Mallios)

⇐⇒ (ii) T(E) := {x ∈ E : rt
E(x) ≤ 1} is a

neighbourhood of zero (A. Mallios)
⇐⇒ (iii) rt

E ≤ gV , V a neighbourhood of zero
(Y. Tsertos)

=⇒ (iv) E is topologically spectrally bounded, viz.
E = TB(E) := {x ∈ E : rt

E(x) < +∞}
(A. Mallios)

Najmi also proved that a tQ-algebra has equicontinuous Gel’fand space and each
element has compact spectrum, properties well-known for a Q-algebra [11]. Con-
cerning the converse of (iv), he considered a simplicial t-acceptable Gel’fand-
Mazur topological algebra having continuous Gel’fand map ([13, Corollary 2.23]).
In fact, the latter algebra satisfies (Ns), hence (Nr) condition ([13, Proposition
2.21]), what is actually required. So one gets the following.

Proposition 2.1. Let E be a topological algebra and consider the following assertions:
1) E is a tQ-algebra.
2) E = TB(E), that is, E is topologically spectrally bounded.

Then, 1)=⇒2), while 2)=⇒1), as well, if moreover E satisfies (Nr) condition and has
continuous Gel’fand map GE.

Proof. 1)=⇒2) due to the compactness of the topological spectrum of every ele-
ment [13, Lemma 2.10]. 2)=⇒1): By 2) and (Nr) condition, rt

E is a semi-norm
of E, and by the continuity of GE, rt

E is continuous at zero. Hence, T(E) is a
neighbourhood of zero, thus (cf. (ii)) E is a tQ-algebra.

Condition (Ns) provides now an extension of [13, Proposition 2.27]. That is,
one has.

Proposition 2.2. In a topological algebra E consider the following assertions:
1) x ∈ (E◦)t, x ∈ E.
2) 1 /∈ x̂(M(E)), x ∈ E.

Then, 1)=⇒2), while 2)=⇒1) if E satisfies (Ns) condition.

Proof. Assuming 1), there exists a net (xδ)δ∈∆ ⊆ E, such that (x ◦ xδ) −→ 0, x ∈
E. If 1 ∈ x̂(M(E)), then for some f ∈ M(E), one has f (x) = 1, hence f (x ◦
xδ) = f (x + xδ − xxδ) = f (x) + f (xδ)− f (x) f (xδ) = 1 −→ 0, a contradiction.
Conversely, considering (Ns), if 1 /∈ x̂(M(E)) = Spt

E(x), x ∈ E, then x ∈ (E◦)t,
that is the assertion.

In the case of a unital topological algebra, by a similar argument, one obtains
the next (cf. [13, Corollary 2.28]).
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Corollary 2.3. In a unital topological algebra E satisfying (Ns) condition, the following
assertions are equivalent:

1) x ∈ (E
.
)t, x ∈ E.

2) 0 /∈ x̂(M(E)), x ∈ E.

On the other hand, A. Najmi based on our previous result [9, p. 52, Theorem
2.5], proved that (cf. [13, Proposition 2.24]):

(2.2)
a topologically quasi-inverse closed algebra is characterized
by (Ns) condition .

Based on the latter, he also gave a characterization of a tQ-algebra ([13, Theo-
rem 2.29 and Corollary 2.33]); this can now be generalized as follows.

Theorem 2.4. For a topological algebra E consider the two following assertions:
1) E is a tQ-algebra.
2) M(E) is equicontinuous.

Then, 1)=⇒2). If , in addition, E has the (Nr) condition, then 2)=⇒1), as well.

Proof. Assuming 1), (E◦)t is open, so it contains a balanced neighbourhood of
zero, say U. If we show that U ⊆ (M(E))◦ , then (M(E))◦ is a neighbourhood
of zero, yielding the equicontinuity of M(E), since M(E) ⊆ (M(E))◦◦ . So, if
x ∈ U, with | f (x)| > 1 for some f ∈ M(E), then f (x) = λ 6= 0 and | 1

λ
| < 1.

Thus, x
λ
∈ U ⊆ (E◦)t with f ( x

λ
) = 1, a contradiction by 1)=⇒2) of Proposition

2.2. Therefore, | f (x)| ≤ 1, for every f ∈M(E) and x ∈ U, that is U ⊆ (M(E))◦ .
On the other hand, the equicontinuity of M(E), along with (Nr) condition,

implies that T(E) = (M(E))◦ is a neighbourhood of zero, hence by (ii) E is a
tQ-algebra.

Scholium 2.5. The previous theorem amply extends parts of the well-known clas-
sical result of S. Warner in [16, p. 7, Theorem 6].

From [13, the statement (3) of Corollary 2.31], one gets a sufficient condition
in order a tQ-algebra to be a Q-algebra. A more general context in which that
condition works is given below. In this regard, it is clear by the very definitions
that:

(2.3) a topological algebra is Q iff it is an advertive tQ-algebra.

Theorem 2.6. Let E be a topological algebra and consider the following assertions:
1) E is a Q-algebra.
2) E is a tQ-algebra.

Then, 1)=⇒2). In particular, if E is, moreover, topologically spectral (cf. (s)), then
2)=⇒1) as well, so that the previous two assertions are equivalent.

Proof. Based on (1.5), one has to prove that 2)=⇒1): By hypothesis and (1.10), one
gets

Spt
E(x) ⊆ SpE(x) = x̂(M(E)) ⊆ Spt

E(x),

for every x ∈ E, hence Spt
E(x) = SpE(x), for any x ∈ E. Thus, E◦ = (E◦)t is

open, that is, E is a Q-algebra.
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Scholium 2.7. In the preceding proof, one remarks that topological spectrality ren-
ders a topological algebra advertive, hence in the case of a tQ-algebra the same makes it a
Q-algebra. So, one obtains the next.

Corollary 2.8. Every topologically spectral algebra is advertive. Therefore, if it is also a
tQ-algebra, then it is, in fact, a Q-algebra.

The fact that a topologically spectral algebra is advertive has been proved
in 1999 by Mati Abel [1, p. 19, Proposition 6], using a different argument. Yet,
a strengthening of Corollary 2.8, in terms of Cauchy tQ-algebras (see below), is
provided by the next Section (see (3.5) in the sequel).

3 Cauchy topologically Q-algebras

The employment of arbitrary nets in the definition of invertible elements led to a
broader class of Q-algebras, the topologically Q-algebras. In particular, the consid-
eration instead of Cauchy nets yields the class of Cauchy topologically Q-algebras,
quite close indeed to Q-algebras, in effect, more close than the tQ ones. Now, as
a byproduct of our previous result concerning the characterization of elements of
a given algebra that are quasi-invertible in its completion ([9, p. 52, Lemma 2.4]),
one has.

Lemma 3.1. For a topological algebra E, whose completion Ẽ is also a topological alge-
bra, one has

(3.1) (E◦)ct = (Ẽ)◦ ∩ E.

The observation that (Ẽ)◦ ∩ E ⊆ (E◦)t becomes equality for topologically quasi-
invertible elements determined by Cauchy nets, led us to consider Cauchy topologi-
cally quasi-invertible elements.

An immediate consequence of (3.1) is that

(E◦)ct is open i f (Ẽ)◦ is open,

so, one obtains the next.

Theorem 3.2. Let E be topological algebra E whose completion Ẽ is a Q-algebra. Then,
E is a Cauchy tQ-algebra.

Corollary 3.3. Every normed algebra is a Cauchy tQ-algebra.

The above result extends an initial theorem of Najmi for tQ-algebras [13, Propo-
sition 2.5].

Remarks 3.4. i) Theorem 3.2 strengthens a remark of A. Mallios that, if the comple-
tion of a topological algebra is Q, then the initial algebra is tQ; see A. Najmi
[13, Remark 2.6].

ii) Replacing Spt
E, rt

E, TqinvE by Spct
E , rct

E , (E◦)ct, respectively, the proofs of
all the results given for tQ-algebras in [13] as, well as, in Section 2 above (see e.g.
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Scholium 2.5), are still valid for Cauchy tQ-algebras, adjusting, whenever needed,
the conditions (Ns) and (Nr) respectively as follows:

(Cs) Spct
E (x) = x̂(M(E)), x ∈ E,

and

(Cr) rct
E (x) = sup

f∈M(E)

| f (x)|, x ∈ E

(cf also [11], [14]). An algebra satisfying the (Cs) condition is called a Cauchy
topologically spectral algebra. In this context, we further remark that, according to
(1.5), any result valid for a tQ-algebra holds also true for a Cauchy tQ-algebra.

iii) As A. Mallios proved [11, p. 146, Lemma 2.2], the coincidence of the
Gel’fand spaces (modulo a (continuous) bijection) between E and its completion

Ẽ transfers the equicontinuity (in effect, even, local equicontinuity ) of any one of
the two spaces to the other. Now, based on [11, p. 75, Proposition 7.1] and Theo-
rems 2.4 and 3.2 above, we remark that a Cauchy tQ-algebra yields an example of
a topological algebra that itself and its completion have equicontinuous Gel’fand spaces,
without the two spaces to coincide, up to a continuous bijection. [The analogous case
of local equicontinuity remains open.]

Now, by the very definitions of advertible completeness and Cauchy topolog-
ically quasi-invertible elements, one remarks that:

(3.2)

advertible completeness guarantees the quasi-inverse of any
Cauchy topologically quasi-inverse element, that is

(3.2.1) (E◦)ct ⊆ E◦.

Obviously, the inverse implication is always valid. Hence, one concludes the
following characterization of advertible completeness through Cauchy advertiveness.

Theorem 3.5. A topological algebra is advertibly complete if, and only if, it is Cauchy
advertive. That is (by definition), whenever one has,

(E◦)ct = E◦. (3.3)

Thus, (1.7) is now supplemented as follows:

Q− algebra =⇒ advertive algebra =⇒ advertibly complete algebra (3.4)

⇐⇒ Cauchy advertive algebra.

Considering Cauchy tQ-algebras along with the relations (1.5) and (1.10), the
statement (2.2) gives, in effect, a condition in order the above three types of
Q-algebras coincide. That is, we have the next.

Theorem 3.6. Let E be a topological algebra and consider the following assertions:
1) E is a Q-algebra.
2) E is a Cauchy tQ-algebra.
3) E is a tQ-algebra.

Then, 1)=⇒2)=⇒3). In particular, if E is, moreover, advertive, then 3)=⇒1), as well;
hence, all the previous three assertions are, in effect, equivalent.
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Scholium 3.7. The equivalence 1)⇐⇒2), in the previous theorem, can be accom-
plished by the weaker condition of Cauchy advertiveness. Another condition guarantee-
ing 1)⇐⇒2), according to Theorem 2.5, is SpE(x) = x̂(M(E)), for every x ∈ E; in
other words, 1)⇐⇒2) in a topologically spectral algebra. The proof is similar to that
one given in Theorem 2.5. In fact, according to Scholium 2.7, one concludes that

(3.5)

a topologically spectral algebra is Cauchy advertive, equivalently,
advertibly complete. Consequently, if the same is still Cauchy tQ,
then it is actually a Q-algebra.

The preceding are summarized in the following diagram

Q−algebra topologically spectral algebra
ւ ց ↓

Cauchy tQ − algebra advertive algebra
↓ ↓

tQ− algebra Cauchy advertive algebra
l

advertibly complete algebra

The next result gives a positive answer to a question posed by Arizmendi et
al. [4, p. 55] concerning the truth of the following statement : In a complex unital
complete locally convex algebra A every maximal ideal is of codimension 1, if and only
if A is a complete Qt-algebra, under some topology. The same result still generalizes
a relevant one given by this author for Q-algebras [9, p. 60, Theorem 3.8]. In
this context, we say that a 2-sided maximal regular ideal M of E has topological
codimension one if E/M ∼= C within a topological algebra isomorphism. If E/M ∼= C,
for every (2-sided) closed maximal regular ideal M of E, then E is said to be a
Gel’fand-Mazur algebra. See [11, p. 308, Definition 9.5]; another variant of the
same notion is due to Mati Abel [1, p. 15].

Theorem 3.8. Let E be a unital topological algebra and consider the following assertions:
1) Every 2-sided maximal ideal M has topological codimension 1; viz. E/M = C,

within a topological algebra isomorphism.
2) Spt

E(x) is bounded, x ∈ E.
3) E is a tQ-algebra under some topology.

Then, one has 1)=⇒2). If E satisfies (Nr) condition, then 2)=⇒3), while if E is Mallios
and Gel’fand-Mazur, then 3)=⇒1).

Proof. 1)=⇒2) follows from [15, p. 293, i)=⇒ii)]: indeed, the proof is indepen-
dent from the definition of spectrum and according to this, assuming that Spt

E(x)
is unbounded for some x ∈ E, one finds a 2-sided maximal ideal of infinite codi-
mension, hence of infinite topological codimension as well. 2)=⇒3): Using the
technique of W. Żelazko in [15, p. 293, Theorem], let τ be the original topology
of E and τrt

E
the topology that the spectral radius rt

E defines on E, since it is a

submultiplicative semi-norm under the (Nr) condition. Setting

τ
∗ = max(τ, τrt

E
),
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then, E is endowed with a topology stronger than τ, relative to which rt
E is con-

tinuous. Thus, (E, τ
∗) is a tQ-algebra, according to the following characterization

due to A. Beddaa [7]

E is a tQ-algebra iff rt
E is upper semi-continuous (3.6)

(my thanks here are due to A. Beddaa for communicating to me this result; see also
[6, p. 13. Corollaire IV.4]). Now, 3)=⇒1) is immediate by the very hypothesis.

Based on the previous theorem, we get at the following result.

Corollary 3.9. Let E be a unital Mallios Gel’fand-Mazur topological algebra, satisfying
the (Nr) condition. Then, all the assertions of Theorem 3.8 are equivalent.

Remark 3.10. The previous Theorem 3.8 has an analogous version for Cauchy
tQ-algebras. In this context, we employ the analogous version of Beddaa’s result
in (3.6) for Cauchy tQ-algebras.
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automatique de morphismes, Thèse de Doctorat, Univ. de Rabat, Maroc, 1997.
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