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Abstract

We present a topological classification of some trichotomic evolution fam-
ilies, in the sense of Sacker-Sell ([10]), Elaydi-Hajek ([3]), and the one intro-
duced in ([7]). We hope our work will contribute to the general theory of
exponential dichotomies and trichotomies.

Introduction

The topological classification of dichotomies is of a significant importance in the
theory of differential equations and dynamical systems (see for example the geo-
metric theory in [12]), as it allows the study of just simple equations, also called
standard, instead of general, complicated ones. This is due to the fact that topo-
logical equivalence, also called conjugacy, as well as kinematic similarity, pre-
serves the inner structures of the solutions of differential equations. The concept
of kinematic similarity proved itself to be too much strong for an accurate study
of ODE, as it requires the transformations to be linear. As a consequence, similar
differential equations might not be kinematically similar.

In [8], Palmer showed that a nonautonomous linear differential system with
bounded growth and decay, is exponentially dichotomic if and only if it is topo-
logically equivalent to a standard autonomous system with evolution operator

U(t, s) = e−(t−s)P + et−sQ. Here P and Q stand for the dichotomic projections.
This result, valid in R

n, was later generalized on Hilbert spaces in [11], and
on Banach spaces in [5].
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In the present paper we extend these results on Banach spaces, in the case
of some trichotomic evolution families, using the technique from [5]. As one
can easily observe, in the paper [18], the construction of conjugacies generalizes
somehow the one detailed in [5].

Another important characterization of exponential dichotomies is that they
are the only structures of ODE which are stable, via topological equivalence, to small lin-
ear perturbations, i.e. they are structurally stable (see [9]). Using the constructions
in [18] or in the book [16], in [6] it is proved that all the exponentially dichotomic
evolution families, even without bounded growth and decay, are structurally sta-
ble. Notably, a converse of this result has not been proved yet in the case of
Banach spaces.

In Introduction we present the basic notions, notations and constructions used
throughout our work.

In the first section we give a topological classification for trichotomic evolu-
tion families in the sense of Sacker-Sell ([10]).

In the second section we briefly present the new concept of trichotomy intro-
duced in [7], dual to the one in the sense of Elaydi-Hajek (see [3] and [4]), and in
the last section we give a topological classification for these types of trichotomic
evolution families.

Like in [7], just to avoid complicated calculations, we restrict our short survey
to the study of reversible evolution families U = {U(t, s)}t,s∈R

on a Banach space
E. The reversibility hypothesis means that the operators U(t, s) are defined for
all t, s ∈ R, and therefore they are all invertible. Let L(E) be the space of the
bounded linear operators acting on E

Definition 1. A family U = {U(t, s)}t,s∈R
in the space L(E), is called a reversible

evolution family if it satisfies the following conditions:
(i) U(t, τ)U(τ, s) = U(t, s), for all t, τ, s ∈ R;
(ii) U(t, t) = I, for all t ∈ R;
(iii) The map R2 ∋ (t, s) 7→ U(t, s) ∈ L(E) is continuous.

Definition 2. The evolution family U = {U(t, s)}t,s∈R
is called trichotomic if there

exist two families of bounded projections on E, P(t) and Q(t), with P(t)Q(t) =
Q(t)P(t) = 0, P(t) + Q(t) 6= 0, and constants N, ν > 0 such that

(i) P(t)U(t, s) = U(t, s)P(s) = UP(t, s), for t, s ∈ R;
(ii) Q(t)U(t, s) = U(t, s)Q(s) = UQ(t, s), for t, s ∈ R;

(iii) ‖UP(t, s)‖ ≤ Ne−ν(t−s), for t ≥ s;

(iv) ‖UQ(t, s)‖ ≤ Ne−ν(s−t), for s ≥ t.

If P(t) + Q(t) = I (identity on E), then we have exponential dichotomy. If
P(t) + Q(t) 6= I, then particular types of trichotomies might emerge, depending
on the behavior of the evolution family U with respect to the projections R(t) =
I − P(t) − Q(t). Notice that the three projection families are uniformly bounded
with respect to t ∈ R:

sup
t∈R

‖P(t)‖, sup
t∈R

‖Q(t)‖, sup
t∈R

‖R(t)‖ < ∞.

The reader will easily observe that if we add the conditions of bounded growth
and decay along the trajectories through R(t)E, i.e. if we assume that for some
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real constants α and N ≥ 1, ‖UR(t, s)‖ ≤ Neα(s−t), for any t, s ∈ R (UR(t, s) =
R(t)U(t, s) = U(t, s)R(s)), then we step on the uniform version of the trichotomies
in [15].

Definition 3. The evolution families U = {U(t, s)}t,s∈R
and V = {V(t, s)}t,s∈R

are
called topologically equivalent iff there exist a continuous function h : R × E →
E, with the following properties:

(i) For each t ∈ R, the function ht(x) = h(t, x) is a homeomorphism;

(ii) htU(t, s) = V(t, s)hs , for each t, s ∈ R;

(iii) There exist two increasing functions L, L′ : R+ → R+, with L(0) = L′(0) =
0, continuous at 0, such that

‖ht(x)‖ ≤ L(‖x‖)

‖h−1
t (x)‖ ≤ L′(‖x‖)

for each t ∈ R and each x ∈ E (see [11]).

In [8] and [9] Palmer introduced two weaker forms of topological equivalence
by using instead of (iii) above either

(iii)′ limx→0 ‖ht(x)‖ = limx→0 ‖h−1
t (x)‖ = 0, uniformly with respect to t, or

(iii)′′ lim‖x‖→∞ ‖ht(x)‖ = lim‖x‖→∞ ‖h−1
t (x)‖ = +∞, uniformly with respect to

t.

Let us remark that in the particular case of the differentiable evolution fam-
ilies, relation (ii) above shows in fact that if x(t) is a solution of the differential
equation dx

dt = A(t)x, with evolution operator U(t, s), then y(t) = ht(x(t)) is a so-

lution of the differential equation
dy
dt = B(t)y, with evolution operator V(t, s). Re-

lations as (iii), (iii)’ or (iii)” above imply that the asymptotic properties are trans-
mitted from the first equation (or, more general, evolution family) to the second
one, therefore topologically equivalent equations are similar. Notably, the topological
equivalence relation is an equivalence relation in the evolution families class.

Definition 4. We say that the evolution family U = {U(t, s)}t,s∈R
has bounded

growth and decay iff there are constants K, M > 0 such that:

‖U(t, s)‖ ≤ KeM|t−s|, (1)

for each t, s ∈ R.

Suppose that the evolution family U = {U(t, s)}t,s∈R
is trichotomic. Let us

define the following functionals on E, that are norms on the corresponding sub-
spaces P(t)E and Q(t)E:

‖P(t)x‖t =
∫

∞

t
‖UP(s, t)x‖ds, (2)

‖Q(t)x‖t =
∫ t

−∞

‖UQ(s, t)x‖ds. (3)
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Notice that if U has bounded growth and decay, then the above norms are
equivalent to the initial one, on P(t)E and Q(t)E, respectively (see [5]). For each
t ∈ R we consider the functions:

hP
t : P(0)E → P(t)E and hQ

t : Q(0)E → Q(t)E, by:

hP
t (x1) =

{
U(t,o)x1

‖U(t+ln ‖x1‖,0)x1‖t+ln ‖x1‖
, if x1 ∈ P(0)E \ {0};

0, if x1 = 0,
(4)

and

hQ
t (x2) =

{
U(t,0)x2

‖U(t−ln ‖x2‖,0)x2‖t−ln ‖x2‖
, if x2 ∈ Q(0)E \ {0};

0, if x2 = 0.
(5)

Using similar arguments as in the proof of Theorem 1 in [5], one can easily
get:

Lemma 5. Suppose that the (reversible) evolution family U = {U(t, s)}t,s∈R
is tri-

chotomic and has bounded growth and decay (1). Then the following relations hold true:
(i) For each t ∈ R, the above maps are homeomorphisms;
(ii) For each t ∈ R and each x ∈ E we have

hP
t (e

−tP(0)x) = U(t, o)hP
0 (P(0)x) (6)

hQ
t (e

tQ(0)x) = U(t, 0)hQ
0 (Q(0)x); (7)

(iii) There exist 4 increasing functions Li, L′
i : R+ → R+, i = 1, 2, continuous at 0,

with Li(0) = L′
i(0) = 0, such that

‖hP
t (P(0)x)‖ ≤ L1(‖x‖), ‖(hP

t )
−1(P(t)x)‖ ≤ L′

1(‖x‖)

and

‖hQ
t (Q(0)x)‖ ≤ L2(‖x‖), ‖(hQ

t )
−1(Q(t)x)‖ ≤ L′

2(‖x‖), (8)

for each t ∈ R and each x ∈ E.

1 Sacker-Sell trichotomy

Definition 6. The evolution family U = {U(t, s)}t,s∈R
is called Sacker-Sell tri-

chotomic (see [10]), if it satisfies the following inequality, in addition to relations
(i)− (iv) from Definition (2):

‖UR(t, s)‖ ≤ N, (9)

for each t, s ∈ R.
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Notice that this type of trichotomy is a particular uniform version of exponen-
tial trichotomy in the sense of [15]. Inspired by the constructions in [8], and using
excessive computations in our opinion, paper [13] presents a topological classifi-
cation for this type of trichotomy, in the particular case of the differentiable evo-
lution families, and in the finite dimensional space R

n. Our next theorem shows
that the main result in paper [13] holds true for any evolution family, and in any
Banach space.

Theorem 7. If the evolution family U = {U(t, s)}t,s∈R
is Sacker-Sell trichotomic and

has bounded growth and decay, then it is topologically equivalent (using (iii) in Definition
3) to the evolution family generated by the standard autonomous differential equation:

dz

dt
= (Q(0)− P(0))z.

Proof. For each t ∈ R we consider the function:

hR
t : R(0)E → R(t)E, hR

t (x3) = U(t, 0)x3,

for each x3 ∈ R(0)E. Obviously, it is invertible and

(hR
t )

−1 : R(t)E → R(0)E, (hR
t )

−1(R(t)x) = R(0)U(0, t)x,

for each t ∈ R and each x ∈ E. According to relations (11) we have:

‖hR
t (R(0)x)‖ ≤ N‖x‖ = L3(‖x‖),

‖(hR
t )

−1(R(t)x)‖ ≤ N‖x‖ = L′
3(‖x‖).

Set ht : E → E, ht(x) = hP
t (P(0)x)⊕ hQ

t (Q(0)x) ⊕ hR
t (R(0)x) (direct sums). From

relations (9) and (10), one can easily get that ht generates a topological equiva-
lence between the evolution family U = {U(t, s)}t,s∈R

and the evolution family
V = {V(t, s)}t,s∈R

, where

V(t, s) = e−(t−s)P(0) + et−sQ(0) + R(0).

Corollary 8. The evolution family U = {U(t, s)}t,s∈R
satisfies the relation

‖U(t, s)‖ ≤ N, for each t, s ∈ R

(i.e. is bistable, according to [2, p. 113]), if and only if it is topologically equivalent to the
evolution family generated by the standard differential equation

dz

dt
= 0.

Proof. The necessity follows directly from the above proof. For the sufficiency,

let V(t, s) be the evolution operator of the equation dz
dt = 0. Then V(t, s) = I

(identity). Since htU(t, s) = V(t, s)hs = hs, then we get ‖U(t, s)x‖ =
∥∥∥h−1

t hsx
∥∥∥ ≤

L′ (‖hsx‖) ≤ L′ (L (‖x‖)). If ‖x‖ ≤ 1, then it follows ‖U(t, s)‖ ≤ L′ (L (1)) =
N.
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2 Exponential trichotomy

Definition 9. (see [7]) (i) The evolution family U = {U(t, s)}t,s∈R
is called α-

exponentially trichotomic (in the sense of Elaydi-Hajek, see [3]) if there exist pro-
jections P+(t) and P−(t), defined on all R, such that U is exponentially dichotomic
on R+ with projection P+(t), on R− with projection P−(t), and the following con-
ditions are fulfilled:

P+(t)P−(t) = P−(t)P+(t) = P−(t), (10)

sup
t∈R

‖P+(t)− P−(t)‖ < ∞. (11)

(ii) The evolution family U = {U(t, s)}t,s∈R
is called β-exponentially trichotomic

(see [7]) if it satisfies (i) above, except the relation (10) which is replaced by

P+(t)P−(t) = P−(t)P+(t) = P+(t). (12)

Notice that if U is reversible, then it suffices to consider instead of relations
(10) and (12), the weaker conditions P+(0)P−(0) = P−(0)P+(0) = P−(0) and
P+(0)P−(0) = P−(0)P+(0) = P+(0), respectively. Notably, in this particular
situation we do not even need to assume the existence of P+(t) and P−(t) on all
R. This is a consequence the fact that P+(t) = U(t, 0)P+(0)U(0, t), for any real
t, etc. For the sake of generality, we prefer relations (10) and (12).The notion
of α-exponential trichotomy was introduced in [3], for differentiable evolution

families generated by the differential equations dx
dt = A(t)x, in finite dimensional

space, and under the restrictive hypothesis

sup
t∈R

‖A(t)‖ < ∞.

Observe that we added to the definition of α-exponential trichotomy in [3],
the relation (11), which is necessary for the next considerations.

The following Lemma extends for evolution families, on Banach spaces, Lemma
1.2 from [3](see also [7]):

Lemma 10. The statements below are pairwise equivalent:

(i) The evolution family U = {U(t, s)}t,s∈R
is α-exponentially trichotomic;

(ii) There exist two bounded projections P(t) and Q(t), with P(t)Q(t) = Q(t)P(t),
P(t) + Q(t)− P(t)Q(t) = I and constants N ≥ 1, ν > 0 such that

‖UP(t, s)‖ ≤ Ne−ν(t−s), for t ≥ s ≥ 0;

‖UI−P(t, s)‖ ≤ Ne−ν(s−t), for t ≤ s ≥ 0;

‖UQ(t, s)‖ ≤ Ne−ν(s−t), for t ≤ s ≤ 0;

‖UI−Q(t, s)‖ ≤ Ne−ν(t−s), for 0 ≥ s ≤ t;

sup
t≤0

‖P(t)‖ < ∞ and sup
t≥0

‖Q(t)‖ < ∞;
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(iii) There exist three bounded projections, Pi(t), i = 1, 2, 3, with P1(t) + P2(t) +
P3(t) = I and Pi(t)Pj(t) = 0 for i 6= j, such that

‖UP1
(t, s)‖ ≤ Ne−ν(t−s), for t ≥ s;

‖UP2
(t, s)‖ ≤ Ne−ν(s−t), for s ≥ t;

‖UP3
(t, s)‖ ≤ Ne−ν(t−s), for 0 ≤ s ≤ t;

≤ Ne−ν(s−t), for t ≤ s ≤ 0;

We give a similar characterization for β-exponential trichotomy (see [7] for
more details):

Lemma 11. The following statements are pairwise equivalent:

(i) The evolution family U = {U(t, s)}t,s∈R
is β-exponentially trichotomic;

(ii) All the conditions in (ii) from the previous Lemma hold true, except that
P(t)Q(t) = Q(t)P(t) = 0, instead of P(t)Q(t) = Q(t)P(t) and P(t) + Q(t)−
P(t)Q(t) = I;

(iii) All conditions in (iii) from the previous Lemma hold true, except the last two in-
equalities that become

‖UP3
(t, s)‖ ≤ Ne−ν(s−t), for s ≥ t ≥ 0;

≤ Ne−ν(t−s), for 0 ≥ t ≥ s.

Both Lemmas can be easily proved by using similar arguments as in the proof
of Lemma 1.2 in [3]. Notice that we have a clear connection between exponential
dichotomy on R+, R− , and the existence of three projections, i.e. trichotomy.

3 Exponential trichotomy and topological equivalence

In [5] it is proved that any exponentially dichotomic equation, with structural
projections P, Q, and with bounded growth and decay, is topologically equivalent
to the standard equation with the evolution operator

V(t, s) = e−(t−s)P + et−sQ.

In this section we show that all the β-exponentially trichotomic evolution fam-
ilies are topologically equivalent to a standard equation with evolution operator

U(t, s) = e−(t−s)P(0) + et−sQ(0) + e|t|−|s|R(0).

This property still holds for α-exponential trichotomy, and for the equations
with evolution operator

W(t, s) = e−(t−s)P(0) + et−sQ(0) + e|s|−|t|R(0).
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In this section we restrict our study to evolutions families U = {U(t, s)}t,s∈R

with bounded growth and decay, that satisfy βexponential trichotomy. Let P1(t),
P2(t), and P3(t) be the structural projections.

If we set α : R → R,

α(t) =





−2tδ + δ2 for t > δ;
−t2 for − δ ≤ t ≤ δ;
2tδ + δ2 for t < −δ.

then α is continuously differentiable, even, and Lipschitz:

|α(t)− α(s)| ≤ 2δ|t − s|.

Put δ = M+ν
2 and suppose that

U(t, 0)R(0) = U(−t, 0)R(0), for each t ∈ R. (13)

This last supposition is crucial for our considerations.
Using U = {U(t, s)}t,s∈R

, we construct the evolution families U+ =

{U+(t, s)}t,s∈R
and U− = {U−(t, s)}t,s∈R

, defined as follows:

U+(t, 0) =

{
U(t, 0), if t ≥ 0;

U(t, 0)P(0) + U(t, 0)Q(0) + eα(t)U(t, 0)R(0), if t < 0.

Put U+(t, s) = U+(t, 0)(U+(s, 0))−1, for each t, s ∈ R, and

U−(t, 0) =

{
U(t, 0)P(0) + U(t, 0)Q(0) + eα(t)U(t, 0)R(0), if t ≥ 0;
U(t, 0), if t < 0.

Set U−(t, s) = U−(t, 0)(U−(s, 0))−1 for each t, s ∈ R.

Lemma 12. (i) The evolution families U+ and U− above are exponentially dichotomic on
R, with structural projections P(t), Q(t) + R(t), and P(t) + R(t), Q(t), respectively;

(ii) They both have bounded growth and decay;
(iii) U−(t, 0)R(0) = U+(−t, 0)R(0), for each t ∈ R.

Proof. (i) For s ≤ t ≤ −δ we have:

‖U+
R (s, t)‖ ≤ eα(s)−α(t)NKeM(t−s)

= NKe−(2δ−M)(t−s)

= Ñe−ν(t−s),

and for t ≥ s ≥ δ:

‖U−
R (t, s)‖ ≤ eα(t)−α(s)NKeM(t−s)

= NKe−(2δ−M)(t−s)

= Ñe−ν(t−s).
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The βtrichotomy of the family U , together with the definition of operators U+(t, s)
and U−(t, s) lead us to the conclusion in (i).

(ii) For t, s ≤ 0 we have:

‖U+(t, s)‖ ≤ ‖U+
P (t, s)‖+ ‖U+

Q (t, s)‖++‖U+
R (t, s)‖

≤ NKeM|t−s| + NKeM|t−s| + NKe(M+2δ)|t−s|

≤ 3NKe(M+2δ)|t−s|

= K̃eM̃|t−s|.

(ii) comes from the bounded growth and decay hypothesis for the family U , and
(iii) follows directly from relation (13).

Using the operators U+(t, s) and U−(t, s), we define the following functionals:

‖x‖+t =
∫

∞

t
‖U+

P (s, t)x‖ds +
∫ t

−∞

‖U+
Q (s, t)x‖ds +

∫ t

−∞

‖U+
R (s, t)x‖ds,

and

‖x‖−t =
∫

∞

t
‖U−

P (s, t)x‖ds +
∫ t

−∞

‖U−
Q (s, t)x‖ds +

∫
∞

t
‖U−

R (s, t)x‖ds.

Let us observe that:

‖P+(t)x‖+t = ‖P−(t)x‖−t = ‖P(t)x‖t ,

and
‖Q+(t)x‖+t = ‖Q−(t)x‖−t = ‖Q(t)x‖

(see relations (5)).
With the homeomorphisms

hR,+
t , hR,−

t : R(0)E → R(t)E,

hR,+
t (R(0)x) =

{
U+(t,0)R(0)x

‖U+(t−ln ‖R(0)x‖,0)R(0)x‖+t−ln ‖R(0)x‖

for R(0)x 6= 0;

0 for R(0)x = 0,

and

hR,−
t (R(0)x) =

{
U−(t,0)R(0)x

‖U−(t+ln ‖R(0)x‖,0)R(0)x‖−t+ln ‖R(0)x‖

for R(0)x 6= 0;

0 for R(0)x = 0,

we construct the homeomorphisms h+t , h−t : E → E,by

h+t (x) = hP
t (P(0)x) + hQ

t (Q(0)x) + hR,+
t (R(0)x),

h−t (x) = hP
t (P(0)x) + hQ

t (Q(0)x) + hR,−
t (R(0)x).

(14)

(see (6) and (8)).
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Similar arguments as in Theorem 1 in [5] prove that the homeomorphisms h+t
and h−t yield a topological equivalence between the evolution family U+ and the
evolution operator generated by the differential equation

dy

dt
= (Q(0) + R(0)− P(0))y,

respectively, between U− and the evolution operator generated by

dz

dt
= (Q(0)− P(0)− R(0))z.

The main result of this section is exposed in:

Theorem 13. Suppose that the evolution family U is exponentially trichotomic, has
bounded growth and decay, and verify in addition relation (13).

(i) If U is α-exponentially trichotomic, then it is topologically equivalent to the follow-
ing standard evolution family V1:

V1(t, s) = e−(t−s)P(0) + et−sQ(0) + e|s|−|t|R(0).

(ii) If U is β-exponentially trichotomic, then it is topologically equivalent to the stan-
dard evolution family V2:

V2(t, s) = e−(t−s)P(0) + et−sQ(0) + e|t||−|s|R(0).

Proof. (ii) It suffices to prove that h+0 = h−0 ( see the relations (14)). Let us notice
that

hR,+
0 (R(0)x) =

R(0)x

‖U+(− ln ‖R(0)x‖, 0)R(0)x‖+
− ln ‖R(0)x‖

and

hR,−
0 (R(0)x) =

R(0)x

‖U−(ln ‖R(0)x‖, 0)R(0)x‖−
ln ‖R(0)x‖

.

Since the denominators in the right sides are

‖U+(− ln ‖R(0)x‖, 0)R(0)x‖+
− ln ‖R(0)x‖

=
∫ − ln ‖R(0)x‖

−∞

‖U+(s, 0)R(0)x‖ds

and

‖U−(ln ‖R(0)x‖, 0)R(0)x‖−
ln ‖R(0)x‖

=
∫

∞

ln ‖R(0)x‖
‖U−(s, 0)R(0)x‖ds,

since the maps

ϕ(t) =
∫ −t

−∞

‖U+(s, 0)R(0)x‖ds

and

ψ(t) =
∫

∞

t
‖U−(s, 0)R(0)x‖ds
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are equal (see relation (iii) in Lemma 12), then hR,+
0 = hR,−

0 , and finally: h+0 = h−0 .
If we set

ht(x) =

{
h+t (x), for t ≥ 0;
h−t (x), for t < 0,

then ht gives the topological equivalence required in (ii). For (i) the arguments
are similar.

Definition 14. We say that the evolution families U = {U(t, s)}t,s∈R
and V =

{V(t, s)}t,s∈R
are kinematically similar if there exists an invertible operator func-

tion Φ : J → L(E), Φ and Φ
−1 being uniformly bounded and continuously dif-

ferentiable, such that

Φ(t)V(t, s) = U(t, s)Φ(s), for each t, s ∈ R.

Obviously this concept is much stronger than topological equivalence, since
it requires the transformations Φ(t) to be linear.

We recall the definition of the Bohl exponents of the evolution family U :

Definition 15.

KB = sup
t>s

ln ‖U(t, s)‖

t − s
,

and

K′
B = sup

s>t

ln ‖U(t, s)‖

s − t
,

are called the upper, respectively the lower Bohl exponents of U .

Notice that the finiteness of the Bohl exponents is equivalent to bounded
growth, respectively bounded decay.

Theorem 2.1 in [2, p.159] states that kinematically similar equations have the
same Bohl exponents. Notably, topological equivalence does not preserve these
exponents, it only preserves their finiteness, as revealed in the following theorem.

Theorem 16. If the evolution families U = {U(t, s)}t,s∈R
and V = {V(t, s)}t,s∈R

are
topologically equivalent, then either they both have finite Bohl exponents, or they both
have infinite Bohl exponents.

Proof. (i) Suppose that the topological equivalence is given by the weaker form
(iii)′ in Definition 3, and the upper Bohl exponent of the family V is finite. Ac-
cording to Theorem 4.2 in [2, p.119], we have:

sup
0≤t−s≤1

‖V(t, s)‖ = K < ∞.

For each ǫ > 0, there exist δ1, δ2, such that for each t ∈ R

‖ht(x)‖ < ǫ, for ‖x‖ < δ1,

and
‖h−1

t (x)‖ < ǫ, for ‖x‖ < δ2.
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Choose δ > 0 such that

‖x‖ ≤ δ ⇒ ‖hs(x)‖ <
δ2

K
, for each s ∈ R.

It follows that

‖V(t, s)x‖ < K
δ2

K
= δ2,

and then
‖h−1

t V(t, s)hs(x)‖ < ǫ, for all ‖x‖ ≤ δ.

Since htU(t, s) = V(t, s)hs, then we have

‖U(t, s)x‖ < ǫ, for 0 ≤ t − s ≤ 1 and ‖x‖ ≤ δ,

and finally:

sup
0≤t−s≤1

‖U(t, s)‖ ≤
ǫ

δ
< ∞,

which proves that the upper Bohl exponent of the family U is finite.
(ii) Suppose that the topological equivalence relation is given by the weaker

form (iii)′′ in Definition 3, and the upper Bohl exponent of the family V is infinite.
As

sup
0≤t−s≤1

‖V(t), s)‖ = +∞,

then we obtain the sequences tn, sn ∈ R, with 0 ≤ tn − sn ≤ 1, xn ∈ E, ‖xn‖ = 1,
such that

lim
n→∞

‖V(tn, sn)xn‖ = +∞.

If we set yn = h−1
sn

(xn), then (yn) is bounded:

‖yn‖ ≤ K, for some constant K > 0.

We also have that:

‖U(tn, sn)
yn

K
‖ =

1

K
‖h−1

tn
V(tn, sn)xn‖ → ∞,

therefore
sup

0≤t−s≤1

‖U(t, s)‖ = +∞.

This theorem shows the necessity of assuming the hypothesis of bounded
growth and decay in Theorem 1 in [5], or in Theorem 13 in the present paper.
To illustrate the necessity of these conditions, let us consider the exponentially
dichotomic evolution operator U(t, s) = U(t)U−1(s), where

U(t) =

{
et2

I , for t ≥ 0

e−t2
I , for t < 0

.

It follows that U cannot be topologically equivalent to a standard one as in The-
orem 1 in [5], since it has not bounded growth and decay. Furthermore, if we
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set V(t, s) = es2−t2
I and W(t) = et2−s2

I , we notice that V and W are α, respec-
tively β-exponentially trichotomic, but they are not topologically equivalent to

the standard evolution operators V1(t, s) = e|s|−|t| I, respectively W1(t) = e|t|−|s| I.
This occurs because they do not have bounded growth and decay (or finite Bohl
exponents). To illustrate the necessity of conditions (13), let us consider U(t, s) =

U(t)U−1(s), where U(t) =

{
eat I for t ≥ 0;

e−bt I for t < 0
with a, b > 0. Obviously, U is

β-exponentially trichotomic. For a 6= b, U is not topologically equivalent to V , for

which V(t, s) = e|t|−|s| I, since

sup
t∈R

‖U(t,−t)‖ = +∞, and V(t,−t) = I.

We present a generalization of Theorem 2 in [5] for exponentially trichotomic
evolution families:

Theorem 17. Suppose that the evolution families U and V are exponentially trichotomic
(either α or β), they both have bounded growth and decay, and satisfy in addition

U(t, 0)R(0) = U(−t, 0)R(0), V(t, 0)R1(0) = V(−t, 0)R1(0), for each t ∈ R.

(P(t), Q(t), R(t), respectively P1(t), Q1(t), R1(t) are the trichotomic structural projec-
tions).

(i) If the triplets above are topologically similar (i.e. subspaces P(0)E and P1(0)E,
respectively Q(0)E and Q1(0)E, respectively R(0)E and R1(0)E are homeomor-
phic), then U and V are topologically equivalent.

(ii) If E is finite dimensional and U and V are topologically equivalent, then the triplets
above are topologically similar.

Being an immediate consequence of Theorem 2 in [5], we omit it’s proof..
Since the condition (13) seems to be too much restrictive, we need to identify

larger classes of trichotomic families for which Theorem 13 is applicable, i.e. to
extend the class of evolution families that are able to be classified.

Lemma 18. Suppose that the evolution family U is exponentially trichotomic (either α
or β), has bounded growth and decay, and satisfies in addition:

sup
t∈J

‖R(t) − U(−t, t)‖ ≤ δ < 1,

where J = (−∞, 0] or J = [0, ∞).
(i) Then U is kinematically similar (therefore topologically equivalent) to an evolution

family V verifying relation (13).

(ii) If U is generated by a differential equation dx
dt = A(t)x and A(0)R = 0, then

the statement in (i) remains valid, moreover V is generated by some differential equation
dy
dt = B(t)y.
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Proof. (ii) Suppose that J = (−∞, 0]. Let us define the operator V(t) as follows:

V(t) =

{
U(t), for t ≥ 0;
U(t)P + U(t)Q + U(−t)R, for t < 0.

Then for any t ≥ 0:
dV

dt
= A(t)V.

If t < 0 then

dV

dt
= A(t)U(t)P + A(t)U(t)Q − A(−t)U(−t)R = B̃(t)V.

We have that

B̃(t)Φ̃(t) = Ã(t), where Φ̃(t) = P(t) + Q(t) + U(−t)RU−1(t),

and
Ã(t) = A(t)P(t) + A(t)Q(t) − A(−t)U(−t)RU−1(t).

Since the condition (ii) implies

‖Φ̃(t)− I‖ ≤ δ < 1, for each t ∈ J,

then we have that Φ̃(t) is invertible. This proves the existence of the operator

function B̃(t). If we put

B(t) =

{
A(t) , for t ≥ 0;

Ã(t)Φ̃−1(t) , for t < 0.

then dV
dt = B(t)V. As A(0)R = 0, then B(t) is continuous at 0. If we set

Φ̃(t) = I + L(t),

where
L(t) = U(−t)RU−1(t)− R(t),

then
sup
t<0

‖L(t)‖ ≤ δ < 1.

According to Lemma 4.2 from [12, p.60], the operator function Φ̃
−1(t) is uni-

formly bounded

sup
t<0

‖Φ̃
−1(t)‖ ≤

1

1 − δ
.

If we put

Φ(t) =

{
I , for t ≥ 0;

Φ̃(t) , for t < 0,

then it follows that Φ(t) = V(t)U−1(t), and therefore Φ(t) gives the required
kinematic similarity.
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If J = [0, ∞), then we set

V(t) =

{
U(t)P + U(t)Q + U(−t)R , for t ≥ 0;
U(t) , for t < 0,

and the arguments are similar.
(i) If U is not differentiable and J = (−∞, 0], then it suffices to define V simi-

larly: V(t, s) = V(t, 0)V−1(s, 0), where

V(t, 0) =

{
U(t, 0) for t ≥ 0;
U(t, 0)P(0) + U(t, 0)Q(0) + U(−t, 0)R(0) for t < 0.

Then Φ̃(t) = P(t) + Q(t) + UR(−t, t), etc.

Lemma 19. If we assume all the conditions in previous Lemma, except that
supt∈J ‖R(t) − U(−t, t)‖ ≤ δ < 1,, which is replaced by

‖R(t) − UR(−t, t)‖ ≤ δ < 2,

for each t ∈ R,
Then the evolution family U is kinematically similar to an evolution family W , veri-

fying W(t, 0)R(0) = W(−t, 0)R(0), for each t ∈ R.

Proof. Let us consider the following operator function:

W(t, 0) = U(t, 0)P(0) + U(t, 0)Q(0) +
1

2
[U(t, 0)R(0) + U(−t, 0)R(0)]

Then Φ(t) = I + 1
2 [UR(−t, t)− R(t)] furnishes the required kinematic similarity.
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